• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 10
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Ultra-low sintering temperature glass ceramic compositions based on bismuth-zinc borosilicate glass

Chen, M.-Y. (Mei-Yu) 06 June 2017 (has links)
Abstract In the first part of the thesis, novel glass-ceramic compositions based on Al2O3 and BaTiO3 and bismuth-zinc borosilicate (BBSZ) glass, sintered at ultra-low temperatures, were researched. With adequate glass concentration, dense microstructures and useful dielectric properties were achieved. The composite of BaTiO3 with 70 wt % BBSZ sintered at 450 °C exhibited the highest relative permittivity, εr, of 132 and 207 at 100 kHz and 100 MHz, respectively. Thus, the dielectric properties of the composites were dominated by the characteristics of glass, BaTiO3, and Bi24Si2O40 phase, especially the contribution of Bi24Si2O40 for the samples with 70-90 wt % glass. Actually, the existence of the secondary phase Bi24Si2O40 may not hinder but enhance the dielectric properties. The Al2O3-BBSZ composition samples showed a similar situation, not only for densification but also for their microstructures and phases (Al2O3, BBSZ, Bi24Si2O40), explaining the achieved dielectric properties. The second part of the thesis mainly discusses the composite of BaTiO3 with 50 wt % BBSZ with different thermal treatments. After sintering at 720 °C, dense microstructures and the existence of Bi4BaTi4O15, BaTiO3, Bi24Si2O40 phases were observed. The results also showed that the size of glass powder particles did not influence the dielectric properties (εr = 263-267, tan δ = 0.013 at 100 kHz) of sintered samples, but the addition of LiF degraded the dielectric properties due to the features and amount of Bi4BaTi4O15. These results demonstrate the feasibility of the BBSZ based composites for higher sintering temperature technologies as well. At the end, a novel binder system, which enables low sintering temperatures close to 300 °C, was developed. A dielectric multilayer module containing BaTiO3-BBSZ and Al2O3-BBSZ composites with silver electrodes was co-fired at 450 °C without observable cracks and diffusions. These results indicate that these glass-ceramic composites provide a new horizon to fabricate environmentally friendly ULTCC materials, as well as multilayers for multimaterial 3D electronics packages and high frequency devices. / Tiivistelmä Väitöstyön ensimmäisessä osassa tutkittiin ja kehitettiin uudentyyppisiä, ultramatalissa sintrauslämpötiloissa (ULTCC) valmistettuja lasi-keraami komposiitteja käyttäen vismuttisinkkiborosilikaatti -pohjaista lasia (BBSZ). Täyteaineina olivat alumiinioksidi (Al2O3) ja bariumtitanaatti (BaTiO3). Materiaaleille saatiin riittävän suuren lasipitoisuuden avulla tiheät mikrorakenteet ja sovelluskelpoiset dielektriset ominaisuudet. BaTiO3:n komposiitti, joka sisälsi 70 p-% BBSZ lasia, saavutti 450 °C lämpötilassa sintrattuna korkeimman suhteellisen permittiivisyyden: εr=132 (@100 kHz) ja εr=207 (@100 MHz). Komposiittien dielektrisiä ominaisuuksia määrittivät tällöin lasi-, BaTiO3- ja Bi24Si2O40- faasien ominaisuudet ja erityisesti Bi24Si2O40 -faasi näytteissä, joissa on 70-90 p-% lasia. Sekundäärinen faasi Bi24Si2O40 ei välttämättä heikentänyt, vaan jopa paransi dielektrisiä ominaisuuksia. Vastaavilla Al2O3-BBSZ –komposiiteilla saavutettiin samanlaisia tuloksia tihentymisen, mikrorakenteiden ja faasien (Al2O3, BBSZ, Bi24Si2O40) suhteen. Lisäksi tässä tapauksessa saavutetut dielektriset ominaisuudet voidaan selittää näiden kolmen faasin yhdistelmän olemassaololla. Väitöstyön toinen osa käsitteli pääasiassa eritavoin lämpökäsiteltyjä BaTiO3:n komposiitteja, joissa on 50 p-% BBSZ-lasia. Näillä saavutettiin tiheä mikrorakenne sintrattaessa 720 °C lämpötilassa ja havaitiin Bi4BaTi4O15-, Bi24Si2O40-faasien muodostuminen BaTiO3 lähtöfaasin rinnalle. Tulokset osoittivat myös, että lasijauheen partikkelikoko ei vaikuttanut sintrattujen näytteiden dielektrisiin ominaisuuksiin (εr = 263-267, tan δ = 0.013 (@100 kHz)). LiF -lisäys sen sijaan heikensi dielektrisiä ominaisuuksia ja vähensi Bi4BaTi4O15 faasin muodostumista. Tämä aiheutui Bi4BaTi4O15-faasin ominaisuuksista ja oli riippuvainen kyseisen faasin määrästä. Nämä tulokset osoittivat BBSZ -pohjaisten komposiittien käytettävyyden myös korkeampien sintrauslämpötilojen teknologioihin. Viimeisenä kehitettiin uudentyyppinen sideainesysteemi, joka mahdollistaa ultramatalien keraamien yhteissintraamisen jopa noin 300 °C lämpötilassa. Hyödyntäen kehitettyä sideainesysteemiä monikerrosrakenne, jossa käytettiin dielektrisiä BaTiO3-BBSZ- ja Al2O3-BBSZ-komposiitteja ja hopeaelektrodeja, yhteissintrattiin 450 °C lämpötilassa. Valmistetuissa rakenteissa ei havaittu murtumia eikä diffuusioita. Tulokset osoittavat, että kehitetyt lasi-keraami komposiitit mahdollistavat ympäristöystävällisten ULTCC -materiaalien valmistuksen. Lisäksi osoitettiin kehitettyjen materiaalien soveltuvuus monikerroksisten rakenteiden käyttöön monimateriaali-3D-elektroniikan pakkauksissa ja suurtaajuuskomponteissa.
52

Multifunctionalities Of Ceramics And Glass Nanocrystal Composites Of V2O5 Doped Aurivillius Family Of Ferroelectric Oxides

Venkataraman, B Harihara 10 1900 (has links) (PDF)
In recent years bismuth-based, layer-structured perovskites such as SrBi2Nb2O9 (SBN) and SrBi2Ta2O9 (SBT) have been investigated extensively, because of their potential use in ferroelectric random access memories (FeRAMs). In comparison with non-layered perovskite ferroelectrics such as Pb(Zr,Ti)O3 (PZT), these offer several advantages such as fatigue free, lead free, low operating voltages and most importantly their ferroelectric properties are independent of film thickness in the 90 to 500 nm range. For FeRAM device applications, large remnant polarization (Pr), low coercive field (Ec) accompanied by high Curie temperature (Tc) are required for better performance and reliable operation. Much effort has been made to improve the ferroelectric properties of SBN and SBT ceramics by doping on A or B sites. It was known in the literature that partial substitution of Sr2+ by Bi3+ ions in SBN and SBT would increase the Curie temperature and improve the dielectric properties. The focus of the investigations that were taken up was to improve the electrical, dielectric and ferroelectric characteristics of SrBi2Nb2O9 ceramics. It was reported that the ferroelectric and nonlinear optical properties of LiNbO3 and LiTaO3 could be improved when vanadium, the lightest element in group V of the periodic table is substituted for Nb or Ta along with Li and three oxygens. It is with this background the investigations have been taken up to see whether one can extend the same argument to the Aurivillius family of oxides. Therefore, the central theme of the present investigations aimed at substituting Nb5+ by a smaller cation V5+ in SBN and study its influence on the formation temperature, sinterability, structural and microstructural characteristics apart from its physical properties. Recently the optical properties of this material have been recognized to be important from the optical device point of view. Unfortunately single crystal growth of vanadium doped SBN was hampered because of the bismuth and vanadium loss (high volatility) observed in the process of growth. One of the routes that attracted our attention has been the glass-ceramic. It would be interesting to visualize the behavior of crystallites of nano/micrometer size embedded in a glass matrix as these crystals were known to give rise to exotic properties. One of the crucial steps in the process of fabrication of a glass nanocrystalcomposite system in which crystalline phases have symmetries that would eventually give rise to basic non - centrosymmetric properties such as piezoelectric, pyroelectric and Pockels effects, has been to choose a compatible matrix material associated with easy glass forming capability and the ability to evenly disperse dipolar defects within itself. Recent investigations into strontium borate SrB4O7 (SBO), lithium borate Li2B4O7 (LBO) glasses indicated that LBO by virtue of its favorable structure, thermal and optical properties would form a suitable host glass matrix for dispersing layer structured ferroelectric oxides belonging to the Aurivillius family of oxides. Since lithium borate has wide transmission window, it was worth making an attempt to fabricate optical composite of Li2B4O7 (LBO) and vanadium doped SrBi2Nb2O9 (SBVN) and to study its structural, dielectric, pyroelectric, ferroelectric and optical properties. Therefore the present thesis reports detailed investigations into the effect of vanadium doping on the structural and various physical properties of an n = 2 member of the Aurivillius family of oxides in the polycrystalline form and novel glass composites comprising nano/microcrystallites of this phase. Chapter 1 comprises a brief introduction to the dielectric, pyroelectric, ferroelectric and nonlinear optical properties of materials. In addition to the principles and phenomena, the material aspects of these important branches of physics are discussed. It also forms a preamble to the glasses, criteria for glass formation, glass – ceramics and subsequently ferroelectric and nonlinear optical effects that were observed in glasses and glass - ceramics. Chapter 2 describes the material fabrication techniques adopted to prepare polycrystalline and grain – oriented ceramics, glasses and glass nanocrystalcomposites. The details of various structural, dielectric, pyroelectric, ferroelectric and optical measurement techniques employed to characterize these materials are also included. Chapter 3 discloses the fabrication of strontium bismuth niobate ceramics and their characterization for dielectric and impedance properties. The dielectric properties of strontium bismuth niobate ceramics have been modeled based on Jonscher’s Universal formalism. The coefficients of the Jonscher’s expression, exponent n(T) undergoes a minimum and A(T) exhibits a peak at the Curie temperature, Tc (723K). A strong low frequency dielectric dispersion (LFDD) associated with an impedance relaxation has been found to exist in these ceramics in the temperature range 573 - 823K. The Z′′ of the AC complex impedance showed two distinct slopes in the frequency range 100Hz-1MHz suggesting the existence of two dispersion mechanisms. The exponents m and n were obtained from the curve fitting. The exponent n was found to exhibit a minimum at the Curie temperature, Tc (723K) whereas the m was temperature independent. Chapter 4 deals with the fabrication of vanadium doped SrBi2Nb2O9 ceramics and their characterization for microstructural, dielectric, pyroelectric and ferroelectric properties. The average grain size of the SrBi2Nb2O9 (SBN) ceramic containing V2O5 was found to increase with increase in V2O5 content. The dielectric constant (εr) as well as the dielectric loss (D) increased with increase in grain size (6µm-17µm). The pyroelectric coefficient was found to be positive at 300K and showed an increasing trend with increasing grain size. Interestingly, the SrBi2(Nb0.7V0.3)2O9-δ ceramics consisting of 17µm sized grains showed higher remnant polarization (Pr) and lower coercive field (Ec) than those with grains of 7µm. Chapter 5 deals with the dielectric properties which were studied in detail in the 100Hz to 1MHz frequency range at various temperatures (300 – 823 K) for undoped and vanadium (10 mol%) doped SrBi2Nb2O9 (SBVN10) ferroelectric ceramics. A strong low frequency dielectric dispersion was encountered in these ceramics in the 573 – 823 K temperature range. The dielectric constants measured in the wide frequency and temperature ranges for both the samples were found to fit well to the Jonscher’s dielectric dispersion relations. The dielectric behavior of SBN and SBVN10 ceramics was rationalized using the impedance and modulus data. The electrical conductivity studies of layered SrBi2(Nb1-xVx)2O9-δ ceramics with x lying in the range 0 to 0.3 (30 mol%) were centered in the 573 – 823K temperature range as the Curie temperature lies in this range. The concentration of mobile charge carriers (n), the diffusion constant (D0) and the mean free path (a) were calculated using Rice and Roth formalism. The conductivity parameters such as ion hopping rate (ωp) and the charge carrier concentration (K′) term have been calculated using Almond and West formalism. The afore mentioned microscopic parameters were found to be V2O5 content dependent in SrBi2(Nb1-xVx)2O9-δceramics. Chapter 6 describes the fabrication of partially grain – oriented SrBi2(Nb1-xVx)2O9-δ (0 ≤x≤3.0 in molar ratio) ceramics and characterization for their structural, microstructural, dielectric, pyroelectric and ferroelectric properties. The grain – orientation factor and the microstructural features were studied by XRD and scanning electron microscopy as a fuction of sintering temperature and V2O5 content. The dielectric constant measured along the direction parallel and perpendicular to the pressing axis has shown a significant anisotropy. The pyroelectric and ferroelectric properties were superior in the direction perpendicular to the pressing axis (polar) to that in the parallel direction. The fabrication and characterization details of (100 – x) (Li2B4O7) – x (SrO - Bi2O3 - 0.7 Nb2O5 – 0.3 V2O5) (10 ≤ x ≤ 60, in molar ratio) glasses and glass nanocrystal composites are dealt within Chapter 7. The nanocrystallization of strontium bismuth niobate doped with vanadium (SrBi2(Nb0.7V0.3)2O9-δ(SBVN)) has been demonstrated in Li2B4O7 glasses. The glassy nature of the as – quenched samples was established by differential thermal analyses (DTA). The amorphous nature of the as – quenched glasses and crystallinity of glass nanocrystal composites were confirmed by X – ray powder diffraction studies. High resolution transmission electron microscopy (HRTEM) of the glass nanocrystal composites (heat – treated at 783K/6h) confirm the presence of nano rods of SBVN embedded in Li2B4O7 glass matrix. Chapter 8 presents the physical properties of the glasses and glass nanocrystal composites. Dielectric constant of both the as – quenched and glass nanocrystal composites was found to increase with increase in the composition, whereas the loss was observed to decrease with increasing SBVN composition. Different dielectric mixture formulae were employed to analyze the dielectric properties of the glass nanocrystal composite. The electrical behaviour of the glasses and glass nanocrystal composites was rationalized using impedance spectroscopy. The observed pyroelectric response and ferroelectric hysteresis of these composites confirmed the polar nature. Various optical parameters such as optical band gap (Eopt), Urbach energy (∆E), refractive index (n), optical dielectric constant (ε′∞) and ratio of carrier concentration to the effective mass (N/m*) were determined. The effects of composition of the glasses and glass nanocrystal composites on these parameters were studied. Transparent glasses embedded with nanocrystallites of SBVN exhibited intense second harmonic signals in transmission mode when exposed to IR laser light at λ = 1064 nm. The thesis ends with a summary of the important findings and conclusions.
53

CARACTERIZAÇÃO MECÂNICA E TRANSIÇÃO FRÁGIL-DÚCTIL EM MATERIAIS VITROCERÂMICOS

Mathias, Ivan 01 April 2015 (has links)
Made available in DSpace on 2017-07-21T19:25:45Z (GMT). No. of bitstreams: 1 Ivan Mathias.pdf: 11996423 bytes, checksum: f3bdcfad9b494e72052f6a36c4a749d4 (MD5) Previous issue date: 2015-04-01 / Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná / In this work two vitreous systems are studied, the lithium disilicate (LS2) and sodiumcalcium-silica with stoichiometry 2Na2O.CaO.3SiO2 (2N1C3S) and the glassceramics formed from these by heat treatment. Several properties were determined for the two systems as a function of crystallized volume fraction, from glass to fully crystallization (100%), highlighting the fracture toughness and the brittle-ductile transition, with the last two determined only for the LS2 glass-ceramic. Hardness and elastic modulus were obtained for the two glass-ceramics and their values increase with the crystallized volume fraction in the glass ceramic, with the exception of hardness of 2N1C3S, which has its maximum for the crystallized volume fraction of 9%. Thermal expansion coefficients were determined and are larger in the LS2 glassy phase and in the 2N1C3S crystalline phase, thereby generating mean residual stresses obtained by Selsing model of -76 MPa for the LS2 (compression in the crystal) and 232 MPa for the 2N1C3S (traction in the crystal). The indentation fracture toughness was also determined for the two systems using the Anstis' and Niihara's models. The results show an increase of indentation fracture toughness with the crystalline volume fraction for LS2 glass-ceramic and also a dependence with indentation load. As for the 2N1C3S glass-ceramic, indentation fracture toughness are reduced at intermediate crystalline fractions, which is attributed to residual stresses arising from the difference between the thermal expansion mismatch between the glass and the crystalline phases. LS2 glass-ceramic flexural strength increases with the crystalline fraction, from 103 ± 3 MPa for the glass to 260 ± 20 MPa for the fully crystallized sample. Without the removal of the crystallization surface layer, this value rises to 290 ± 20 MPa. The increase in flexural strength in the first 20% of the crystallized fraction is more pronounced. As the size of the precipitates was kept constant, this increase can be related only to the increase in the crystallized fraction. The residual stress in the matrix, the critical radius of spontaneous cracking of the crystals and the crack mean free path between the precipitates were considered in the analysis of the increase in flexural strength. The existence of pores in the samples was a factor that limited its resistance. The fracture toughness (KDTIC) a function of the crystallized fraction was determined for LS2 glassceramics using the double torsion technique. It was found that KDTIC increases with the crystallized fraction, from 0.75 MPa.m1/2 for the glass to about 3.50 ± 0.05 MPa.m1/2 for the fully crystallized sample, a significant increase of approximately five times. Several factors were analyzed as possible causes of the increase in KDTIC. The experimental data are better adjusted with a recently proposed model with one adjustable parameter that relates the ratio of the crystal and glass areas to the crystallized volume fraction. The brittle-ductile transition (BDT) of LS2 glass and glass-ceramic samples (39% crystallized volume fraction) were determined for three different strain rates. BDT temperatures were determined for each strain rate.Activation energies of BDT for the glass and glass-ceramic were obtained, which were 5.2 ± 0.2 eV and 7 ± 2 eV. It was found that BDT activation energy in glass resembles the activation energy of the LS2 viscous flow, thus concluding the BDT in LS2 is governed by viscous flow of the glass matrix. Finally, the fact of the activation energy of the glass ceramic be larger than the glass was attributed to the fact that the viscosity of the vitreous matrix is "hindered" by the presence of crystalline precipitates. A viscosity model of a rigid spheres composite was used as an analogy to explain this observation. / No presente trabalho são estudados dois sistemas vítreos, o dissilicato de lítio (LS2) e o soda-cal-sílica de estequiometria 2Na2O.CaO.3SiO2 (2N1C3S), bem como os vitrocerâmicos formados a partir destes através de tratamentos térmicos. Diversas propriedades foram determinadas para os dois sistemas em função da fração cristalizada, desde vidro até os 100%, com destaque para a tenacidade à fratura e a transição frágil-dúctil, sendo estas últimas determinadas somente para o LS2. Dureza e módulo de elasticidade foram obtidos para os dois sistemas e seus valores aumentam com a fração volumétrica cristalizada no vitrocerâmico, com exceção da dureza no 2N1C3S, que tem seu máximo para a fração cristalizada de 9%. Os coeficientes de expansão térmica foram determinados e são maiores na fase vítrea do LS2 e na fase cristalina do 2N1C3S, gerando assim tensões residuais médias obtidas pelo modelo de Selsing de -76 MPa para o LS2 (compressiva no cristal) e 232 MPa para o 2N1C3S (trativa no cristal). A tenacidade à fratura por indentação (KC) foi determinada também para os dois sistemas, sendo utilizados os modelos de Anstis e Niihara. Os resultados mostram um aumento com a fração cristalina para o LS2 e também uma dependência com a carga utilizada no teste. Já para o 2N1C3S, os valores de KC sofrem uma redução em frações cristalinas intermediárias, comportamento atribuído às tensões residuais oriundas da diferença entre os coeficientes de expansão térmica e anisotropias elásticas do material. Os ensaios de resistência à flexão mostraram que para o LS2 a resistência aumenta com a fração cristalina, passando de 103 ± 3 MPa para o vidro para 260 ± 20 MPa para a amostra totalmente cristalizada. Se não removermos a camada de cristalização superficial, este valor sobe para 290 ± 20 MPa. O aumento da resistência à flexão nos primeiros 20% da fração cristalizada é mais pronunciado. Como o tamanho dos precipitados foi mantido constante, esse aumento pode ser relacionado apenas ao aumento na fração cristalizada. A tensão residual na matriz, o raio crítico dos cristais para trincamento espontâneo e o livre caminho médio da trinca entre os precipitados foram considerados na análise do aumento da resistência à flexão. A existência de poros nas amostras foi um fator que limitou a sua resistência. Caso amostras sem poros fossem feitas, um aumento em torno de 20 a 30% da resistência seria obtido. A tenacidade à fratura (KDTIC) foi determinada para o LS2 pela técnica de torção dupla em função da fração cristalizada. Foi verificado que KDTIC aumenta com a fração cristalizada, passando de 0,75 MPa.m1/2 para o vidro para cerca de 3,50 ±0,05 MPa.m1/2 para a amostra totalmente cristalizada, um aumento significativo de aproximadamente cinco vezes. Diversos fatores foram apontados como possíveis causas do aumento da tenacidade e foi verificado que os fatores considerados de forma isolada não são suficientes para descrever completamente o aumento na tenacidade. Os dados experimentais são melhor ajustados com um modelo de um parâmetro de ajuste recentemente proposto que relaciona a razão entre as áreas dos cristais e do vidro na superfície de fratura com a fração cristalizada. A transição frágil-dúctil (TFD) de amostras vítreas e vitrocerâmica (39% fração cristalizada) de LS2 foram determinadas para três taxas de deformação. Foram determinadas as temperaturas de TFD para cada uma das taxas e foi verificada uma dependência com a taxa de deformação. Foram calculadas as energias de ativação para a TFD no vidro e vitrocerâmico, sendo elas de 5,2 ± 0,2 eV e 7 ± 2 eV. Verificou-se que a energia de ativação da TFD no vidro se assemelha a energia de ativação do escoamento viscoso do LS2, concluindo assim que a TFD no LS2 é governada pelo escoamento viscoso da matriz vítrea. Por fim, o fato da energia de ativação do vitrocerâmico ser maior que do vidro foi atribuída ao fato de que a viscosidade da matriz vítrea seria "dificultada" pela presença dos precipitados cristalinos. Um modelo de viscosidade de um compósito com esferas rígidas foi utilizado como analogia para explicar essa observação.
54

Cell-protein-material Interactions on Bioceramics and Model Surfaces / Interaktioner mellan celler, proteiner och keramiska material

Rosengren, Åsa January 2004 (has links)
<p>The objective of this thesis was to investigate and characterize the interaction between blood proteins and different surfaces with emphasis on protein adsorption to bioceramics and model surfaces. Special effort was made to monitor the spontaneous and selective adsorption of proteins from human plasma and to examine the orientation, conformation and functional behavior of single proteins after adsorption. </p><p>Five different ceramic biomaterials: alumina (Al<sub>2</sub>O<sub>3</sub>), zirconia (ZrO<sub>2</sub>), hydroxyapatite (Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>) and two glass-ceramics, AP40 (SiO<sub>2</sub>-CaO-Na<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-MgO-K<sub>2</sub>O-CaF<sub>2</sub>) and RKKP (AP40 with Ta<sub>2</sub>O<sub>3</sub>-La<sub>2</sub>O<sub>3</sub>), were exposed to human plasma and their protein binding capacities and affinities for specific proteins were studied by chromatography, protein assays, two-dimensional gel electrophoresis and Western blotting. The studies showed that all materials adsorbed approximately the same high amount of plasma proteins and that they therefore should be fully covered by proteins in an <i>in vivo</i> setting. The adsorbed proteins were different for most materials which could explain their previously observed different levels of tissue integration <i>in vivo</i>. </p><p>Four of the proteins that behaved differently, ceruloplasmin, prothrombin, α<sub>2</sub>-HS-glycoprotein and α<sub>1</sub>-antichymotrypsin, were selected for characterization with atomic force microscopy and ellipsometry. The studies, which were performed on ultraflat silicon wafers (silica), showed that the proteins oriented themselves with their long axis parallel to the surface or as in case of ceruloplasmin with one of its larger sides towards the surface. All of them had globular shapes but other conformational details were not resolved. Furthermore, prothrombin (none of the others) formed multilayers at high proteins concentrations. </p><p>The functional behaviour of the adsorbed proteins, referring to their cell binding and cell spreading capacity on silica and a positive cell adhesion reference surface (Thermanox®), was affected by the underlying substrate. Ceruloplasmin, α<sub>2</sub>-HS-glycoprotein and α<sub>1</sub>-antichymotrypsin stimulated cell attachment to silica, but suppressed attachment to Thermanox®. Prothrombin stimulated cell attachment to both surfaces. The attachment was in most cases mediated both by cell membrane-receptors (integrins) and by non-specific interactions between the cell and the material. </p><p>This thesis showed that the compositional mixture, orientation, conformation and functional behavior of the adsorbed proteins are determined by the properties of the underlying surface and if these parameters are controlled very different cellular responses can be induced.</p>
55

Cell-protein-material Interactions on Bioceramics and Model Surfaces / Interaktioner mellan celler, proteiner och keramiska material

Rosengren, Åsa January 2004 (has links)
The objective of this thesis was to investigate and characterize the interaction between blood proteins and different surfaces with emphasis on protein adsorption to bioceramics and model surfaces. Special effort was made to monitor the spontaneous and selective adsorption of proteins from human plasma and to examine the orientation, conformation and functional behavior of single proteins after adsorption. Five different ceramic biomaterials: alumina (Al2O3), zirconia (ZrO2), hydroxyapatite (Ca10(PO4)6(OH)2) and two glass-ceramics, AP40 (SiO2-CaO-Na2O-P2O5-MgO-K2O-CaF2) and RKKP (AP40 with Ta2O3-La2O3), were exposed to human plasma and their protein binding capacities and affinities for specific proteins were studied by chromatography, protein assays, two-dimensional gel electrophoresis and Western blotting. The studies showed that all materials adsorbed approximately the same high amount of plasma proteins and that they therefore should be fully covered by proteins in an in vivo setting. The adsorbed proteins were different for most materials which could explain their previously observed different levels of tissue integration in vivo. Four of the proteins that behaved differently, ceruloplasmin, prothrombin, α2-HS-glycoprotein and α1-antichymotrypsin, were selected for characterization with atomic force microscopy and ellipsometry. The studies, which were performed on ultraflat silicon wafers (silica), showed that the proteins oriented themselves with their long axis parallel to the surface or as in case of ceruloplasmin with one of its larger sides towards the surface. All of them had globular shapes but other conformational details were not resolved. Furthermore, prothrombin (none of the others) formed multilayers at high proteins concentrations. The functional behaviour of the adsorbed proteins, referring to their cell binding and cell spreading capacity on silica and a positive cell adhesion reference surface (Thermanox®), was affected by the underlying substrate. Ceruloplasmin, α2-HS-glycoprotein and α1-antichymotrypsin stimulated cell attachment to silica, but suppressed attachment to Thermanox®. Prothrombin stimulated cell attachment to both surfaces. The attachment was in most cases mediated both by cell membrane-receptors (integrins) and by non-specific interactions between the cell and the material. This thesis showed that the compositional mixture, orientation, conformation and functional behavior of the adsorbed proteins are determined by the properties of the underlying surface and if these parameters are controlled very different cellular responses can be induced.
56

Transparent Glass Nono/Microcrystal Composites In MO-Bi2O3-B2O3(M= Sr, Ca) System And Their Physical Properties

Majhi, Koushik 09 1900 (has links)
Transparent glass-ceramics have been of industrial interest because of their multifarious applications. These are becoming increasingly important because of the flexibility that is associated with this route of fabricating intricate sizes and shapes as per the requirement. A number of glass-ceramics, based on well known ferroelectric crystalline phases (LiNbO3, LaBGeO5, SrBi2Nb2O9, Bi2WO6 etc.) were fabricated and their polar and electro-optic properties were reported. Keeping the potential applications of transparent glass-nano/microcrystal composites in view, attempts were made to fabricate SrBi2B2O7 and CaBi2B2O7 glasses and glass-nano/microcrystal composites. An attempt has been made to employ strontium bismuth borate SrBi2B2O7 (SBBO) as a reactive host glass matrix for growing the nanocrystals of ferroelectric oxides belonging to the Aurivillius family. The in situ nucleation and growth of SrBi2Nb2O9 (SBN) nanocrystals in a reactive SrBi2B2O7-Nb2O5 system and its influence on various physical (dielectric, pyroelectric and optical) properties were investigated. The strategy has been to visualize the formation of nanocrystalline SrBi2Nb2O9 as a result of the simple chemical reaction between glassy SrBi2B2O7 and Nb2O5. Indeed at lower concentrations of Nb2O5 transparent glasses were obtained which upon heat-treatment at appropriate temperatures yielded nanocrystalline SrBi2Nb2O9 phase in a transparent glass matrix. Textured SrBi2Nb2O9 ceramics were obtained by quenching the melts of SrBi2B2O7-Nb2O5 in equimolar ratio and their physical properties were studied. A strong anisotropy in physical properties (which are akin to single crystals) were demonstrated in the textured ceramics.
57

Investigations Into The Synthesis, Structural And Dielectric Properties Concerning The Relaxor Behavior Of n=2 Members Of The Aurivillius Family Of Oxides

Karthik, C 01 May 2007 (has links)
Relaxor ferroelectrics have been a subject of intense research owing to their interesting physical properties such as high dielectric constant and giant electro-striction. Unlike the conventional lead based relaxors, the relaxors belonging to Aurivillius family of oxides have received much less attention because of the poor understanding of the origin of the relaxor behavior and high processing temperatures involved. In the present investigations, an attempt has been made to understand the origin of relaxor behavior of the materials belonging to Aurivillius family of oxides. The structure and relaxor behavior of BaBi2Nb2O9 (BBN) has been established via the XRD, electron diffraction and dielectric spectroscopy. The results are compared with that of a normal ferroelectric like SrBi2Nb2O9 belonging to the same family as well with that of a conventional relaxor like PMN. The results indicate that the dielectric behavior of BBN is significantly different from that of the conventional relaxors like BBN with very slow broadening of relaxation times and was attributed to the absence of significant polar ordering. To substantiate the existing understanding, studies have been carried out by adopting different strategies such as B-site and A-site cationic substitutions and texturing of the ceramics. Vanadium doping on B-site was found to decrease the sintering temperatures significantly. Aliovalent La3+ doping was found to affect the dielectric behavior strongly with substantial decrease of the freezing temperature and dielectric constants which shows that the relaxor behavior of BBN is highly sensitive to A-site order-disorder. The (00l) textured ceramic of pure and vanadium doped BBN was fabricated via a simple melt-quenching technique and was found to exhibit a significant dielectric and pyroelectric anisotropy. A new class of relaxor compositions (K0.5La0.5Bi2Nb2O9 & K0.5La0.5Bi2Ta2O9) have been synthesized and characterized. These new compounds exhibited interesting physical properties which are akin to that of the conventional lead based relaxors. The presence of superlattice reflections in the electron diffractin patterns recorded on these compounds establish the presence of polar nano regions of significant size. These relaxor crystallites at nano/micro level embedded in a glass matrix have been found to be very promising from their physical properties view point.
58

Desenvolvimento de suportes vítreos e vitrocerâmicos baseados no sistema Li2O-BaO-SiO2 mofificados pelos óxidos Nb2O5, TiO2, V2O5 e ZrO2, para microextração em fase sólida (SPME-CG) / Development of new glass and glass-ceramics supports for solid phase microextraction (SPME-CG)

Percio, Maycon Fernando 28 February 2012 (has links)
Made available in DSpace on 2017-07-10T18:08:21Z (GMT). No. of bitstreams: 1 Maycon Fernando Percio.pdf: 4386871 bytes, checksum: fd68bea53c4d4cbfe32a314a01715c6e (MD5) Previous issue date: 2012-02-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the present work a vitreous composition based on combination of the oxides BaO-SiO2-Li2O modified by adding of oxides Nb2O5, TiO2, V2O5 and ZrO2 as nucleating agent was evaluated and used in the manufacture of glass and glass-ceramic fibers for use in SPME-CG. The stability of the resulting glasses was accompained by X-ray diffraction (XRD) and differential thermal analysis (DTA). The stability parameters of Weinberg (KW), Hubrÿ (KH), Lu e Liu (KLL), Du and Huang (KDU) and Saad and Poulain (KSP) were obtained by DTA data. By KSP was observed that stability of glassy phases follows the descending order: Composition 5 (ZrO2) > Composition 2 (Nb2O5) > Composition 1 (without nucleant) > Composition 4 (V2O5) > Composition 3 (TiO2). Through these data it was possible to determine the apparent activation energies of the crystallization process by the crystallization peaks of the DTA curves, whereby the decreasing order was obtained: Composition 5 (ZrO2)> Composition 4 (V2O5) > Composition 2 (Nb2O5) > Composition 3 (TiO2) > Composition 1 (without nucleant). It was found, through the Avrami index, a surface crystallization mechanism of the compositions that leads to a correspondent transition to the glass ceramic. From DRX data obtained after thermal treatment at varying time, the TTT diagrams (Time, Temperature and Transformation) of the compositions were constructed, which delimited the conditions for preparation of glass ceramic fibers. The XRD analysis indicated that the main crystalline phases formed after heat treatments are rhombic Li2SiO3 Li2Si2O5. The fibers obtained were further tested in chromatographic analysis by HS-SPME-GC of the methanol in aqueous solution at concentrations of 10 and 100 mgL-1 with satisfactory results. / No presente trabalho, foram estudadas composições vítreas baseada na combinação dos óxidos Li2O-BaO-SiO2 modificadas pelos óxidos Nb2O5, TiO2, V2O5 e ZrO2, utilizados como nucleantes na fabricação de fibras de vidro e vitrocerâmicas para a utilização em SPME-CG. Determinou-se a estabilidade vítrea para cada composição através da difração de raio-X (DRX) e análise térmica diferencial (DTA) sendo observada a estabilidade das fases vítreas na ordem decrescente: Composição 5 (ZrO2) > Composição 2 (Nb2O5) > Composição 1 (sem nucleante) > Composição 4 (V2O5) > Composição 3 (TiO2). Através destes dados foi possível determinar as energias de ativação aparente das fases cristalinas através dos picos de cristalização das curvas de DTA, cuja ordem decrescente obtida foi: Composição 5 (ZrO2) > Composição 4 (V2O5) > Composição 2 (Nb2O5) > Composição 3 (TiO2) > Composição 1 (sem nucleante). Verificou-se através do índice de Avrami que as composições vítreas obtidas apresentaram mecanismo de nucleação de superfície para a formação do vitrocerâmico. Os dados de DTA possibilitaram a obtenção de diagramas de Tempo, Temperatura e Transformação (TTT), que delimitaram as condições de preparo das fibras vitrocerâmicas. Foram fabricados 5 tipos diferentes de fibras vítreas (Fibras A), que após tratamento térmico deram origem a fibras vitrocêramicas parcialmente cristalizadas (Fibras B) e fibras vitrocerâmicas totalmente cristalizadas (Fibras C), resultando um total de 15 espécies de fibras de composições e estruturas cristalinas diferentes. As análises por DRX indicaram que as principais fases cristalinas formadas depois dos tratamentos térmicos são Li2SiO3 e Li2Si2O5 ortorrômbicos. As fibras obtidas foram ainda testadas em análises cromatográficas por Cromatografia Gasosa na extração de metanol em solução aquosa nas concentrações de 10 e 100 mgL-1 com resultados satisfatórios.
59

Vitrocéramiques infrarouges pour application à la vision nocturne / Infrared glass-ceramics for night vision applications

Petracovschi, Elena 03 October 2014 (has links)
Les verres de chalcogénures sont utilisés en tant qu'optiques pour les caméras IR grâce à leur transparence dans les deux fenêtres atmosphériques [3 – 5 µm] et [8 – 12 µm]. Afin de diminuer leur prix et d'augmenter la gamme des compositions qui pourraient être produites, une nouvelle méthode de synthèse a été élaborée au laboratoire Verres et Céramiques. Les travaux présentés dans ce manuscrit ont ainsi porté sur le développement de la technique de synthèse des verres et vitrocéramiques de chalcogénures par mécanosynthèse et frittage flash, ainsi que sur l'étude de la structure et des propriétés mécaniques des vitrocéramiques. Les différents paramètres de broyage et frittage ont été étudiés et la possibilité de produire des matériaux massifs, avec une structure et des propriétés similaires à celles des verres obtenus par voie classique de fusion-trempe, a été démontrée. Egalement, il a été constaté que la génération des particules cristallines dans la matrice vitreuse permet d'améliorer les propriétés mécaniques sans altérer la transmission optique des échantillons. Finalement, une étude théorique, basée sur la méthode DFT, a été initié pour accéder à des informations plus précises concernant la structure et les propriétés mécaniques des verres et vitrocéramiques de chalcogénures. / Chalcogenide glasses are used as optics for the IR cameras thanks to their transparence in the two atmospheric windows [3 – 5 µm] and [8 – 12 µm]. In order to reduce their price and to increase the panel of compositions which may be produced, a new method of synthesis has been elaborated in the Glass and Ceramics group. Thus, this manuscript presents the development of the new way of synthesis of chalcogenide glasses and glass-ceramics by mechanical milling and SPS sintering, and the study of the structure and mechanical properties of glass-ceramics. The different milling and sintering parameters have been studied and the possibility to produce bulk samples with a structure and properties similar to those of glasses synthesized by melt-quenching method has been demonstrated. Also, it has been shown that the generation of crystalline particles in the glassy matrix increases mechanical properties of the samples without spoiling their optical transmission. Finally, a theoretical study, based on the DFT method, has been initiated in order to access more precise information concerning glass and glass-ceramic structure and mechanical properties.
60

Traitement à haute pression et haute température de déchets de métaux lourds vers de nouveaux matériaux stables / High pressure and high temperature treatment of heavy metal waste, towards new stable materials

Karnis, Aurélie 08 October 2009 (has links)
Les REFIOM (Résidus d'Epuration des Fumées d'Incinération des Ordures Ménagères) issus de l'incération des déchets ménagers contiennent des métaux lourds comme le plomb ou le cadmium et sont en France uniquement stockés en centre d'enfouissement technique de classe 1 pour dangereux, en étant stabilisés par une vitrification. Afin de trouver des solutions pour le stockage ou la valorisation à long terme des REFIOM sans danger pour l'environnement, nous avons ciblé les vitrocéramiques et les céramiques frittées à hautes températures et hautes pressions. Nous avons utilisé des méthodes de la minéralogie physique par l'intermédiaire de synthèses à hautes températures, de synthèses à hautes températures et à hautes pressions en autoclave à chauffage externe, d'observations en microscopie électronique à balayage, de microanalyses chimiques EDX (Energy Dispersive X-Ray spectrometry), d'analyses en microsondes, de caractérisation structurale par diffraction de rayons X et d'expériences de lixiviation dynamique. Nous avons mis au point des protocoles de synthèses et d'analyses. Par ce biais, nous constatons pour les vitrocéramiques que le plomb ou le cadmium sont incorporés dans des cristallites et dans des nouvelles phases cristallines, eux-mêmes englobés dans une matrice vitreuse. Cette voie dite "double barrière" (cristaux + verre) semble prometteuses pour l'immobilisation du plomb et du cadmium (au regard des analyses EDX et des expériences de lixiviation). Pour les céramiques frittées, comme pour les SYNROC (SYNthetic ROCk) synthétisées pour les déchets nucléaires, de nouvelles phases cristallines incorporant Pb et Cd sont observées et seraient a priori résistantes pour le stockage de ces éléments toxiques. Dans ces deux cas de nouveaux matériaux capables d'incorporer massivement du plomb et du cadmium ont été mis en évidence. Des tests de durabilité permettront d'envisager une valorisation éventuelle de tels matériaux / MSWI 5Municipal Solide Waste Incinerator) fly ashes from the incineration of domestic waste contain heavy metals such as lead or cadmium. In France, these fly ashes are only stored under vitrified forms in class-1 type landfills for hazardous waste. In order to find solutions for long-term storage or valorization of the MSWI fly ashes, we studied glass-ceramics and sintered ceramics at high pressures and/or hight temperature. We used methods of mineral physics to : synthetize at high temperature, synthetize at higt temperature and high pressure using autoclaves with external heating system, observe by electron microcopy, make EDX (Energy Dispersive X-Ray spectrometry) chemical microanalysis, make microprobe analysis, structurally characterize and perform leaching test. We established experimental protocols for the synthesis and analysis of produced materials. For glass-ceramics, we observe that lead and cadmium are incorporated inside expected crystallites and new crystal phases, themselves embedded by a glassy matrix. This so-called "double barrier" (crystals + glass) is a promising way towards a substainable of lead and cadmium (after EDX analysis and leaching experiements). For sintered ceramics, as for the SYNROC (SYNthetic ROCk) with nuclear waste, new crystal phases incorporating Pb and Cd are found and might display a high resistant for the storage of these toxic elements. In both cases, new materials incorporating large amounts of lead and cadmium were formed. Durability tests may give new ways for a valorization of such materials

Page generated in 0.0521 seconds