Spelling suggestions: "subject:"geometrical"" "subject:"eometrical""
191 |
S. Table : A self stabilising and body borne table / S. Table : Ett självstabiliserande och kroppsburet bordEngman, Jacob, Gustavsson, Lucas January 2023 (has links)
This project aimed to create a prototype of a self stabilising and body borne table. The prototype was constructed by first building a CAD-model and doing a simulation of the entire system. This provided a ground for doing a physical construction. An Arduino Uno was used as a microcontroller that sent signals to two servo motors based on data from an accelerometer. This way, as the system was tilted to one side, the motors would compensate for this and put the table horizontal again. The purpose of the report was to examine how a multiaxial system could be controlled and how a plane can be stabilised based on the fact that a plane is made up of three points in space. Additionally, another purpose was to see how a simulation differs from a physical prototype and why. The constructed prototype worked as intended and gave similar results as the simulation, although with minor differences due to the simulation being done in a perfect environment. Finally, the sources of the imperfections are discussed along with what future work needs to be done on the prototype if it were to become a product. / Detta projekt hade som mål att tillverka ett självstabiliserande och kroppsburet bord. Prototypen byggdes genom att först göra en modell i CAD samt en simulering av hela systemet. Detta gav en grund för att sedan kunna göra en fysisk konstruktion. En Arduino Uno användes som en mikrokontroller som skickade signaler till två stycken servomotorer baserat på data från en accelerometer. På detta sätt, när systemet lutades åt något håll kunde motorerna kompensera för detta och sätta bordet horisontellt igen. Målet med rapporten var att undersöka hur ett multiaxiellt system kunde styras samt hur ett plan kan stabiliseras baserat på att tre punkter i rymden utgör ett plan. Utöver det fanns också målet att se hur en simulering och en fysisk prototyp varierar och varför. Den byggda prototypen fungerade som planerat och gav liknande resultat till simulering, dock med små skillnader på grund av att simuleringen gjordes i ett perfekt tillstånd. Slutligen diskuterades felkällorna och vad som skulle behöva göras i framtiden om fortsatt arbete skulle göras på prototypen och förvandla den till en produkt.
|
192 |
Reactions of Anions of Cyclic Oximes, Oxime Ethers, and Chiral IminesMaloney, John R. 08 1900 (has links)
The purpose of this investigation is to examine reactions of anions of oximes, oxime ethers and imines with acylating agents and other electrophiles. It is also an attempt to utilize the phenomenon of geometrical enantiomeric isomerism, in which absolute configuration is determined by double bond geometry, and the concept of regiospecific anion formation, also determined by double bond geometry, for stereospecific synthesis of tropinone derivatives.
|
193 |
A Uniform Geometrical Theory of Diffraction Model of Very-High-Frequency Omni-directional Range Systems for Improved AccuracyYellu, Augustine D. 26 September 2013 (has links)
No description available.
|
194 |
AFM Tip-Graphene-Surface InteractionsSubedi, Laxmi P. 16 December 2010 (has links)
No description available.
|
195 |
The Effect of Geometrical Contact Input to Wheel-Rail Contact ModelMartin, Michael January 2018 (has links)
Wheel-rail contact is an important aspect of railway, the forces transferred between the wheel and rail are the one that guide, brake, or accelerate the train, and that is why the understanding of the contact between wheel and rail is an interesting research topic. In this master thesis wheel-rail contact model named ANALYN is used to see the effect of the different geometrical input, like undeformed distance, relative longitudinal curvature, and relative lateral curvature calculation affect the contact patch estimation formed at the wheel-rail contact. In the process, a geometrical contact search code is made to find the contact point between wheel and rail for certain lateral displacement, yaw angle, and roll angle of the wheelset. The codes used to calculate the three geometrical inputs are also prepared, with two methods are prepared for each input. The results that generated from combination of the geometrical contact search and geometrical input preparation are used as the input to ANALYN. The results showed that different geometrical input calculations do affect the shape of the contact patch, with the calculation of lateral curvature being the most important since it affects the shape of the contact patch greater than other geometrical inputs. It is also shown that taking yaw angle into account in the contact search will affect the shape of the contact patch.
|
196 |
Ridningens pedagogikNyström, Camilla January 2013 (has links)
The purpose of this study has been to look how pedagogic process interacts in horse riding lessons. In order to research this problem I have used an ethnographic approach and during a week I observed ten riding lessons in two separate Riding house in the south of Sweden. In my theoretical frame I have used Michel Foucault “Discipline and punish” as a toll to make clear how dominance and submission is present and active in the horse riding education.The conclusion shows how dominant power rules by its presence and creates submission, stability and feeling of security. The discipline is used to create a feeling that will bring the riders to new experience and develop their talent. To create that you need a good communication between the riding teacher, the horse and the rider and most important is to have a known environment where the rules and regulations are used trough limited surface, geometrical pattern and repetition.
|
197 |
Freeform Reflector Design With Extended SourcesFournier, Florian 01 January 2010 (has links)
Reflector design stemmed from the need to shape the light emitted by candles or lamps. Over 2,000 years ago people realized that a mirror shaped as a parabola can concentrate light, and thus significantly boosts its intensity, to the point where objects can be set afire. Nowadays many applications require an accurate control of light, such as automotive headlights, streetlights, projection displays, and medical illuminators. In all cases light emitted from a light source can be shaped into a desired target distribution with a reflective surface. Design methods for systems with rotational and translational symmetry were devised in the 1930s. However, the freeform reflector shapes required to illuminate targets with no such symmetries proved to be much more challenging to design. Even when the source is assumed to be a point, the reflector shape is governed by a set of second-order partial non-linear differential equations that cannot be solved with standard numerical integration techniques. An iterative approach to solve the problem for a discrete target, known as the method of supporting ellipsoids, was recently proposed by Oliker. In this research we report several efficient implementations of the method of supporting ellipsoids, based on the point source approximation, and we propose new reflector design techniques that take into account the extent of the source. More specifically, this work has led to three major achievements. First, a thorough analysis of the method of supporting ellipsoids was performed that resulted in two alternative implementations of the algorithm, which enable a fast generation of freeform reflector shapes within the point source approximation. We tailored the algorithm in order to provide control over the parameters of interest to the designers, such as the reflector scale and geometry. Second, the shape generation algorithm was used to analyze how source flux can be mapped onto the target. We derived the condition under which a given source-target mapping can be achieved with a smooth continuous surface, referred as the integrability condition. We proposed a method to derive mappings that satisfy the integrability condition. We then use these mappings to quickly generate reflector shapes that create continuous target distributions as opposed to reflectors generated with the method of supporting ellipsoids that create discrete sets of points on the target. We also show how mappings that do not satisfy the integrability condition can be achieved by introducing step discontinuities in the reflector surface. Third, we investigated two methods to design reflectors with extended sources. The first method uses a compensation approach where the prescribed target distribution is adjusted iteratively. This method is effective for compact sources and systems with rotational or translational symmetry. The second method tiles the source images created by a reflector designed with the method of supporting ellipsoids and then blends the source images together using scattering in order to obtain a continuous target distribution. This latter method is effective for freeform reflectors and target distributions with no sharp variations. Finally, several case studies illustrate how these methods can be successfully applied to design reflectors for general illumination applications such as street lighting or luminaires. We show that the proposed design methods can ease the design of freeform reflectors and provide efficient, cost-effective solutions that avoid unnecessary energy consumption and light pollution.
|
198 |
In-Situ Creep Monitoring Using Directional Potential Drop SensorsMadhi, Elhoucine January 2010 (has links)
No description available.
|
199 |
Evaluation of a terrain-sensitive, propagation path loss model based upon the geometrical theory of diffraction, modified for finite conductivity and local surface roughnessMa, Richard January 1983 (has links)
No description available.
|
200 |
A UTD ray description for the collective fields radiated by large antenna phased arrays on a smooth convex surfaceJanpugdee, Panuwat 12 September 2006 (has links)
No description available.
|
Page generated in 0.0659 seconds