Spelling suggestions: "subject:"generalized continuum"" "subject:"eneralized continuum""
1 |
[pt] MODELAGEM DE LOCALIZAÇÃO DE DEFORMAÇÕES COM TEORIAS DE CONTÍNUO GENERALIZADO / [en] MODELS FOR STRAIN LOCALIZATION WITH THEORIES OF GENERALIZED CONTINUAEDUARDO NOBRE LAGES 08 November 2001 (has links)
[pt] A utilização da teoria clássica do contínuo, juntamente com
modelos locais para as relações constitutivas, tem
demonstrado inconsistência física na representação de
problemas onde ocorrem localizações das deformações.
Nesta tese, empregam-se teorias de contínuos generalizados
para descrever de forma consistente o mecanismo de
localização. Inicialmente, explora-se a estratégia que
consiste de um modelo elastoplástico para o contínuo de
Cosserat. Numa segunda fase, apresenta-se um refinamento da
teoria, com a utilização do contínuo com microexpansão.
Para os dois casos, discutem-se exemplos numéricos e,
quando possível, analíticos.As teorias apresentadas são
incorporadas em um p rograma de elementos finitos, que
adota a filosofia de programação orientada a objetos. / [en] The use of a classical continuum theory, together with
local models for the constitutive relations, leads to
physical inconsistencies in the representation of strain
localization.In this thesis, generalized continuum theories
are used in order to describe consistently localization
mechanisms.In a first stage, the micropolar theory is
associated with an elasto-plastic model.In a second stage,
a refinement of the micropolar theory is presented, for a
microstretch continuum.For both approaches, numerical
examples are discussed and, whenever is possible,
analytical solutions are presented.The theories above were
incorporated in a general-purpose finite element program,
which was developed using the object-oriented programming
approach.
|
2 |
Non-linear mechanics of generalized continua and applications to composite materials / Milieux continus généralisés : Application aux grandes transformations des renforts de composites quasi-inextensiblesFerretti, Manuel 07 November 2014 (has links)
La microstructure des matériaux constitue un outil essentiel pour optimiser les propriétés mécaniques des structures et ainsi améliorer leurs performances. Ce manuscrit est organisé comme suit : - Dans le chapitre 1 nous introduisons les aspects généraux de la mécanique des renforts fibreux.- Dans le chapitre 2 nous rappelons certains concepts fondamentaux concernant la mécanique des milieux continus classiques et les théories de deuxième gradient.- Dans le chapitre 3 nous nous proposons de présenter une première modélisation des renforts fibreux de composites en mettant en place des modèles numériques discrets. Dans un deuxième moment nous introduisons une modélisation continue de deuxième gradient et nous montrons que les termes d’ordre supérieur permettent une description satisfaisante des effets de flexion locale sur-cités.- Dans le chapitre 4 on particularise le cadre général de la mécanique des milieux continus introduit dans le chapitre 2 au cas particulier des milieux continus 2D. - Dans le chapitre 5 nous introduisons une hypothèse cinématique forte sur les déformations ad- missibles, en supposant que les mèches du renfort considéré sont inextensibles. Une méthode numérique permettant de montrer certaines solutions concernant le cas du bias extension test est codée en Mathematica et les résultats obtenus sont discutés. / Generalized continuum theories may be good candidates to model micro-structured materials in a more appropriate way (both in the static and dynamic regime) since they are able to account for the description of the macroscopic manifestation of the presence of microstructure in a rather simplified way.
The present manuscript is organized as follows: In chapter 1 a general description of fibrous composite reinforcements is given, with particular attention to the introduction of standard experimental tests which are used to characterize the micro- and macro-structural mechanical properties of such materials. In chapter 2 some fundamental issues concerning classical continuum mechanical models are recalled. Moreover, second gradient continuum models are introduced and discussed by means of the Principle of Virtual Work. Since the applications targeted in this manuscript are limited to static cases, we refrain here to treat the more general case including inertia effects. In chapter 3 we start analyzing some discrete and continuum models for the description of the mechanical behavior of 2D woven composites. At this stage of the manuscript, we want to show how some discrete numerical simulations allowed us to unveil some very special deformation modes related to the effect of the local bending of fibers on the overall macroscopic deformation of fibrous composite reinforcements. Such discrete simulations showed rather clearly that microscopic bending of the fibers cannot be neglected when considering the deformation of fibrous composite reinforcements. For this reason, we subsequently introduced a continuum model which is able to account for such microstructure-related effects by means of second gradient terms appearing in the strain energy density. In chapter 4 we reduce the general continuum mechanical framework introduced in Chapter 2 to the particular case of 2D continua. We put a strong accent on the geometric interpretation of second gradient deformation measures which are seen to be directly related to the in-plane curvatures of suitable coordinate lines. Such coordinate lines will be interpreted in the next chapters are the yarns of the considered 2D woven composite, so acquiring a direct physical sense. In chapter 5 we introduce a strong kinematical hypothesis on the admissible deformations, assuming that the yarns composing the woven reinforcements are inextensible. Such assumption allows us to build-up a simplified first gradient model for the behavior of 2D woven reinforcements which is still representative of their mechanical behavior. A constrained least Action principle is proposed and the associated integral Euler-Lagrange equations are presented. A numerical method allowing to show some solutions concerning the case of bias extension test is implemented in Mathematica and the obtained results are discussed.
|
Page generated in 0.0648 seconds