Spelling suggestions: "subject:"ginzburg"" "subject:"cinzburg""
41 |
A finite element analysis of high kappa, high field Ginzburg-Landau type model of superconductivityKaramikhova, Rossitza 14 August 2006 (has links)
This work is concerned with the formulation and analysis of a simplified GinzburgLandau type model of superconductivity which is valid for large K and large magnetic field strengths. This model, referred to as the High kappa model, is derived via formal asymptotic expansion of the full, time-dependent Ginzburg-Landau equations. The model accounts for the effects of both applied magnetic fields and currents of constant magnitude. A notable feature of our model is that the systems for the leading order terms for the magnetic potential and the order parameter are decoupled.
Finite element approximations of the High kappa model are introduced using standard Galerkin discretization in space and Backward-Euler and Crank-Nicolson discretization schemes in time. We establish existence and uniqueness results for the fully-discrete equations as well as optimal L2 and HI error estimates for the Backward-Euler-Galerkin and the Crank-Nicolson-Galerkin problems.
Computational experiments are performed with several combinations of spatial and time discretizations of the High kappa model equations. Among other things our numerical approximations show good agreement for rates of convergence in space and time with the corresponding theoretical values. Finally, some well known steady-state and dynamic phenomena valid for type II superconductors are illustrated numerically. / Ph. D.
|
42 |
Numerical studies of superfluids and superconductorsWiniecki, Thomas January 2001 (has links)
In this thesis we demonstrate the power of the Gross-Pitaevskii and the time-dependent Ginzburg-Landau equations by numerically solving them for various fundamental problems related to superfluidity and superconductivity. We start by studying the motion of a massive object through a quantum fluid modelled by the Gross-Pitaevskii equation. Below a critical velocity, the object does not exchange momentum or energy with the fluid. This is a manifestation of its superfluid nature. We discuss the effect of applying a constant force to the object and show that for small forces a vortex ring is created to which the object becomes attached. For a larger force the object detaches from the vortex ring and we observe periodic shedding of rings. All energy transfered to the system is contained within the vortex rings and the drag force on the object is due to the recoil of the vortex emission. If we exceed the speed of sound, there is an additional contribution to the drag from sound emission. To make a link to superconductivity, we then discuss vortex states in a rotating system. In the ground state, regular arrays of vortices are observed which, for systems containing many vortices, mimic solid-body rotation. In the second part of the thesis, we initially review solutions to the Ginzburg-Landau equations in an applied magnetic field. For superconducting disks we observe vortex arrays similar to those in rotating superfluids. Finally, we study an electrical current flow along a superconducting wire subject to an external magnetic field. We observe the motion of flux lines, and hence dissipation, due to the Lorentz force. We measure the V – I curve which is analogous to the drag force in a superfluid. With the introduction of impurities, flux lines become pinned which gives rise to an increased critical current.
|
43 |
Vortex, entropies et énergies de ligne en micromagnétisme / Vortices, entropies and line-energies in micromagnetismBochard, Pierre 24 June 2015 (has links)
Cette thèse traite de questions mathématiques posées par des problèmes issus du micromagnétisme ; un thème central en est les champs de vecteur de rotationnel nul et de norme 1, qu'on voit naturellement apparaître comme configurations minimisant des énergies micromagnétiques.Le premier chapitre est motivé par la question suivante : peut-on, en dimension plus grande que deux, caractériser les champs de vecteur de rotationnel nul et de norme 1 par une formulation cinétique ?Une telle formulation a d'abord été introduite en dimension 2 dans l'article \cite{Jabin_Otto_Perthame_Line_energy_2002} de Jabin, Otto et Perthame où elle apparaît naturellement dans le cadre de la minimisation d'une énergie de type Ginzburg-Landau. Ignat et De Lellis ont ensuite montré dans \cite{DeLellis_Ignat_Regularizing_2014} qu'une telle formulation cinétique caractérise les champs de rotationnel nul et de norme 1 possédant une certaine régularité en dimension 2. Le premier chapitre de cette thèse est consacré à l'étude d'une formulation cinétique similaire en dimension quelconque ; le résultat principal en est qu'en dimension strictement plus grande que 2, cette fomulation cinétique ne caractérise non plus tous les champs de rotationnel nul et de norme 1, mais seulement les champs constants ou les vortex.La caractérsation cinétique des champs de vecteur de rotationnel nul et de norme 1 en dimension 2,prouvée par De Lellis et Ignat et que nous venons de mentionner reposait sur la notion d'entropie.Ayant obtenu une formulation cinétique en dimension quelconque, il était naturel de vouloir l'exploiter un tentant d'étendre également la notion d'entropie aux dimensions supérieures à 2. C'est ce à quoi est consacré le deuxième chapitre de cette thèse ; nous y définissons en particulier une notion d'entropie en dimension quelconque. Le point central en est la caractérisation de ces entropies par un système d'\équations aux dérivées partielles, et leur description complète en dimension 3, ainsi que la preuve pour ces entropies de propriétés tout à fait semblables à celles des entropies deux dimensionnelles.Le troisième chapitre de cette thèse, qui expose les résultats d'un travail en collaboration avec Antonin Monteil, s'intéresse à la minimisation d'\'energies de type Aviles-Giga de la forme $\mathcal_f(m)=\int_f(|m^+-m^-|)$ o\`u $m$ est un champ de rotationnel nul et de norme 1 et où $J(m)$ désigne les lignes de saut de $m$. Deux questions classiques se posent pour ce type d'énergie : la solution de viscosité de l'équation eikonale est-elle un minimiseur et l'énergie est-elle semi-continue inférieurement pour une certaine topologie. Le résutat principal de cette partie est un construction, qui nous permet en particulier de répondre par la négative à ces deux questions dans les cas où $f(t)= t^p$ avec $p \in ]0,1[$ en donnant une condition nécessaire sur $f$ pour que $\mathcal_f$ soit semi-continue inférieurement.Enfin, le dernier chapitre de cette thèse est consacré à l'étude d'une variante de l'énergie de Ginzburg-Landau introduite par Béthuel, Brezis et Helein où on a remplacé la condition de bord par une pénalisation dépendant d'un paramètre. Nous y décrivons le comportement asymptotique de l'énergie minimale qui, suivant la valeur de ce paramètre, soit se comporte comme l'énergie de Ginzburg-Landau classique en privilégiant une configuration vortex, soit privilégie au contraire une configuration singulière suivant une ligne. / This thesis is motivated by mathematical questions arising from micromagnetism. One would say that a central topic of this thesis is curl-free vector fields taking value into the sphere. Such fields naturally arise as minimizers of micromagnetic-type energies. The first part of this thesis is motivated by the following question : can we find a kinetic formulation caracterizing curl-free vector fields taking value into the sphere in dimension greater than 2 ? Such a formulation has been found in two dimension by Jabin, Otto and Perthame in \cite. De Lellis and Ignat used this formulation in \cite{DeLellis_Ignat_Regularizing_2014} to caracterize curl-free vector fields taking value into the sphere with a given regularity. The main result of this part is the generalization of their kinetic formulation in any dimension and the proof that if $d>2$, this formulation caracterizes only constant vector fields and vorteces, i. e. vector fields of the form $\pm \frac$. The second part of this thesis is devoted to a generalization of the notion of \textit, which plays a key role in the article of De Lellis and Ignat we talked about above. We give a definition of entropy in any dimension, and prove properties quite similar to those enjoyed by the classical two-dimensional entropy. The third part of this thesis, which is the result of a joint work with Antonin Monteil, is about the study of an Aviles-Giga type energy. The main point of this part is a necessary condition for such an energy to be lower semi continuous. We give in particular an example of energy of this type for which the viscosity solution of the eikonal equation is \textit a minimizer. The last part, finally is devoted to the study of a Ginzburg-Landau type energy where we replace the boundary condition of the classical Ginzburg-Landau energy introduced by Béthuel, Brezis and Helein by a penalization within the energy at the critical scaling depending on a parameter. The core result of this part is the description of the asymptotic of the minimal energy, which, depending on the parameter, favorizes vortices-like configuration like in the classical Ginzburg-Landau case, or configurations singular along a line.
|
44 |
Multiscale modeling of multiferroic nanocomposites / Modelisation multi-échelle des nanocomposites multiferroiquesProkhorenko, Sergei 08 September 2014 (has links)
Au cours des dernières décennies, la recherche de nouveaux matériaux multiferroïques nanostructurés avec des propriétés optimisées a conduit à l'élaboration d'une grande variété de modèles théoriques et des approches de simulation. Allant des modèles ab initio capables de décrire les propriétés à la température nulle des composés artificiels monocristallins à des approximations phénoménologiques pour la description des composites à la mésoscopique, ces recherches ont soulevé la question fondamentale de la relation entre la géométrie de la structure des systèmes hétérogènes et les propriétés des leurs transitions de phase. Cependant, malgré des progrès significatifs en la matière,cette question n'a pas encore été élucidée et les relations entre les modèles à différentes échelles ne sont pas entièrement distingués. La présente étude est consacrée à lier l’ensemble des modèles décrivant les matériaux nanocomposites multiferroïques à différentes échelles. Tout d'abord, nous présentons un développement méthodologique de l'approche Hamiltonien effectif couramment utilisé pour étudier les transitions de phase structurales. Les modifications introduites permettent d'étendre cette méthode pour prédire les propriétés à la température finie des systèmes hétérogènes. Le modèle construit est ensuite utilisé pour étudier les propriétés des nanostructures et solutions solides (BiFeO3)(BaTiO3). Recourant à des simulations Monte-Carlo, nous montrons que notre modèle fournit des résultats qui sont en ligne avec les observations expérimentales récentes et qu’il permet de prédire théoriquement les propriétés d'une large gamme de systèmes avec différentes géométries composites. La deuxième partie de l'étude consiste en l'application de la théorie de Ginzburg-Landau des transitions de phase à l’étude des propriétés des multicouches ferroélectriques et ferromagnétiques avec des interfaces épitaxiales. Plus précisément, nous décrivons théoriquement l’effet magnétoélectrique exhibé par les hétérostructures autonomes Pb(Zr0.5 Ti0.5) O3-FeGaB et BaTiO3-FeGaB. Enfin, nous montrons que la géométrie multicouche d'un nanocomposite ferroélectrique et ferromagnétique ouvre la voie à une amélioration radicale du signal de charge de sortie. / During past decades, the search for new nanostructured multiferroic materials with optimized properties has lead to the development of a vast variety of theoretical models and simulation approaches. Spreading from first principles based models able to describe zero-temperature properties of artificial single crystal compounds to phenomenological approximations for composites with mesoscale morphology, these investigations have raised the fundamental question of how the geometry of the structure affects the properties of phase transitions exhibited by heterogeneous systems. However, despite significant progress, the answer to this question still lacks clarity and the bridge connecting models at different scales is not fully constructed. The current study is devoted to linking together models of multiferroic nanocomposite materials applicable at different scales. First, we present a methodological development of effective Hamiltonian approach commonly used to study structural phase transitions. The introduced modifications allow to extend this widely used method to predict finite-temperature properties of compositionally heterogeneous systems. The constructed model is then used to study properties of (BiFeO3)(BaTiO3) nanostructures and solid-solutions. Resorting to Monte-Carlo simulations, we show that our model provides results that are in-line with recent experimental observations and allows to theoretically predict properties of a wide range of systems with different composite geometries. The second part of the study consists inapplication of Landau theory of phase transitions to investigate the properties of ferroelectric-ferromagnetic multilayerswith epitaxial interfaces. Specifically, we theoretically describe the strain-mediated direct ME effect exhibited byfree-standing Pb(Zr0.5 Ti0.5 )O3 -FeGaB and BaTiO3 -FeGaB heterostructures. Finally, we show that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal.
|
45 |
Complex Patterns in Extended Oscillatory Systems / Komplexe Muster in ausgedehnten oszillatorischen SystemenBrusch, Lutz 23 October 2001 (has links) (PDF)
Ausgedehnte dissipative Systeme können fernab vom thermodynamischen Gleichgewicht instabil gegenüber Oszillationen bzw. Wellen oder raumzeitlichem Chaos werden. Die komplexe Ginzburg-Landau Gleichung (CGLE) stellt ein universelles Modell zur Beschreibung dieser raumzeitlichen Strukturen dar. Diese Arbeit ist der theoretischen Analyse komplexer Muster gewidmet. Mittels numerischer Bifurkations- und Stabilitätsanalyse werden Instabilitäten einfacher Muster identifiziert und neuartige Lösungen der CGLE bestimmt. Modulierte Amplitudenwellen (MAW) und Super-Spiralwellen sind Beispiele solcher komplexer Muster. MAWs können in hydrodynamischen Experimenten und Super-Spiralwellen in der Belousov-Zhabotinsky-Reaktion beobachtet werden. Der Grenzübergang von Phasen- zu Defektchaos wird durch den Existenzbereich der MAWs erklärt. Mittels der selben numerischen Methoden wird Bursting vom Fold-Hopf-Typ in einem Modell der Kalziumsignalübertragung in Zellen identifiziert.
|
46 |
Complex Patterns in Extended Oscillatory SystemsBrusch, Lutz 14 August 2001 (has links)
Ausgedehnte dissipative Systeme können fernab vom thermodynamischen Gleichgewicht instabil gegenüber Oszillationen bzw. Wellen oder raumzeitlichem Chaos werden. Die komplexe Ginzburg-Landau Gleichung (CGLE) stellt ein universelles Modell zur Beschreibung dieser raumzeitlichen Strukturen dar. Diese Arbeit ist der theoretischen Analyse komplexer Muster gewidmet. Mittels numerischer Bifurkations- und Stabilitätsanalyse werden Instabilitäten einfacher Muster identifiziert und neuartige Lösungen der CGLE bestimmt. Modulierte Amplitudenwellen (MAW) und Super-Spiralwellen sind Beispiele solcher komplexer Muster. MAWs können in hydrodynamischen Experimenten und Super-Spiralwellen in der Belousov-Zhabotinsky-Reaktion beobachtet werden. Der Grenzübergang von Phasen- zu Defektchaos wird durch den Existenzbereich der MAWs erklärt. Mittels der selben numerischen Methoden wird Bursting vom Fold-Hopf-Typ in einem Modell der Kalziumsignalübertragung in Zellen identifiziert.
|
47 |
Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteursStenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
|
48 |
Modélisation et simulations numériques de la formation de domaines ferroélectriques dans des nanostructures 3D / Modeling and numerical simulations of the formation of ferroelectric domains in 3D nanostructuresMartelli, Pierre-William 26 September 2016 (has links)
Dans cette thèse, nous étudions la formation de domaines ferroélectriques dans des nanostructures, à partir d'une modélisation faisant intervenir les équations de Ginzburg-Landau et d’Électrostatique, ainsi que des conditions aux limites d'application potentielle. Dans la première partie de la thèse, les nanostructures sont constituées d'une couche ferroélectrique entièrement enclavée dans un environnement paraélectrique. Nous introduisons un modèle depuis un couplage de ces équations et élaborons, pour son investigation, un schéma numérique faisant usage d’Éléments Finis. Des simulations numériques montrent l'efficacité de ce schéma, qui permet d'établir, par exemple, l'existence de cycles d'hystérésis sous l'influence de paramètres aussi bien physiques que géométriques. Dans la seconde partie, les nanostructures sont constituées d'une couche ferroélectrique partiellement enclavée qui s'intercale entre deux couches paraélectriques. Deux modèles sont proposés à partir d'une variante du couplage réalisé dans la première partie, et se distinguent dans la prescription des conditions aux limites. Des conditions de type Neumann interviennent dans le premier modèle, pour lequel un schéma numérique aussi basé sur des approximations par Eléments Finis est introduit. Dans le second modèle, des conditions périodiques sont prises en considération ; un schéma numérique s'appuyant ici sur une hybridation des méthodes de Différences Finies et d'Eléments Finis est présenté. Les simulations numériques basées sur ces deux schémas permettent de renseigner sur les permittivités dites effectives, des nanostructures, ou encore sur la constitution des parois de domaines ferroélectriques / In this thesis, we study the formation of ferroelectric domains in nanostructures by modeling based on the Ginzburg-Landau and Electrostatics equations, together with boundary conditions that are suitable for real applications. In the first part of the thesis, the nanostructures are made up of a ferroelectric layer, fully enclosed in a paraelectric environment. We introduce a model based on the coupled system of equations and then develop, for its investigation, a numerical scheme using Finite Elements. Numerical simulations show the efficiency of this scheme, which allows us to establish, for instance, the existence of hysteresis cycles under the influence of physical or geometric parameters. In the second part, the nanostructures are made up of a partially enclosed ferroelectric layer that lies between two paraelectric layers. Two models are introduced from a variant of the coupling performed in the first part, and differ in the prescription of the boundary conditions. Neumann type conditions are prescribed in the first model, for which a numerical scheme also based on Finite Element approximations is developed. In the second model, periodic conditions are taken into account; a numerical scheme based on a combination of Finite Difference and Finite Element methods is presented. Numerical simulations from these schemes allow us, for instance, to investigate the so-called effective permittivities, of the nanostructures, or the formation of ferroelectric domain walls
|
49 |
Ritmo e distensão: análise da tensão narrativa em Natalia Ginzburg / Rhythm and distension: narrative tension analysis in Natalia GinzubrgSilva, Everton Henrique Carneiro da 04 September 2015 (has links)
Este estudo parte de características das narrativas da escritora italiana Natalia Ginzburg (1916-1991) sublinhadas pela crítica especializada, como a abordagem de temas cotidianos, a presença de personagens embotados, a inexistência de atos melodramáticos e a ausência de grande tensão narrativa. O estilo da escritora é apresentado pela crítica como simples e direto, ocupando lugar secundário nas análises. Por isso, o objetivo central deste estudo é realizar uma análise estilística da obra de Natalia Ginzburg, destacando as técnicas narrativas empregadas. Para embasar esta abordagem discute-se o conceito de estilo simples proposto por Enrico Testa; os conceitos de sfondo, primo piano, ritmo narrativo, rilievo narrativo e tensão narrativa propostos por Harald Weinrich; e os conceitos de sumário narrativo e cena propostos por Norman Friedman. O estudo detalha a presença destas técnicas narrativas em dois romances de Natalia Ginzburg, Lessico famigliare e Le voci della sera, e as utiliza como principal forma de interpretação das narrativas da escritora. / This research starts with characteristics of Italian writer Natalia Ginzburg\'s (1916-1991) narratives highlighted by specialized critics, such as focus on everyday themes, the presence of blunted characters, lack of melodramatic acts, and the absence of narrative tension. The specialized critics presents the writer\'s style as simple and direct, holding a secondary position in the analyzes. Therefore, the central purpose of this research is to perform a stylistics analysis of Natalia Ginzburg\'s work, highlighting the narrative techniques adopted. To perform this approach the research discusses the concept of simple style by Enrico Testa; the concept of sfondo, primo piano, ritmo narrativo, rilievo narrativo and narrative tension proposed by Harald Weinrich; and the concept of summary narrative and scene proposed by Norman Friedman. The research details the presence of these narrative techniques in two novels, Lessico famigliare and Le voci della sera, and use them as main form of interpretation of the writers narratives.
|
50 |
Autour des singularités d’applications vectorielles en physique de la matière condensée / Singularities of vector-valued maps in condensed matter physicsLamy, Xavier 06 July 2015 (has links)
Cette thèse est consacrée principalement à l'analyse mathématique de modèles issus de la physique des cristaux liquides et de la supraconductivité. Ces modèles ont en commun de faire intervenir des systèmes elliptiques dont les solutions présentent des singularités : défauts optiques dans les cristaux liquides, défauts de vorticité en supraconductivité. Les cristaux liquides se composent de molécules allongées qui, tout en étant distribuées « au hasard » comme dans un liquide, tendent à s'aligner dans une direction commune : cet « ordre d'orientation » leur confère des propriétés optiques similaires à celles d'un cristal, à l'origine de leurs nombreuses applications industrielles. On démontre différents résultats liés à la symétrie locale de cet alignement autour des singularités. On présente aussi dans cette thèse différents résultats liés au modèle de Ginzburg-Landau pour les supraconducteurs de type II, et aux « défauts de vorticité » : points isolés autour desquels la supraconductivité est détruite. Une dernière partie de cette thèse traite de la caractérisation de la régularité d'une fonction f à travers la vitesse de convergence de f ∗ ρε pour un certain noyau ρ. Dans un travail commun avec Petru Mironescu, on s'intéresse à la question de la régularité des noyaux ρ qui permettent une telle caractérisation / The present thesis is devoted mainly to the mathematical analysis of models arising in the physics of liquid crystals and superconductivity. A common feature of these models is that one has to deal with elliptic systems whose solutions have singularities: optical defects in liquid crystals, vorticity defects in superconductivity. The rod-like molecules in a liquid crystals, while being (as in a liquid) “randomly” distributed, tend to align in a common direction: this “orientational order” enhances crystal-like optical properties, which are responsible for their many industrial applications. We demonstrate different results related to the local symmetry of this alignement near singularities. We also present some results related to the Ginzburg-Landau model for type II superconductivity, and to “vortices”: isolated points at which superconductivity is destroyed. The last part of this thesis addresses regularity characterization for a function f through the convergence rate of f ∗ ρε, for some kernel ρ. In a joint work with Petru Mironescu we study the minimal regularity of ρ that allows such characterization
|
Page generated in 0.0325 seconds