• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 19
  • 12
  • 8
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 190
  • 190
  • 69
  • 25
  • 25
  • 23
  • 21
  • 20
  • 20
  • 18
  • 18
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Chemical Biology Approaches for Regulating Eukaryotic Gene Expression / ケミカルバイオロジー的アプローチによる真核細胞の遺伝子発現制御法の検討

Junetha, Syed Jabarulla 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19261号 / 理博第4116号 / 新制||理||1592(附属図書館) / 32263 / 京都大学大学院理学研究科化学専攻 / (主査)教授 杉山 弘, 教授 三木 邦夫, 教授 藤井 紀子 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
152

Detection of Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch Disease of Cucurbits, Prevention via Seed Treatments and Disease Resistance Genes

Kiremit, Merve 02 April 2021 (has links)
Melon (Cucumis melo L.) and watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) belong to the family Cucurbitaceae. Bacterial fruit blotch (BFB) disease of cucurbits is an economically devastating plant disease that has caused an estimated loss of up to $450M on watermelon crops and $75M (worldwide) to the seed and transplant industries since 1996. Disease symptoms include water-soaked cotyledons, leaf necrosis, and internal fruit rot. Current commercial management strategies are very limited and include: seed production field sanitation, greenhouse transplant sanitation, copper-based bactericide sprays, crop rotation, disease-free healthy seeds, isolating diseased plants, and peroxyacetic acid seed treatments. The seedborne disease is usually spread by contaminated seeds, and there is a zero-tolerance policy in the seed industry for infected seeds. No nondestructive assays are commercially available to detect BFB in seeds. This research investigated several different aspects of BFB disease such as non-destructive seed detection, green tea seed treatment, candidate NB-LRR genes for disease resistance, and optimization of virus induced gene silencing for melon and watermelon crops. The potential application of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (ATR-FTIR) and high-resolution X-ray analysis methods for detection of BFB on seeds were evaluated. It was possible to detect BFB in seeds that were pistil inoculated via x-ray imaging and pericarp inoculated via ATR FT-IR. In vitro and in vivo experiments evaluated the potential of tea (Camellia sinensis) and tea polyphenols as seed treatments to sanitize seeds infected with A. citrulli. Green tea unlike black tea inhibited growth of A. citrulli because of polyphenols. Eighty one melon and forty four watermelon NB-LRR genes were reidentified, and genes that have potential resistance against A. citrulli on melon plants were screened based on host selectivity of the pathogen. Finally, the virus-induced, gene-silencing method was optimized for melon and watermelon for further analysis of potential disease resistance genes. BFB can be nondestructively identified in seeds and green tea may be an effective seed treatment with further development. Promising candidate R genes were identified that might confer stable resistance in the right genetic background. / Doctor of Philosophy / Melon and watermelon crops both belong to the gourd family. Bacterial fruit blotch (BFB) disease of cucurbits is an economically devastating plant disease that has caused an estimated loss of up to $450M on watermelon crops and $75M (worldwide) to the seed and transplant industries since 1996. Disease symptoms include water-soaked cotyledons, leaf necrosis, and internal fruit rot. Current commercial management strategies and detection methods are very limited. The seedborne disease is usually spread by contaminated seeds, and there is a zero-tolerance policy in the seed industry for infected seeds. This research investigated several different aspects of BFB disease such as non-destructive seed detection, green tea seed treatment, candidate disease resistance genes, and optimization of virus induced gene silencing methodology for melon and watermelon crops. There are currently no nondestructive assays available to detect BFB in seeds. We evaluated the potential application of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (ATR-FTIR) and high-resolution X-ray analysis methods for detection of BFB on seeds. It was possible to detect BFB inside layers of seeds that were naturally inoculated through the flowers via x-ray imaging and seedcoat inoculated via ATR FT-IR. In vitro and in vivo experiments evaluated the potential of tea and tea constituents as seed treatments to sanitize seeds infected with BFB. Green tea unlike black tea inhibited growth of BFB. Eighty one melon and forty four watermelon disease resistance genes were reidentified and genes that have potential resistance against BFB on melon plants were screened based on host selectivity of the pathogen. Finally, the virus induced gene silencing method was optimized for melon and watermelon plants for further analysis of potential disease resistance genes. BFB can be nondestructively identified in seeds and green tea may be an effective seed treatment with further development. Promising candidate resistance genes were identified that might confer stable resistance in the right genetic background.
153

Transposable element RNAi goes beyond post-transcriptional silencing: mRNA-derived small RNAs both regulate genes and initiate DNA methylation

McCue, Andrea D. 02 October 2015 (has links)
No description available.
154

Investigating the Molecular Framesworks of Phloem-Cap Fiber Development in Cotton (Gossypium hirsutum)

Kaur, Harmanpreet 12 1900 (has links)
The current study focuses on the vascular cambium and the reiterative formation of phloem fiber bundles in cotton stems. The role of the TDIF-PXY-WOX pathway was examined in regulating cambial activity and the differentiation of phloem fibers. A study was conducted to identify and characterize the cotton WOX family genes, focusing on WOX4 and WOX14, aiming to identify and analyze their phylogenetic relationships, tissue-specific expression profiles, functional roles, and metabolic consequences. Through a sequence analysis of the Gossypium hirsutum genome, 42 cotton loci were identified as WOX family members. GhWOX4 exhibited a close homology to 7 loci, while GhWOX14 displayed homology with 8 loci. Tissue-specific expression analysis revealed prominent expression patterns of GhWOX4 and GhWOX14 in cotton internodes and roots, suggesting their involvement in vascular tissue development. Functional studies utilizing VIGS (virus-induced gene silencing) demonstrated that the knockdown of GhWOX4 and GhWOX14 resulted in a significant reduction in stem diameter and bast fiber production. This result suggests that secondary phloem fiber development is regulated by GhWOX4 and GhWOX14 genes in cotton. Additionally, the metabolic profiling of VIGS plants revealed significant alterations in amino acids, organic acids, and sugars, with implications for primary metabolic pathways. These findings suggest that GhWOX4 and GhWOX14 play pivotal roles in cotton plant development, including vascular tissue growth and phloem fiber production, and metabolic regulation.
155

Virus-induced gene silencing of putative Diuraphis noxia (Kurdjumov) resistance genes in wheat

Starkus, Laura January 1900 (has links)
Master of Science / Department of Entomology / C. Michael Smith / The Russian wheat aphid Diuraphis noxia (Kurdjumov) is a serious pest of world cereal grain crops, primarily barley and wheat. A phenotypic characteristic of D. noxia feeding, leaf rolling, creates a leaf pseudo gall which protects aphids, making it difficult to treat infested plants with insecticides or biological control agents. Therefore, the use of D. noxia-resistant crops is a desirable aphid management tactic. Because of the development of virulent D. noxia biotypes, the identification of new sources of barley and wheat resistance is necessary. Virus-induced gene silencing (VIGS) utilizes the plant defense system to silence viruses in inoculated plants. The accumulation of virus RNA in plants triggers the defense system to silence sequences homologous to the introduced virus and sequences of interest from a plant are inserted into the virus and silenced along with the virus. The VIGS method was tested to determine the ability of barley stripe mosaic virus (BSMV) to serve as a VIGS vector in wheat plants containing the Dnx gene for resistance to D. noxia. Dnx leaves with silenced BSMV virus yielded D. noxia populations that were significantly no different from populations produced on healthy Dnx leaves. Thus, BSMV silencing does not interfere with Dnx resistance. Several different methods were examined to determine how best to confine aphids to the silenced leaf, and a modified plastic straw cage was chosen as the optimum cage type. Microarray and gene expression data were analyzed to select two NBS-LRR type disease resistance protein genes - TaAffx.104814.1.S1_at and TaAffx.28897.1.S1 - (NBS-LRR1 and NBSLRR2), in order to assess their role in Dnx resistance. NBS-LRR1 and NBSLRR2 were silenced by inoculating leaves of Dnx plants with barley stripe mosaic virus (BSMV) containing sequences of each gene. Controls included Dnx and Dn0 plants inoculated with BSMV and non-BSMV inoculated plants. Aphids were allowed to feed on control and treatment plants to assess aphid population and mean weight of aphids surviving at the end of the experiment. There were no differences among treatments based on aphid population, but there were significant differences the mean weights of aphids reared on several different treatments.
156

Detalhamento funcional do papel de CD99 em astrocitomas / Functional detailing of CD99 role in astrocitomas

Cardoso, Laís Cavalca 20 July 2018 (has links)
O glioblastoma (GBM) é o tumor cerebral maligno mais comum e agressivo em adultos. Uma combinação de terapia padrão com outras terapias baseadas no conhecimento de sua biologia é necessária para melhorar a sobrevida de pacientes com GBM. Muitos estudos foram desenvolvidos em busca de proteínas de membrana expressas em GBM, pois são potenciais alvos para imunoterapia. A proteína transmembrânica CD99 foi descrita como altamente expressa em astrocitomas de diferentes graus de malignidade. Embora seu mecanismo de ação ainda não seja totalmente compreendido, CD99 está envolvido na adesão e migração celular em diferentes tipos de tumores. O gene CD99 codifica duas proteínas distintas, denominadas isoforma 1, maior, de 32 kDa, e isoforma 2, gerada por splicing alternativo e menor, de 28 kDa. No presente estudo, foi demonstrada a expressão predominante da isoforma 1 em astrocitomas de diferentes graus de malignidade em comparação com o cérebro normal, bem como na linhagem celular de GBM humano U87MG. O transcriptoma das células U87MG transfectadas com siRNA para CD99 foi analisado em relação ao controle. Um total de 2.670 genes diferencialmente expressos foi identificado. Uma análise de enriquecimento no banco de dados DAVID revelou os seguintes processos como os mais significativos: junções aderentes célula-célula; adesão célula-célula envolvendo ligação de caderina e adesão celular. Ensaios funcionais baseados nestes achados (migração, invasão e adesão) foram realizados com células U87MG após o silenciamento de CD99 com dois shRNAs diferentes. A eficiência de silenciamento foi de 80 e 97%, para o shCD991 e 2, respectivamente, confirmada a nível de expressão do gene e da proteína. O silenciamento de CD99 reduziu a migração e invasão para ambos os shRNAs, com diminuição mais acentuada da migração para o shCD99 2, com maior nível de silenciamento de CD99. No ensaio de adesão, a linhagem U87MG shCD99 1 apresentou propriedades adesivas mais baixas que o controle, enquanto o shCD99 2 apresentou resultado oposto, com maior adesão celular do que seu controle. Provavelmente o silenciamento de CD99 afetou a redução da adesão celular em um padrão distinto, sugerindo que o resultado pode ser dependente do nível de expressão remanescente de CD99. Além disso, o CD99 e a faloidina colocalizaram nos lamelipódios e filopódios, sugerindo um papel importante no rearranjo do citoesqueleto. Foi demostrado, ainda, que o silenciamento de CD99 levou à redução da proliferação celular in vitro e diminuição do tumor in vivo. Camundongos imunodeficientes nos quais foram implantadas células silenciadas no cérebro apresentaram uma maior sobrevida que os animais que receberam células controle. A via de sinalização pela qual CD99 modula a proliferação no GBM ainda precisa ser elucidada. Migração, invasão e proliferação são as principais características do GBM que limitam uma ressecção cirúrgica completa e, consequentemente, levam frequentemente à recorrência. Portanto, análises posteriores das vias ativadoras do CD99 no contexto da migração, invasão, proliferação celular e apoptose são válidas para revelar novas estratégias terapêuticas para limitar a progressão do GBM / Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. A combination of standard therapy with other biologically based therapies is necessary to improve the survival of patients with GBM. Many studies have been developed in pursuit of expressed membrane proteins in GBM, which are potential targets for immunotherapy. The transmembrane protein CD99 is highly expressed in different malignant grades of astrocytomas. Although its mechanism of action is not still fully understood, CD99 is involved in cell adhesion and migration in different type of tumors. The CD99 gene encodes two distinct transmembrane proteins, named isoform 1, longer with 32 kDa, and isoform 2, generated by alternative splicing, shorter with 28 kDa. In the present study, we demonstrated predominant expression of isoform 1 in astrocytomas of different malignant grades compared to normal brain, and in the human GBM cell line U87MG. The transcriptome of U87MG cell line transfected with siRNA for CD99 was analyzed in relation to control. A total of 2.670 differentially expressed genes were identified. An enrichment analysis by DAVID Bioinformatics Database revealed the following processes as the most significant: cell-cell adherens junction; cadherin binding involved in cell-cell adhesion and cell-cell adhesion. Functional assays based on these findings (migration, invasion and adhesion) were performed with U87MG cells after knocking down CD99 with two different shRNAs. The CD99 silencing efficiency was 80 and 97%, for shCD99 1 and 2, respectively, confirmed at gene and protein level. The CD99 knockdown reduced migration and invasion for both shRNA, with the highest decrease of migration observed in the higher CD99 knocked down cells. In adhesion assay, shCD99 1 U87MG showed lower adhesive properties than the control, whereas shCD99 2 cells presented opposite results, with higher cell adhesion than control. Probably CD99 knockdown affected in the reduction of cell adhesion in a distinct pattern, suggesting that the result is dependent on CD99 remaining expression level. Additionally, CD99 and phalloidin colocalized at lamellipodia and filopodia, sugesting that CD99 plays an important role to cytoskeleton rearrangement. It has also been demonstrated that CD99 silencing caused reduction of cell proliferation in vitro and decreased tumor in vivo. Immunodeficient mice in which knocked down cells were implanted in the brain had a longer survival than animals that received control cells. The signaling pathway by which CD99 modulates proliferation in GBM still needs to be elucidated. Migration, invasion and proliferation are major characteristics of GBM, which limits the complete surgical tumor resection, and consequently leads to tumor recurrence. Therefore, further analysis of CD99 activating pathways in the context of cell migration, invasion, proliferation and apoptosis is worthwhile to unveil new therapeutic strategies to halt GBM progression
157

Etude de la réponse immunitaire de la cicadelle Circulifer haematoceps au cours de l'infection par Spiroplasma citri / Deciphering the immune response of the leafhopper Circulifer haematoceps during Spirop/asma citri infection

Eliautout, Remi 28 November 2014 (has links)
Spiroplasma citri est une bactérie phytopathogène transmise par la cicadelle Circuliferhaematoceps. L'absence de symptômes malgré la multiplication de S. citri dans l'hémolymphe, suggèreque le système immunitaire joue un rôle important dans la tolérance de la cicadelle vis-à-vis duspiroplasme.Le but de cette thèse a donc été d'étudier la réponse immunitaire de C. haematoceps aucours de l'infection par S. citri.Notre étude sur le système immunitaire de la cicadelle a montré la présence dans le plasma d'uneactivité antibactérienne et d'une activité phénoloxidase. Parmi les principaux types d'hémocytes unephagocytose des bactéries par les granulocytes et les plasmatocytes a été observée. Les gènessusceptibles d'être impliqués dans ces processus ont été recherchés par une approche par hybridationsoustractive. De manière étonnante, aucun gènes codant des récepteurs ni d'effecteurs connus del'immunité n'ont été identifiés. En revanche certains gènes (23 en tout) codent des protéines ayantpotentiellement un rôle immunitaire. Six de ces 23 gènes ont été retenus pour suivre leur expressionau temps précoce d'une infection bactérienne. Les résultats ont montré que les gènes codantI'Hexamérine, la DDBPl et la Thiorédoxine peroxydase étaient surexprimés lors de l'infection par 5.citri. Une approche fonctionnelle d'interférence par ARN a montré d'une part que I'Hexamérine étaitimpliquée dans l'activité phénoloxidase et d'autre part qu'elle jouait un rôle important dans la surviede C. haematococeps au cours de l'infection par 5. citri. En parallèle, le suivi de l'activité phénoloxidaseet de la phagocytose au cours de l'infection a montré que 5. citri était capable de s'adapter à laréponse immunitaire de l'insecte et d'y échapper. Ces résultats rejoignent ceux obtenus chez ladrosophile concernant S. poulsonii. / Spirop/asma citri is phytopathogenic bacteria transmitted by the leafhopper Circuliferhaematoceps. The absence of symptoms despite the multiplication of S. citri in the hemolymph,suggests that the immune system plays an important role in the tolerance of the leafhopper towardsthe spiroplasma infection. The purpose of this thesis was to study the immune response of C.haematoceps during the infection by 5. citri.The characterization of the immune system of the leafhopper showed that an antibacterial activity anda phenoloxidase activity were present in the plasma. The main types of hemocytes were identified.Among them, granulocytes and plasmatocytes are capable to phagocyte bacteria. The genes involvedin these immune processes were searched using subtractive hybridization method. lnterestingly, noneof the genes known to encode receptors or effectors of the immune system were identified. On theother hand 23 putative immune genes were identified. Six of these genes were retained to follow theirexpression in the early time of a bacterial infection. The results showed that the genes encodingHexamerin, DDBPl and Thioredoxin peroxidase were up-regulated during the infection by 5. citri. Afunctional approach by gene silencing showed that Hexamerin was involved in the phenoloxidaseactivity and played an important role in the survival of C. haematoceps during the infection by S. citri.Finally, the follow-up of the phenoloxidase activity and phagocytosis by hemocytes showed anadaptation and an evasion of S. citri from the immune response of the insect, according to the resultsobtained for 5. pou/sonii-infected drosophila.Keywords : 5piroplasma citri, phenoloxidase, phagocytosis, hemocytes, gene silencing, Hexamerine,subtractive hybridization.
158

Developing an optimal method for producing a tearless onion

Kamoi, T. January 2008 (has links)
People experience the irritating tearing and burning sensation of lachrymatory factor (LF, propanthial S-oxide) when cutting or chopping onion bulbs. LF is produced by lachrymatory factor synthase (LFS) specifically from 1-propenyl sulfenic acid, a breakdown product of trans-1-propenyl-L-cysteine sulfoxide (1-PRENCSO) by alliinase. This thesis describes strategies to produce a tearless onion by using RNA interference (RNAi) silencing. To determine whether a gene silencing cassette can silence lfs gene transcripts from onion (Allium cepa L.), a crop recalcitrant to genetic transformation, a gene silencing assessment system was developed by using a model plant as a host for the gene of interest. Tobacco (Nicotiana tabacum) plants transgenic for LFS enzyme activity from onion were first produced by introducing a CaMV 35S-onion-lfs gene construct. These plants were then subjected to a second transformation with an RNAi construct directed against the lfs gene sequence. LFS enzyme activity assay showed that the transgenic plants, containing both the lfs gene and the RNAi construct, had significantly reduced LFS activity. This observation was supported by Western analysis for the LFS protein and further validated by quantitative RT-PCR analysis that demonstrated a significant reduction in the lfs transcript level in the dual transformants. This work demonstrated that the RNAi construct is a suitable candidate for the development of a tearless onion. This model plant RNAi system has wide reaching applications for assessment and targeting of plant secondary pathway genes, from poorly studied or recalcitrant plant species, that are important in pharmacological, food and process industries. The functional RNAi vector identified in the model system was transformed into onion. Endogenous lfs transcript levels were successfully reduced by up to 43-fold in six transgenic lines. In consequence, LFS enzyme activity was decreased by up to 1573-fold and this observation was supported by Western analysis for the LFS protein. Furthermore, the production of the deterrent LF upon tissue disruption was reduced up to 67-fold. Subjective olfactory assessment of silenced lines indicated that the pungent odour given off by the leaf and bulb material was much reduced compared with that of non-transgenic counterparts, and that this was replaced by a sweeter milder onion odour. A novel colorimetric assay demonstrated that this silencing had shifted the 1-PRENCSO breakdown pathway so that by reducing LFS protein, more 1-propenyl sulfenic acid was converted into di-1-propenyl thiosulfinate. A consequence of the raised thiosulfinates levels was a marked increase in the downstream production of a non-enzymatically produced zwiebelane isomer that has never previously been identified, and other volatile compounds, di-1-propenyl disulfides and 2-mercapto-3,4-dimethyl-2,3-dihydrothiophenes, which had previously been reported either in small amounts or had not been detected in onions. These raised volatile sulfur compounds provide an explanation for the unique flavour notes of the LF reduced onion and are predicted to have health benefits akin to those found in garlic. These results demonstrated that silencing of LFS enzyme activity by introducing an RNAi construct directed against the lfs gene sequence simultaneously reduced levels of the deterrent LF and increased the desirable thiosulfinates in onions.
159

Metastatic Behaviour Of Doxorubicin Resistant Mcf-7 Breast Cancer Cells After Vimentin Silencing

Tezcan, Okan 01 January 2013 (has links) (PDF)
Chemotherapy is one of the common treatments in cancer therapy. The effectiveness of chemotherapy is limited by several factors one of which is the emergence of multidrug resistance (MDR). MDR is caused by the activity of diverse ATP binding cassette (ABC) transporters that pump drugs out of the cells. There are several drugs which have been used in treatment of cancer. One of them is doxorubicin that intercalates and inhibits DNA replication. However, doxorubicin has been found to cause development of MDR in tumors. It has been reported that there is a correlation between multidrug resistance and invasiveness of cancer cells. Vimentin is a type III intermediate filament protein that is expressed frequently in epithelial carcinomas correlating with invasiveness and also poor prognosis of cancer. There are several studies that have shown the connection between expression level of vimentin and invasiveness. In this study, MCF-7 cell line (MCF-7/S), which is a model cell line for human mammary carcinoma, and doxorubicin resistant MCF-7 cell line (MCF-7/Dox) were used. The resistant cell line was previously obtained by stepwise selection in our laboratory. The main purpose of this study was to investigate changes of metastatic behaviour in MCF-7/Dox cell line, after transient silencing of vimentin gene by siRNA. In conclusion, down-regulation of vimentin gene expression in MCF-7/Dox cell lines was expected to change the characteristics in migration and invasiveness shown by migration and invasion assays.
160

Molecular dissection of Bruton's tyrosine kinase signaling in hematopoietic cells using RNAi /

Heinonen, Juhana E., January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.

Page generated in 0.0701 seconds