Spelling suggestions: "subject:"deneral mathematics"" "subject:"deneral amathematics""
211 |
Asymptotic properties of the dynamics near stationary solutions for some nonlinear Schrödinger équationsOrtoleva, Cecilia Maria 18 February 2013 (has links) (PDF)
The present thesis is devoted to the investigation of certain aspects of the large time behavior of the solutions of two nonlinear Schrödinger equations in dimension three in some suitable perturbative regimes. The first model consist in a Schrödinger equation with a concentrated nonlinearity obtained considering a {point} (or contact) interaction with strength $alpha$, which consists of a singular perturbation of the Laplacian described by a self adjoint operator $H_{alpha}$, and letting the strength $alpha$ depend on the wave function: $ifrac{du}{dt}= H_alpha u$, $alpha=alpha(u)$.It is well-known that the elements of the domain of a point interaction in three dimensions can be written as the sum of a regular function and a function that exhibits a singularity proportional to $|x - x_0|^{-1}$, where $x_0$is the location of the point interaction. If $q$ is the so-called charge of the domain element $u$, i.e. the coefficient of itssingular part, then, in order to introduce a nonlinearity, we let the strength $alpha$ depend on $u$ according to the law $alpha=-nu|q|^sigma$, with $nu > 0$. This characterizes the model as a focusing NLS with concentrated nonlinearity of power type. In particular, we study orbital and asymptotic stability of standing waves for such a model. We prove the existence of standing waves of the form $u (t)=e^{iomega t}Phi_{omega}$, which are orbitally stable in the range $sigma in (0,1)$, and orbitally unstable for $sigma geq 1.$ Moreover, we show that for $sigma in(0,frac{1}{sqrt 2}) cup left(frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right)$ every standing wave is asymptotically stable, in the following sense. Choosing an initial data close to the stationary state in the energy norm, and belonging to a natural weighted $L^p$ space which allows dispersive stimates, the following resolution holds: $u(t) =e^{iomega_{infty} t +il(t)} Phi_{omega_{infty}}+U_t*psi_{infty} +r_{infty}$, where $U_t$ is the free Schrödinger propagator,$omega_{infty} > 0$ and $psi_{infty}$, $r_{infty} inL^2(R^3)$ with $| r_{infty} |_{L^2} = O(t^{-p}) quadtextrm{as} ;; t right arrow +infty$, $p = frac{5}{4}$,$frac{1}{4}$ depending on $sigma in (0, 1/sqrt{2})$, $sigma in (1/sqrt{2}, 1)$, respectively, and finally $l(t)$ is a logarithmic increasing function that appears when $sigma in (frac{1}{sqrt{2}},sigma^*)$, for a certain $sigma^* in left(frac{1}{sqrt{2}}, frac{sqrt{3} +1}{2sqrt{2}} right]$. Notice that in the present model the admitted nonlinearities for which asymptotic stability of solitons is proved, are subcritical in the sense that it does not give rise to blow up, regardless of the chosen initial data. The second model is the energy critical focusing nonlinear Schrödinger equation $i frac{du}{dt}=-Delta u-|u|^4 u$. In this case we prove, for any $nu$ and $alpha_0$ sufficiently small, the existence of radial finite energy solutions of the form$u(t,x)=e^{ialpha(t)}lambda^{1/2}(t)W(lambda(t)x)+e^{iDeltat}zeta^*+o_{dot H^1} (1)$ as $tright arrow +infty$, where$alpha(t)=alpha_0ln t$, $lambda(t)=t^{nu}$,$W(x)=(1+frac13|x|^2)^{-1/2}$ is the ground state and $zeta^*$is arbitrarily small in $dot H^1$
|
212 |
Variétés de représentations de carquois à bouclesBozec, Tristan 06 June 2014 (has links) (PDF)
Cette thèse s'articule autour des espaces de modules de représentations de carquois arbitraires, c'est-à-dire possédant d'éventuelles boucles. Nous obtenons trois types de résultats. Le premier concerne la base canonique de Lusztig, dont la définition est étendue à notre cadre, notamment en introduisant une algèbre de Hopf généralisant les groupes quantiques usuels (i.e. associés aux algèbres de Kac-Moody symétriques). On démontre au passage une conjecture faite par Lusztig en 1993, portant sur la catégorie de faisceaux pervers qu'il définit sur les variétés de représentations de carquois.Le second type de résultats, également inspiré par le travail de Lusztig, concerne la base semi- canonique et la variété Lagrangienne nilpotent de Lusztig. Pour un carquois arbitraire, on définit des sous-variétés de représentations semi-nilpotentes Λ(α), et nous montrons qu'elles sont Lagrangiennes. La démonstration repose sur l'existence de fibrations affines partielles entre diverses composantes de Λ(α), contrôlées par une combinatoire précise. Nous définissons une algèbre de convolution de fonctions constructibles sur ⊔Λ(α), et montrons qu'elle possède une base formée de fonctions quasi- caractéristiques des composantes irréductibles des Λ(α). La structure combinatoire qui se dégage ici est analogue à celle obtenue sur les faisceaux pervers de Lusztig, et fait apparaître des opérateurs plus généraux que ceux décrits par les cristaux de Kashiwara.Le troisième thème considéré est celui des variétés carquois de Nakajima, dont l'étude géomé- trique menée ici permet, conjointement avec ce qui est fait précédemment, de donner une définition de cristaux de Kashiwara généralisés. On définit à nouveau des sous-variétés Lagrangiennes, ainsi qu'un produit tensoriel sur leurs composantes irréductibles, comme fait dans le cas classique par Nakajima.
|
213 |
Etude asymptotique d'équations aux dérivées partielles de type diffusion non linéaire et inégalités fonctionnelles associéesJankowiak, Gaspard 23 June 2014 (has links) (PDF)
Ce travail est consacré à l'étude du comportement en temps grand d'équations aux dérivées partielles de type parabolique. Plus particulièrement, on s'intéresse à des équations non linéaires de type diffusion, qui interviennent dans de nombreux modèles issus de la physique (par exemple l'équation des milieux poreux) ou de la biologie (par exemple le modèle de Patlak-Keller-Segel pour la chimiotaxie). Dans les chapitres I et II on s'intéresse à une amélioration de l'inégalité de Sobolev à travers son inégalité duale, l'inégalité de Hardy-Littlewood-Sobolev, dans le cadre du laplacien ordinaire et du laplacien fractionnaire, respectivement. Le chapitre III est un passage en revue de l'inégalité d'Onofri, qui joue le rôle de l'inégalité de Sobolev pour la dimension deux. De nouveaux résultats sont apportés, dont certains sont étendus aux variétés riemanniennes au chapitre IV. Enfin, le chapitre V traite des états stationnaires de deux modèles paraboliques, utilisés pour l'étude du déplacement de foules et la modélisation en biologie (chimiotaxie).
|
214 |
Approches statistiques en segmentation : application à la ré-annotation de génomeCleynen, Alice 15 November 2013 (has links) (PDF)
Nous proposons de modéliser les données issues des technologies de séquençage du transcriptome (RNA-Seq) à l'aide de la loi binomiale négative, et nous construisons des modèles de segmentation adaptés à leur étude à différentes échelles biologiques, dans le contexte où ces technologies sont devenues un outil précieux pour l'annotation de génome, l'analyse de l'expression des gènes, et la détection de nouveaux transcrits. Nous développons un algorithme de segmentation rapide pour analyser des séries à l'échelle du chromosome, et nous proposons deux méthodes pour l'estimation du nombre de segments, directement lié au nombre de gènes exprimés dans la cellule, qu'ils soient précédemment annotés ou détectés à cette même occasion. L'objectif d'annotation précise des gènes, et plus particulièrement de comparaison des sites de début et fin de transcription entre individus, nous amène naturellement à nous intéresser à la comparaison des localisations de ruptures dans des séries indépendantes. Nous construisons ainsi dans un cadre de segmentation bayésienne des outils de réponse à nos questions pour lesquels nous sommes capable de fournir des mesures d'incertitude. Nous illustrons nos modèles, tous implémentés dans des packages R, sur des données RNA-Seq provenant d'expériences sur la levure, et montrons par exemple que les frontières des introns sont conservées entre conditions tandis que les débuts et fin de transcriptions sont soumis à l'épissage différentiel.
|
215 |
Deux contributions à l'arithmétique des variétés : r-équivalence et cohomologie non ramifiée.Pirutka, Alena 12 October 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse à des propriétés arithmétiques de variétés algébriques. Elle contient deux parties et huit chapitres que l'on peut lire indépendamment. Dans la première partie on étudie la R-équivalence sur les points rationnels des variétés algébriques. Dans le chapitre I.1 on établit que pour certaines familles projectives et lisses X→Y de variétés géométriquement rationnelles sur un corps local k de caractéristique nulle le nombre des classes de R-équivalence de la fibre Xy(k) est localement constant quand y varie dans Y(k). Dans le chapitre I.2 on s'intéresse à des variétés rationnellement simplement connexes. On établit que la R-équivalence est triviale sur de telles variétés définies sur C(t). Dans le chapitre I.3 on introduit une autre relation d'équivalence sur les points rationnels des variétés définies sur un corps muni d'une valuation discrète et on étudie quelques propriétés de cette relation d'équivalence. Dans le chapitre I.4 on étudie la R-équivalence sur les variétés rationnellement connexes définies sur les corps réels clos ou p-adiqument clos. La deuxième partie de cette thèse est consacrée à l'étude de quelques questions liées à la cohomologie non ramifiée. Dans le chapitre II.1 on utilise le troisième groupe de cohomologie non ramifiée pour donner un exemple d'une variété projective et lisse géométriquement rationnelle X, définie sur un corps fini Fp, telle que l'application de groupes de Chow de codimension deux de la variété X dans le groupe de Chow de cycles de codimension deux sur la clôture algébrique, fixés par l'action de Galois, n'est pas surjective. Dans le chapitre II.2 on s'intéresse aux fibrations au-dessus d'une surface sur un corps fini dont la fibre générique est une variété de Severi-Brauer et on montre que le troisième groupe de cohomologie non ramifiée s'annule pour de telles variétés. Dans le chapitre II.3, on établit l'invariance birationnelle de certains termes de la suite spectrale de Bloch et Ogus pour des variétés sur un corps de dimension cohomologique bornée. Sur un corps fini, on relie un de ces invariants avec le conoyau de l'application classe de cycle l-adique pour les 1-cycles. Dans le chapitre II.4, on s'intéresse à "borner" la ramification des éléments des groupes de cohomologie Hr(K, Z/n), r>0, si K est le corps des fonctions d'une variété intègre définie sur un corps de caractéristique nulle k.
|
216 |
Fronts de réaction-diffusion et défauts localisésSarels, Benoît, Sarels, Benoît 15 May 2012 (has links) (PDF)
Cette thèse porte sur la dynamique de fronts de réaction-diffusion en présence de défauts localisés. Nous étudions des non-linéarités bistable et monostable pour lesquelles il existe des solutions exactes en milieu homogène. l'équation aux dérivées partielles est résolue numériquement et la solution est approchée en utilisant des solutions exactes. Parallèlement, nous développons une analyse en coordonnées collectives, position et largeur du front, basée sur des lois d'équilibre.Pour les deux non-linéarités, l'analyse approchée est en bon accord avec la solution numérique. Il est de plus possible de prédire l'arrêt du front dans le cas bistable. L'étude révèle des différences qualitatives entre les deux types de non linéarités. Elle montre l'importance des dimensions caractéristiques du défaut et du front. Enfin, elle fournit un modèle standardisé qui peut servir en théorie du contrôle ou pour la détermination de paramètres à partir de séries temporelles.
|
217 |
Sur la résolution des équations intégrales singulières à noyau de CauchyMennouni, Abdelaziz, Mennouni, Abdelaziz 27 April 2011 (has links) (PDF)
L'objectif de ce travail est la résolution des équations intégrales singulières à noyau Cauchy. On y traite les équations singulières de Cauchy de première espèce par la méthode des approximations successives. On s'intéresse aussi aux équations intégrales à noyau de Cauchy de seconde espèce, en utilisant les polynômes trigonométriques et les techniques de Fourier. Dans la même perspective, on utilise les polynômes de Tchebychev de quatrième degré pour résoudre une équation intégro différentielle à noyau de Cauchy. Ensuite, on s'intéresse à une autre équation intégro-différentielle à noyau de Cauchy, en utilisant les polynômes de Legendre, ce qui a donné lieu à développer deux méthodes basées sur une suite de projections qui converge simplement vers l'identité. En outre, on exploite les méthodes de projection pour les équations intégrales avec des opérateurs intégraux bornés non compacts et on a appliqué ces méthodes à l'équation intégrale singulière à noyau de Cauchy de deuxième espèce
|
218 |
Graphages à type d'isomorphisme prescritMercier, Pierre-Adelin 24 September 2012 (has links) (PDF)
On considère R une relation d'équivalence borélienne standard de type I I1 sur un espace de probabilités (X, µ). On étudie une certaine propriété d'homogénéité pour un graphage fixé de la relation R : on suppose que les feuilles du graphage sont toutes isomorphes à un certain graphe transitif (connexe, infini, localement fini) Γ. Que peut-on dire sur la relation ? Dans ce cas, en considérant une action "à la Mackey", on montre qu'il existe (Z ,η) un revêtement standard probabilisé de (X, µ), une action libre (qui préserve η) sur Z du groupe G (localement compact, à base dénombrable d'ouverts) des automorphismes du graphe et un isomorphisme stable des groupoïdes mesurés associés. On fait le lien entre les propriétés du groupe G et celles de la relation de départ ; en particulier la propriété (T), (H) et la moyennabilité "passent" du graphe à la relation et réciproquement. On déduit aussi de la construction quelques couplages d'équivalence mesurée (ou plus généralement des "randembeddings") entre certains sous-groupes des automorphismes de Γ et tout groupe qui contient orbitalement la relation R. Dans un deuxième chapitre, on aborde le cas particulier de la propriété (T) relative pour les paires de groupes (ΓxZ^2, Z^2), où Γ est un sous-groupe non moyennable de SL(2,Z). Cette propriété a d'abord été prouvée par Marc Burger, puis "re-démontrée" plus "visuellement" quelques années plus tard dans le cas de SL(2,Z)xZ^2 par Y. Shalom, en utilisant des découpages du plan. On reprend cette technique dans le cas général du théorème de Burger afin d'obtenir par un algorithme des constantes de Kazhdan explicites pour toute paire (ΓxZ^2, Z^2).
|
219 |
Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbitesKuyumzhiyan, Karine 10 May 2011 (has links) (PDF)
Cette thèse est consacrée aux actions des groupes de transformations algébriques sur les variétés affines algébriques. Dans la première partie, on étudie la normalité des adhérences des orbites de tore maximal dans un module rationnel de groupe algébrique simple. La seconde partie porte sur les actions du groupe d'automorphismes d'une variété affine. Nous nous intéressons aux propriétés de transitivité et de transitivité multiple de ces actions sur le lieu lisse de la variété.
|
220 |
Algèbres de Hopf d'arbres et structures pré-LieSaidi, Abdellatif 17 December 2011 (has links) (PDF)
Nous étudions dans cette thèse l'algèbre de Hopf H associée à l'opérade pré-Lie. L'espace des éléments primitifs du dual gradué est muni d'une structure pré-Lie à gauche notée ⊲ définie par l'insertion d'un arbre dans un autre. Nous retrouvons la relation de dérivation entre le produit pré-Lie ⊲ et le produit pré-Lie de greffe → sur les éléments primitifs du dual gradué de l'algèbre de Hopf de Connes Kreimer HCK. Nous mettons en évidence un coproduit sur le produit tensoriel H ⊗HCK, qui en fait une algèbre de Hopf dont le dual gradué est isomorphe à l'algèbre enveloppante du produit semi-direct des deux algèbres de Lie considérées. Nous montrons que l'espace engendré par les arbres enracinés qui ont au moins une arête, muni du produit d'insertion, est une algèbre pré-Lie (non libre) engendrée par deux éléments. Nous mettons en évidence deux familles de relations. De plus nous montrons un résultat similaire pour l'algèbre pré-Lie associée à l'opérade NAP. Finalement on introduit les opérades à débit constant et on montre que l'opérade pré-Lie s'obtient comme déformation de l'opérade NAP dans ce cadre.
|
Page generated in 0.0858 seconds