• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des propriétés électro-catalytiques des matériaux d’électrode et des phénomènes de polarisation pour la compréhension des mécanismes de détection d'un capteur d'oxydes d'azote et l'optimisation de son fonctionnement / Study of electro-catalytic activity of electrodes materials and polarization phenomena for detection mechanism investigation of a no2 sensor and its optimization.

Romanytsia, Ivan 29 October 2014 (has links)
Le transport routier est responsable de la production de la majeure partie des oxydes d’azote (NOx) émis dans l’atmosphère. La majorité de cette pollution est donc concentrée dans des zones très urbanisées. L’exposition permanente aux gaz d’échappement a des conséquences graves pour la santé humaine et pour cela, des normes d’émission de plus en plus strictes sont mises en place. Les technologies post-Traitement embarquées dans les pots d’échappement sont de plus en plus complexes et nécessitent un control continu de la composition gazeuse. Les conditions sérères de ce milieu requièrent le développement de capteurs de gaz robustes et de longue durée de vie. Dans ce travail, nous présentons la procédure de fabrication et la caractérisation d’un capteur électrochimique à trois électrodes pouvant satisfaire les exigences d’une application industrielle dans le domaine automobile. La technologie de sérigraphie utilisée a l’avantage d’être facilement transférable dans l’industrie pour une production de masse bas cout.Le principe de fonctionnement du capteur est basé sur la polarisation galvanostatique de l’électrode sensible permettant une détection sélective de NO2 sans interférence avec d’autres gaz comme CO et NO. De plus, afin d’augmenter la stabilité du capteur, de diminuer les temps de réponse et de recouvrement, un nouveau matériau d’électrode composite à base d’or a été développé.Enfin, la réduction électrochimique de l’oxygène sur l’or et sur des électrodes composite a été étudiée, afin de proposer un mécanisme de détection de NO2 / Road transport is one of the main sources of NOx emitted into the atmosphere. The majority of this pollution is concentrated in urbanized areas. The permanent exposure to the exhaust gases has serious consequences for human health and for that, emission standards become more stringent. The modern technologies present in automotive need the continuous control of the exhaust composition. The variations of temperature, composition of exhaust gas, vibrations and other factors require long life robust control systems. In this work, we present the procedure of fabrication and characterization of an electrochemical sensor with three electrodes that can fulfill the demands of industrial applications in automotive industry. Manufacturing by screen-Printing technology allows producing low-Cost sensor with high reproducibility in industrial process.The principle of our sensor is based on galvanostatic polarization of a gold sensing electrode allowing the selective detection of NO2 without interference to other gases such as CO and NO. In order to increase stability, and to decrease the response and recovery time of the sensor, a new Au composite sensitive electrode was developed. The electrochemical reduction of oxygen on gold and gold-Based electrodes was then studied, to propose a detailed mechanism of NO2 detection.
2

Traitement des gaz d’échappement des groupes électrogènes alimentés par des gasoils, fuels marines ou bio-huiles : élimination des HAP en présence ou non de SOx / Treatment of exhaust gases from generators fueled with Diesel Marine diesel and bio-oils : removal of PAH in the presence or not of SOx

Soufi, Jihène 10 July 2017 (has links)
Résumé confidentiel / Résumé confidentiel
3

Développement d'une cellule SOFC de type monochambre pour la conversion en électricité des gaz d'échappement d'un moteur thermique / Development of a single chamber SOFC device for electrical energy production from exhaust gases of a thermal engine

Briault, Pauline 16 January 2014 (has links)
Le projet présenté dans ce mémoire a pour objectif de développer un système de récupération d’énergie des gaz d’échappement d’un véhicule à essence. Constitué de piles à combustible à oxyde solide (SOFC) en configuration monochambre, le dispositif doit convertir l’énergie chimique des gaz imbrûlés en électricité. Son fonctionnement en aval du catalyseur trois voies permettrait de compléter son action dépolluante tout en améliorant l’efficacité énergétique du véhicule. Par opposition aux piles SOFC dites conventionnelles, les piles SOFC monochambres ne nécessitent pas de scellement étanche entre les compartiments et fonctionnent sous un mélange gazeux composé d’hydrocarbures et d’oxygène. L’empilement en stack de plusieurs cellules est simplifié et plus compact, son intégration au cœur du pot d’échappement est donc plus simple. Ce concept a été précédemment étudié dans la littérature et le présent projet a pour but d’améliorer les performances délivrées en optimisant certains paramètres : la géométrie de pile et les matériaux d’électrodes et d’électrolyte. De plus, un mélange gazeux plus représentatif des conditions réelles a été défini et utilisé tout au long du projet. Une étude préliminaire sur les matériaux sous forme de poudre a permis de réaliser un premier choix parmi quatre matériaux de cathode et de définir les conditions de fonctionnement théoriques des cellules. Ensuite, les cellules complètes ont été mises en forme puis étudiées sous mélange gazeux. Une densité maximale de puissance de 25 mW.cm-2 à 550°C pour une cellule Ni-CGO/CGO/LSCF-CGO a ainsi pu être obtenue. / This study aims at developing a system able to recover energy from exhaust gases of a thermal engine. Composed of Solid Oxide Fuel Cells (SOFC) in a single chamber configuration, the device has to convert chemical energy of gases into electricity. Embedded in the exhaust line at the exit of the three-way catalyst, the stack of single chamber SOFC will complete the reduction of toxic gases emissions with an improvement of the vehicle energy efficiency.Unlike conventional SOFC, single chamber SOFC do not require any gastight sealing between compartments and work in a mixed atmosphere composed of hydrocarbon and oxygen. Stack assembly is thus simplified and more compact; insertion into the exhaust line is therefore easier. This concept has been previously studied in the literature and this work aims at enhancing performances through the optimisation of some parameters such as cell geometry and cell components materials.Moreover, a more representative gas mixture of actual compositions in the exhaust line has been defined and used all along this project. A preliminary study on the raw materials has allowed to make a first selection among four cathode materials and to define theoretical working conditions of our cells. Afterwards, cells have been elaborated and then studied in the selected gas mixture. A maximum power density of 25 mW.cm-2 has been obtained at 550°C for a Ni-CGO/CGO/LSCF-CGO cell.
4

Identification des mécanismes physico-chimiques impliqués dans le post-traitement plasma des gaz d'échappement et études comparatives des différentes technologies plasma / Identification of physico-chemical mechanisms involved in plasma exhaust after-treatment and comparative studies of various plasma technologies

Leray, Alexis 18 December 2012 (has links)
Le nouveau mode de combustion HCCI est adapté pour réduire les émissions d’oxydes d’azote et de particules fines issues de moteurs Diesel afin de respecter les futures normes d’émission Euro de plus en plus drastiques. Ce type de combustion se traduit par l’augmentation des émissions de monoxyde de carbone et des hydrocarbures et par une faible température des gaz d’échappement retardant ainsi leur conversion par le catalyseur d’oxydation Diesel (DOC). C’est dans ce contexte environnemental et économique que le couplage plasma-catalyseur apparait comme une solution intéressante afin d’améliorer l’efficacité du traitement des gaz d’échappement Diesel. Cette thèse est dédiée à l’étude du couplage d’un plasma non-thermique de type décharge à barrière diélectrique (DBD) et d’un catalyseur d’oxydation Diesel (Pt-Pd/Al2O3) pour le traitement de mélanges gazeux représentatifs d’un échappement de moteur Diesel HCCI (O2-NO-H2O-CO-CO2-CH4-C3H6- C7H8-C10H22-N2). Les expériences avec un réacteur plasma pilote ont été menées sur deux bancs expérimentaux : le premier à l’échelle laboratoire en vue de comprendre la physico-chimie impliquant le plasma et le catalyseur avec une attention particulière pour les sous-produits de réaction, et le second à l’échelle industriel afin de déterminer l’efficacité et la faisabilité d’un tel couplage dans les conditions de débit et de température les plus proches possibles de celles rencontrées en sortie moteur véhicule. L’étude menée en fonction de la puissance injectée dans le milieu, la VVH, la température des gaz, ainsi que la nature du cycle de roulage a permis de montrer l’efficacité du plasma pour abaisser de façon significative la température d’activation du DOC pour l’oxydation de CO et des hydrocarbures. Aussi, la présence du plasma en amont du DOC a permis, sur un cycle NEDC simulé, une réduction de 68% et 42% des masses de CO et des hydrocarbures émis en accord avec la norme Euro6 (2014). L’efficacité du plasma pour l’oxydation des hydrocarbures et de NO à basse température dans ces conditions de débits élevés (jusqu’à 900 Lmin−1 sur le cycle NEDC) a été confirmée et les principaux produits de réaction identifiés et quantifiés. / The new HCCI combustion mode is well adapted to improve nitrogen oxide and particulate matter reduction from Diesel engine in order to meet future emission regulations adopted in the Euro zone. However, HCCI engines emit relatively high amounts of unburned hydrocarbons and carbon monoxide due to lower engine exhaust temperature increasing the catalyst light-off time and decreasing the average efficiency of the Diesel oxidation catalyst (DOC). In this environmental and economic context, the combination of plasma with DOC has been considered especially for intermittent use during the cold start. The thesis presents the combination of nonthermal plasma upstream Diesel oxidation catalyst (Pt-Pd/Al2O3) applied to the treatment of simulating Diesel HCCI exhaust gas (O2-NO-H2O-CO-CO2-CH4-C3H6-C7H8-C10H22-N2). The studies were conducted at atmospheric pressure with a pilot-scale dielectric barrier discharge reactor (DBD) on two experimental devices. The first is a laboratory scale set-up (low flow rate : 20 Lmin−1) used to understand the physico-chemical involving the plasma and the catalyst by focusing on the by-products reactions. The second is an industrial scale (gas flow rate up to 260 Lmin−1) used to study the feasibility and the efficiency of the plasma-DOC system under conditions similar to those encountered in Diesel exhaust engine. The effects of the plasma, the DOC and the plasma-DOC systems on the exhaust gas have been investigated under various conditions. The main contribution of the plasma was to give a « thermal » and a chemical « push » to the DOC resulting in the decrease of light-off temperature for CO and HC oxidation. These improvements were shown to depend on the treatment conditions (injected energy i.e. energy density, space velocity, gas temperature and nature of the driving cycle). It is shown that for a simulated European Driving Cycle (NEDC), the combination of plasma upstream DOC reduces the cumulative mass of CO and hydrocarbons by about 68% and 42%, respectively, in accordance with the Euro 6 standard (2014). The efficiency of plasma for hydrocarbons and NO oxidation at low temperature in high flow conditions (up to 900 Lmin−1 on the NEDC) has been confirmed and the main reaction products identified and quantified.

Page generated in 0.0657 seconds