• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 12
  • 12
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tribonacci Convolution Triangle

Davila, Rosa 01 June 2019 (has links)
A lot has been said about the Fibonacci Convolution Triangle, but not much has been said about the Tribonacci Convolution Triangle. There are a few ways to generate the Fibonacci Convolution Triangle. Proven through generating functions, Koshy has discovered the Fibonacci Convolution Triangle in Pascal's Triangle, Pell numbers, and even Tribonacci numbers. The goal of this project is to find inspiration in the Fibonacci Convolution Triangle to prove patterns that we observe in the Tribonacci Convolution Triangle. We start this by bringing in all the information that will be useful in constructing and solving these convolution triangles and find a way to prove them in an easy way.
12

Polysimplices in Euclidean Spaces and the Enumeration of Domino Tilings of Rectangles

Michel, Jean-Luc 15 June 2011 (has links)
Nous étudions, dans la première partie de notre thèse, les polysimplexes d’un espace euclidien de dimension quelconque, c’est-à-dire les objets consistant en une juxtaposition de simplexes réguliers (de tétraèdres si la dimension est 3) accolés le long de leurs faces. Nous étudions principalement le groupe des symétries de ces polysimplexes. Nous présentons une façon de représenter un polysimplexe à l’aide d’un diagramme. Ceci fournit une classification complète des polysimplexes à similitude près. De plus, le groupe des symétries se déduit du groupe des automorphismes du diagramme. Il découle en particulier de notre étude qu’en dimension supérieure à 2, une telle structure ne possède jamais deux faces parallèles et ne contient jamais de circuit fermé de simplexes. Dans la seconde partie de notre thèse, nous abordons un problème classique de combinatoire : l’énumération des pavages d’un rectangle mxn à l’aide de dominos. Klarner et Pollack ont montré qu’en fixant m la suite obtenue vérifie une relation de récurrence linéaire à coefficients constants. Nous établissons une nouvelle méthode nous permettant d’obtenir la fonction génératrice correspondante et la calculons pour m <= 16, alors qu’elle n’était connue que pour m <= 10.
13

Transitive Factorizations of Permutations and Eulerian Maps in the Plane

Serrano, Luis January 2005 (has links)
The problem of counting ramified covers of a Riemann surface up to homeomorphism was proposed by Hurwitz in the late 1800's. This problem translates combinatorially into factoring a permutation with a specified cycle type, with certain conditions on the cycle types of the factors, such as minimality and transitivity. Goulden and Jackson have given a proof for the number of minimal, transitive factorizations of a permutation into transpositions. This proof involves a partial differential equation for the generating series, called the Join-Cut equation. Furthermore, this argument is generalized to surfaces of higher genus. Recently, Bousquet-M&eacute;lou and Schaeffer have found the number of minimal, transitive factorizations of a permutation into arbitrary unspecified factors. This was proved by a purely combinatorial argument, based on a direct bijection between factorizations and certain objects called <em>m</em>-Eulerian trees. In this thesis, we will give a new proof of the result by Bousquet-M&eacute;lou and Schaeffer, introducing a simple partial differential equation. We apply algebraic methods based on Lagrange's theorem, and combinatorial methods based on a new use of Bousquet-M&eacute;lou and Schaeffer's <em>m</em>-Eulerian trees. Some partial results are also given for a refinement of this problem, in which the number of cycles in each factor is specified. This involves Lagrange's theorem in many variables.
14

Transitive Factorizations of Permutations and Eulerian Maps in the Plane

Serrano, Luis January 2005 (has links)
The problem of counting ramified covers of a Riemann surface up to homeomorphism was proposed by Hurwitz in the late 1800's. This problem translates combinatorially into factoring a permutation with a specified cycle type, with certain conditions on the cycle types of the factors, such as minimality and transitivity. Goulden and Jackson have given a proof for the number of minimal, transitive factorizations of a permutation into transpositions. This proof involves a partial differential equation for the generating series, called the Join-Cut equation. Furthermore, this argument is generalized to surfaces of higher genus. Recently, Bousquet-M&eacute;lou and Schaeffer have found the number of minimal, transitive factorizations of a permutation into arbitrary unspecified factors. This was proved by a purely combinatorial argument, based on a direct bijection between factorizations and certain objects called <em>m</em>-Eulerian trees. In this thesis, we will give a new proof of the result by Bousquet-M&eacute;lou and Schaeffer, introducing a simple partial differential equation. We apply algebraic methods based on Lagrange's theorem, and combinatorial methods based on a new use of Bousquet-M&eacute;lou and Schaeffer's <em>m</em>-Eulerian trees. Some partial results are also given for a refinement of this problem, in which the number of cycles in each factor is specified. This involves Lagrange's theorem in many variables.
15

Applications of Generating Functions

Tseng, Chieh-Mei 26 June 2007 (has links)
Generating functions express a sequence as coefficients arising from a power series in variables. They have many applications in combinatorics and probability. In this paper, we will investigate the important properties of four kinds of generating functions in one variables: ordinary generating unction, exponential generating function, probability generating function and moment generating function. Many examples with applications in combinatorics and probability, will be discussed. Finally, some well-known contest problems related to generating functions will be addressed.
16

Computation of moment generating and characteristic functions with Mathematica

Shiao, Z-C 24 July 2003 (has links)
Mathematica is an extremely powerful and flexible symbolic computer algebra system that enables the user to deal with complicated algebraic tasks. It can also easily handle the numerical and graphical sides. One such task is the derivation of moment generating functions (MGF) and characteristic functions (CF), demonstrably effective tools to characterize a distribution. In this paper, we define some rules in Mathematica to help in computing the MGF and CF for linear combination of independent random variables. These commands utilizes pattern-matching code that enhances Mathematica's ability to simplify expressions involving the product of algebraic terms. This enhancement to Mathematica's functionality can be of particular benefit for MGF and CF. Applications of these rules to determine mean, variance and distribution are illustrated for various independent random variables.
17

Polya's Enumeration Theorem : Number of colorings of n-gons and non isomorphic graphs,

Badar, Muhammad, Iqbal, Ansir January 2010 (has links)
Polya’s theorem can be used to enumerate objects under permutation groups. Using grouptheory, combinatorics and some examples, Polya’s theorem and Burnside’s lemma arederived. The examples used are a square, pentagon, hexagon and heptagon under theirrespective dihedral groups. Generalization using more permutations and applications tograph theory.Using Polya’s Enumeration theorem, Harary and Palmer [5] give a function whichgives the number of unlabeled graphs n vertices and m edges. We present their work andthe necessary background knowledge.
18

Διακριτές κατανομές με γεννήτριες πηλίκα γεννητριών και εφαρμογές αυτών σε κλαδωτές ανελίξεις / Discrete distributions with probability generating function the ratio of two probability generating function’s and their implementation in branching processes

Νικολαΐδου, Χρυσούλα 07 December 2010 (has links)
Στην εργασία αυτή παρουσιάζεται η πιθανογεννήτρια του αριθμού των απογόνων της ν-oστης γενιάς μια κλαδωτής ανέλιξης ως το πηλίκο των πιθανογεννήτριων δύο γεωμετρικών κατανομών. Στην βιβλιογραφία, με εξαίρεση δύο συγκεκριμένες περιπτώσεις (πηλίκα πιθανογεννητριών αρνητικής διωνυμικής με γεωμετρική, Kemp, 1979, και γεωμετρικής με Poisson Jayasree and Swamy, 2006), δεν έχει μελετηθεί το γενικότερο πρόβλημα των συνθηκών που επιτρέπουν το πηλίκο δύο πιθανογεννητριών να είναι η πιθανογεννήτρια μιας διακριτής μη αρνητικής τυχαίας μεταβλητής. Εδώ δίνονται οι ικανές και αναγκαίες συνθήκες για τα αντίστοιχα πηλίκα πιθανογεννητριών κατανομών από την οικογένεια Katz ή την οικογένεια Sundt and Jewell με την γεωμετρική κατανομή. Μελετάται επίσης και το πηλίκο απείρως διαιρετών κατανομών με την Poisson και παρουσιάζονται αναλυτικά τέτοια παραδείγματα. Διάφορες ιδιότητες των κατανομών που προκύπτουν εξετάζονται και γίνεται εκτίμηση των παραμέτρων. Στη συνέχεια, παρουσίαζεται μια διδιάστατη κλαδωτή ανέλιξη, δίνεται αναλυτικός τύπος για την πιθανογεννήτρια της από κοινού συνάρτησης κατανομής του πλήθους των δύο ειδών απογόνων της ν-oστης γενιάς, και αποδεικνύεται ότι αυτή μπορεί να γραφεί ως το πηλίκο των πιθανογεννήτριων δύο διδιαστάτων γεωμετρικών κατανομών. Μελετούμε γενικότερα το αντίστοιχο πρόβλημα για διδιάστατες τ.μ. και εξετάζουμε τις ικανές συνθήκες στις περιπτώσεις πηλίκου πιθανογεννητριών της διδιάστατης αρνητικής διωνυμικής με τη διδιάστατη γεωμετρική και της διδιάστατης αρνητικής διωνυμικής με τη διδιάστατη Poisson. Παρουσιάζονται αναγωγικές και αναλυτικές σχέσεις για τις πιθανότητες και τις παραγοντικές ροπές και μελετάται η μορφή των πιθανογεννητριών τόσο των περιθωρίων όσο και των δεσμευμένων κατανομών που προκύπτουν. / In this master thesis we observe, that the probability generating function of the number of the descendants of the n-th generation in a branching process, can be represented as the ratio of the probability generating functions (p.g.f.) of two geometric distributions. In the literature, with the exception of two particular cases (ratio of negative binomial with geometric, Kemp, 1979, and geometric with Poisson, Jayasree and Swamy, 2006), the general problem, for the conditions that allow the ratio of two p.g.f.’s to be the p.g.f. of a discrete non-negative random variable (r.v.), has not been considered. Here, are given the necessary and sufficient conditions for the ratios of the p.g.f. of a distribution from the Katz or the Sundt and Jewell family with the p.g.f. of a Geometric distribution. The ratio of an infinitely divisible r.v. with a Poisson r.v. is also studied and various such examples are presented in detail. Properties of these distributions are given and also parameters estimators are provided. In the sequel, a bivariate branching process is considered and the explicit form for the p.g.f. of the number of two type descendants in the n-th generation is derived. It is proved, that it can be written as the ratio of the p.g.f.’s of two bivariate geometric distributions. The sufficient conditions in the cases of the ratio of the bivariate negative binomial distribution with the bivariate geometric distribution and the bivariate negative binomial distribution with the bivariate Poisson distribution are examined. Recurrence relations and the explicit form of the probabilities and the factorial moments are given and the form of the p.g.f.’s for the marginals and the conditional distributions are studied.
19

Statistická analýza složených rozdělení / Statistical analysis of compound distributions

Konečný, Zdeněk January 2011 (has links)
The probability distribution of a random variable created by summing a random number of the independent and identically distributed random variables is called a compound probability distribution. In this work is described a compound distribution as well as a calculation of its characteristics. Especially, the thesis is focused on studying a special case of compound distribution where each addend has the log-normal distribution and their number has the negative binomial distribution. Here are also described some approaches to estimate the parameters of LN and NB distribution. Further, the impact of these estimates on the final compound distribution is analyzed.
20

Generating functions and regular languages of walks with modular restrictions in graphs

Rahm, Ludwig January 2017 (has links)
This thesis examines the problem of counting and describing walks in graphs, and the problem when such walks have modular restrictions on how many timesit visits each vertex. For the special cases of the path graph, the cycle graph, the grid graph and the cylinder graph, generating functions and regular languages for their walks and walks with modular restrictions are constructed. At the end of the thesis, a theorem is proved that connects the generating function for walks in a graph to the generating function for walks in a covering graph.

Page generated in 0.139 seconds