• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonuniversal entanglement level statistics in projection-driven quantum circuits and glassy dynamics in classical computation circuits

Zhang, Lei 12 November 2021 (has links)
In this thesis, I describe research results on three topics : (i) a phase transition in the area-law regime of quantum circuits driven by projection measurements; (ii) ultra slow dynamics in two dimensional spin circuits; and (iii) tensor network methods applied to boolean satisfiability problems. (i) Nonuniversal entanglement level statistics in projection-driven quantum circuits; Non-thermalized closed quantum many-body systems have drawn considerable attention, due to their relevance to experimentally controllable quantum systems. In the first part of the thesis, we study the level-spacing statistics in the entanglement spectrum of output states of random universal quantum circuits where, at each time step, qubits are subject to a finite probability of projection onto states of the computational basis. We encounter two phase transitions with increasing projection rate: The first is the volume-to-area law transition observed in quantum circuits with projective measurements; The second separates the pure Poisson level statistics phase at large projective measurement rates from a regime of residual level repulsion in the entanglement spectrum within the area-law phase, characterized by non-universal level spacing statistics that interpolates between the Wigner-Dyson and Poisson distributions. The same behavior is observed in both circuits of random two-qubit unitaries and circuits of universal gates, including the set implemented by Google in its Sycamore circuits. (ii) Ultra-slow dynamics in a translationally invariant spin model for multiplication and factorization; Slow relaxation of glassy systems in the absence of disorder remains one of the most intriguing problems in condensed matter physics. In the second part of the thesis we investigate slow relaxation in a classical model of short-range interacting Ising spins on a translationally invariant two-dimensional lattice that mimics a reversible circuit that, depending on the choice of boundary conditions, either multiplies or factorizes integers. We prove that, for open boundary conditions, the model exhibits no finite-temperature phase transition. Yet we find that it displays glassy dynamics with astronomically slow relaxation times, numerically consistent with a double exponential dependence on the inverse temperature. The slowness of the dynamics arises due to errors that occur during thermal annealing that cost little energy but flip an extensive number of spins. We argue that the energy barrier that needs to be overcome in order to heal such defects scales linearly with the correlation length, which diverges exponentially with inverse temperature, thus yielding the double exponential behavior of the relaxation time. (iii) Reversible circuit embedding on tensor networks for Boolean satisfiability; Finally, in the third part of the thesis we present an embedding of Boolean satisfiability (SAT) problems on a two-dimensional tensor network. The embedding uses reversible circuits encoded into the tensor network whose trace counts the number of solutions of the satisfiability problem. We specifically present the formulation of #2SAT, #3SAT, and #3XORSAT formulas into planar tensor networks. We use a compression-decimation algorithm introduced by us to propagate constraints in the network before coarse-graining the boundary tensors. Iterations of these two steps gradually collapse the network while slowing down the growth of bond dimensions. For the case of #3XORSAT, we show numerically that this procedure recognizes, at least partially, the simplicity of XOR constraints for which it achieves subexponential time to solution. For a #P-complete subset of #2SAT we find that our algorithm scales with size in the same way as state-of-the-art #SAT counters, albeit with a larger prefactor. We find that the compression step performs less efficiently for #3SAT than for #2SAT.
2

Coarse-grained Modeling Studies of Polymeric and Granular Systems

Nguyen, Hong Trung 03 April 2018 (has links)
This Dissertation is devoted to computational study of the solidification, dynamics and mechanics of model semiflexible polymers with variable chain flexibility as well as a computational investigation of the clogging phenomena observed in granular materials. Chain stiffness is an intrinsic factor that governs single-chain flexibility. It plays a critical role in the physics of polymeric materials. In this work, we employ a coarse-grained polymer model in which chain stiffness can be tuned by a single parameter (bending stiffness kb) that yields chain shape ranging from coil-like to rod-like in the flexible and very stiff limit respectively. In chapter 2, we focus on how chain stiffness affects how polymer melts solidify under thermal cooling. We observe a strong dependence of the solid-state morphology (formed after cooling) upon chain flexibility. In the flexible limit, we find that monomers possess crystalline order while chains retain random-walk like structure. In higher stiffness regime glass formation is obtained while nematic ordering typical of lamellar precursors coexists with close-packing in the rod-like limit. Surprisingly we observe various structures ranging from spiral, to multi-domain nematic phases in the intermediate values of kb. In chapter 3 we go a step further to relate the solidification behaviors of chains discussed in chapter 2 to their melt dynamics. We probe the microstructure and the dynamics of flexible, intermediate-stiffness and rod-like chains. We find that melts of flexible and stiff chains that crystallize under cooling show simple and fast dynamics with Arrhenius temperature dependence. Interestingly, the intermediate-stiffness chains exhibit Vogel-Fulcher dynamical relaxation typical of fragile glass-formers even though their ground states is a nematic-close-packed crystal. There is no compelling argument based on static micro-structure change explaining this dynamical arrest to be found. However, we find that the dynamics of intermediate-stiffness chains is dominated by the stringlike cooperative motion that correlates along their chain backbones. This cooperative rearrangement which is absent in other systems appears to be the main cause of the dynamical arrest observed for intermediate-stiffness chains. In chapter 4, we turn to another class of materials where the negligible contribution of thermal fluctuations gives rise to an interesting phenomenon, i.e. the clogging transition. Clogging is a probabilistic event that occurs through a transition from a homogeneous flowing state to a heterogeneous or phase separated jammed state. The granular system under study is an assemble of bidisperse disks externally driven through a two dimensional periodic substrate. We find that the probability for clogging strongly depend on particle packing, obstacle number and the driving direction. Surprisingly, under relevant conditions we observe a size-specific clogging transition in which the smaller species get trapped while the larger species keep flowing. Chapter 5 returns to discuss the polymer solidification in the context of isostaticity. Results from the simulations of semiflexible polymers described in chapter 2 allow us to derive a generalized isostaticity criterion that can be applied to finite-stiffness chains. The new criterion is based on the characteristic ratio C which characterizes the slow freezing out of configurational freedom of chains as chain stiffness increases. The results of the average coordination number at solidification Z(Ts) suggest a link between jamming in athermal systems and solidification in their thermal counterparts. Finally, in chapter 6 we study the effect of chain stiffness on the mechanical response of glassy polymers. We investigate shear deformation of three systems with a different degree of entanglement. We find that loosely entangled chains display strong shear banding and undergo fracture via chain pullout. In contrast, tightly entangled chains fail at high enough strain along a well-defined plane via chain scission shortly after chains are pulled taut. We explain these chain-stiffness-dependent behaviors qualitatively using the segmental packing efficiency argument and quantitatively using modern plasticity measures
3

Glassy dynamics of polymethylphenylsiloxane in one- and two-dimensional nanometric confinement

Kipnusu, Wykliffe Kiprop, Elsayed, Mohamed, Krause-Rehberg, Reinhard, Kremer, Friedrich 22 May 2018 (has links)
Glassy dynamics of polymethylphenylsiloxane (PMPS) is studied by broadband dielectric spectroscopy in one-dimensional (1D) and two-dimensional (2D) nanometric confinement; the former is realized in thin polymer layers having thicknesses down to 5 nm, and the latter in unidirectional (thickness 50 µm) nanopores with diameters varying between 4 and 8 nm. Based on the dielectric measurements carried out in a broad spectral range at widely varying temperatures, glassy dynamics is analyzed in detail in 1D and in 2D confinements with the following results: (i) the segmental dynamics (dynamic glass transition) of PMPS in 1D confinement down to thicknesses of 5 nm is identical to the bulk in the mean relaxation rate and the width of the relaxation time distribution function; (ii) additionally a well separated surface induced relaxation is observed, being assigned to adsorption and desorption processes of polymer segments with the solid interface; (iii) in 2D confinement with native inner pore walls, the segmental dynamics shows a confinement effect, i.e., the smaller the pores are, the faster the segmental dynamics; on silanization, this dependence on the pore diameter vanishes, but the mean relaxation rate is still faster than in 1D confinement; (iv) in a 2D confinement, a pronounced surface induced relaxation process is found, the strength of which increases with the decreasing pore diameter; it can be fully removed by silanization of the inner pore walls; (v) the surface induced relaxation depends on its spectral position only negligibly on the pore diameter; (vi) comparing 1D and 2D confinements, the segmental dynamics in the latter is by about two orders of magnitude faster. All these findings can be comprehended by considering the density of the polymer; in 1D it is assumed to be the same as in the bulk, hence the dynamic glass transition is not altered; in 2D it is reduced due to a frustration of packaging resulting in a higher free volume, as proven by ortho-positronium annihilation lifetime spectroscopy.
4

Local Fluctuations in the Relaxation Rate in Glassy Systems

Pandit, Rajib K. 11 June 2019 (has links)
No description available.
5

The Dielectric Response of Mobile Counter-ions in Charged Metal-Organic Frameworks

Godfrey, Aaron P. 09 August 2010 (has links)
No description available.
6

Breitbandige dielektrische Spektroskopie zur Untersuchung der molekularen Dynamik von Nanometer-dünnen Polymerschichten / Broadband dielectric spectroscopy to investigate the molecular dynamics of nanometer-thin polymer layers

Treß, Martin 07 January 2015 (has links) (PDF)
Mit dieser Arbeit ist weltweit zum ersten Mal die molekulare Dynamik von vereinzelten,d.h. einander nicht berührenden Polymerketten experimentell bestimmt worden. Die Grundlagen dafür sind einerseits die breitbandige dielektrische Spektroskopie mit ihrer außerordentlich hohen experimentellen Empfindlichkeit und andererseits die Weiterentwicklung einer speziellen Probenanordnung, bei der hochleitfähige Silizium-Elektroden durch elektrisch isolierende Siliziumdioxid-Nanostrukturen in einem vordefinierten Abstand gehalten werden und so den Probenkondensator bilden. Im Rahmen dieser Arbeit wurde die Höhe der Nanostrukturen (und damit des Elektrodenabstands) auf nur 35 nm reduziert. Damit gelang der Nachweis, dass selbst vereinzelte kondensierte Polymer-Knäuel - im Rahmen der Messgenauigkeit - dieselbe Segmentdynamik (bzw. denselben dynamischen Glasübergang), gemessen in ihrer mittleren Relaxationsrate, wie die makroskopische Schmelze („bulk“) aufweisen. Nur ein kleiner Anteil der Segmente zeigt eine langsamere Dynamik, was auf attraktive Wechselwirkungen mit dem Substrat zurückzuführen ist, wie komplementäre Untersuchungen mittels Infrarot-Spektroskopie zeigen. Zudem bieten diese Experimente die Möglichkeit, nach der dielektrischen Messung die mit Nanostrukturen versehene obere Elektrode zu entfernen und die Verteilung der vereinzelten Polymerketten, deren Oberflächenprofile und Volumen mit dem Rasterkraftmikroskop zu bestimmen. Erst damit gelingt der Nachweis, dass die Polymer-Knäuel im Mittel aus einer einzelnen Kette bestehen. Die Kombination dieser drei unabhängigen Messmethoden liefert ein schlüssiges und detailliertes Bild, gekennzeichnet dadurch, dass attraktive Oberflächenwechselwirkungen die Glasdynamik nur über ca. 0,5nm direkt beeinflussen. In einem zweiten Teil trägt die Arbeit mit der Untersuchung dünner Polymerschichten im Nanometer-Bereich zu einer international geführten, kontroversen Diskussion um die Frage, ob sich im Falle solcher räumlichen Begrenzungen der dynamische und kalorimetrische Glasübergang ändern, bei. Dabei zeigt mit den präsentierten dielektrischen und ellipsometrischen Messungen eine Kombination aus einer Methode, die im Gleichgewichtszustand misst und einer, die den Übergang in den Nichtgleichgewichtszustand bestimmt, dass sich sowohl Polystyrol-Schichten verschiedener Molekulargewichte bis zu einer Dicke von nur 5 nm als auch Polymethylmethacrylat-Schichten auf unterschiedlichen (hydrophilen und hydrophoben) Substraten bis zu einer Dicke von 10 nm weder in ihrem dynamischen noch ihrem kalorimetrischen Glasübergang von der makroskopischen Schmelze unterscheiden.
7

Dynamique vitreuse sur la sphère S2 / Glassy dynamics on the sphere

Vest, Julien-Piera 23 November 2015 (has links)
Nous nous sommes intéressés à la description de la dynamique d'un liquide surfondu en étudiant un modèle qui repose sur un ingrédient simple. En partant d'un système de Lennard-Jones monodisperse dans le plan euclidien, nous avons ajouté de la frustration en courbant le plan de sorte à former une sphère de rayon arbitraire. A l'aide d'un algorithme de dynamique moléculaire sphérique, nous avons montré que ce système présentait bien une dynamique vitreuse d'équilibre, caractérisée par la fonction de diffusion intermédiaire incohérente $F_s(k,t)$, qui ralentit fortement et change de comportement à basse température, pour une faible variation de la statique. Le système se comporte comme un verre fort pour les courbures les plus grandes, mais sa fragilité augmente lorsque la courbure diminue. L'allure de $F_s(k,t)$ est également modifiée quand la courbure diminue, ce que nous avons essayé d'expliquer par l'étude de la théorie de couplages de modes (MCT) sur la sphère. Nous avons dérivé l'équation dynamique de MCT sphérique puis étudié la limite aux temps longs de sa solution. On obtient une transition dynamique qui est similaire à celle de la MCT euclidienne, ce qui ne permet pas d'expliquer l'effet de courbure sur $F_s(k,t)$, bien que celle-ci ait une influence sur la valeur de la température de transition. Enfin, nous nous sommes intéressés au rôle des "défauts", dont un nombre minimal de $12$ est imposé par la topologie. A basse température, les défauts tendent à se réunir en structures linéaires, ce qui est prévu théoriquement et observé dans certaines expériences. Les défauts ont une contribution importante à la relaxation, sans pour autant que l'influence des autres particules ne soit négligeable. / We are interested in the description of the dynamics of a supercooled liquid through the study of a model which relies on a simple geometrical ingredient. Starting from a monodisperse Lennard-Jones system on the euclidean plane, we add frustration by curving the space to form a sphere of arbitrary radius. Using a molecular dynamics algorithm, we showed that this system indeed behaves like a glassy liquid at equilibrium. The dynamics, caracterized by the self-intermediate scattering function $F_s(k,t)$, slows down strongly and changes shape at low temperature, for a small variation of the statics. The system behaves like a strong glass for high curvatures, but its fragility increases when the curvature decreases. The shape of $F_s(k,t)$ is also modified when the curvature decreases, which we tried to explain theoretically through the study of the mode coupling theory (MCT) on the sphere. We derived the dynamical equation of spherical MCT and studied the long time limit of its solution. We predict a dynamic transition similar to the one predicted by euclidean MCT, which does not allow us to explain the effect of curvature on $F_s(k,t)$, though the curvature has an influence on the value of the transition temperature. Finally, we studied the role of "defects", among which a minimal number of $12$ is imposed by topology. At low temperature, the defects tend to form linear structures, as predicted theoretically and observed in some experiments. The defects have a strong contribution in the relaxation; however, the role of other particles is not negligible.
8

Confinement, Coarsening And Nonequilibrium Fluctuations In Glassy And Yielding Systems

Nandi, Saroj Kumar 07 1900 (has links) (PDF)
One of the most important and interesting unsolved problems of science is the nature of glassy dynamics and the glass transition. It is quite an old problem, and starting from the early20th century there have been many efforts towards a sound understanding of the phenomenon. As a result, there are a number of theories in the field, which do not entirely contradict each other, but between which the connection is not entirely clear. In the last couple of decades or so, there has been significant progress and currently we do understand many facets of the problem. But a unified theoretical framework for the varied phenomena associated with glassiness is still lacking. Mode-coupling theory, an extreaordinarily popular approach, came from Götze and co-workers in the early eighties. The theory was originally developed to describe the two¬ step decay of the time-dependent correlation functions in a glassy fluid observed near the glass transition temperature(Tg). The theory went beyond that and made a number of quantitative predictions that can be tested in experiments and simulations. However, one of the drawback of the theory is its prediction of a strong ergodic to non-ergodic transition at a temperature TMCT; no such transition exists in real systems at the temperatures at which MCT predicts it. Consequently, the predictions of the theory like the power-law divergences of the transport quantities (e.g., viscosity and relaxation time) fail at low enough temperature and the theory can not be used below TMCT. It is well understood now that MCT is some sort of a mean-field theory of the real phenomenon, and in real systems the transition predicted by MCT is at best avoided due to finite dimensions and activated processes, neither of which is taken into account in standard MCT. Despite its draw backs, even the most severe critic of the theory will be impressed by its power and the predictions in a regime where it works. Even though the non-ergodic transition predicted by the theory is averted, the MCT mechanism for the increase of viscosity and relaxation time is actually at work in real systems. The status of MCT for glass transition is ,perhaps, similar to the Curie-Weiss theory of magnetic phase transition and it will require hard work and perhaps a conceptual breakthrough to go beyond this mean-field picture. Discussion of such a theoretical framework and its possible directions are, however, beyond the scope of this thesis. In the first part of this work, we have extended the mode coupling theory to three important physical situations: the properties of fluids under strong confinement, a sheared fluid and for the growth kinetics of glassy domains. In the second part, we have studied a different class of non equilibrium phenomenon in arrested systems, the fluctuation relations for yielding. In the first chapter, we talk about some general phenomenology of the glass transition problem and a few important concepts in the field. Then we briefly discuss the physical problems to be addressed in detail later on in the thesis followed by a brief account of some of the important existing theories in the field. This list is by no means exhaustive but is intended to give a general idea of the theoretical status of the problem. We conclude this chapter with a detailed derivation of MCT and its successes and failures. This derivation is supposed to serve as a reference for the details of the calculations in later chapters. The second chapter deals with a simple theory of an important problem of lubrication and dynamics of fluid at nanoscopic scales. When a fluid is confined between two smooth surfaces down to a few molecular layers and an normal force is applied on the upper surface, it is found that one layer of fluid gets squeezed out of the geometry at a time. The theory to explain this phenomenon came from Persson and Tosatti. However, due to a mathematical error, the in-plane viscosity term played no role in the original calculation. We re-do this calculation and show that the theory is actually more powerful than was suggested originally by its proponents. In the third chapter, we work out a detailed theory for the dynamics of fluid under strong planar confinement. This theory is based on mode-coupling theory. The walls in our theory enter in terms of an external potential that impose a static inhomogeneous background density. The interaction of the density fluctuation with this static background density makes the fluid sluggish. The theory explains how the fluid under strong confinement can undergo a glassy transition at a higher temperature or lower density than the corresponding bulk fluid as has been found in experiments and simulations. One of the interesting findings of the theory is the three-step relaxation that has also been found in a variety of other cases. The fourth chapter consists of a mode-coupling calculation of a sheared fluid through the microscopic approach first suggested by Zaccarelli et al[J. Phys.: Condens. Matter 14,2413(2002)]. The various assumptions of the theory are quite clear in this approach. The main aim of this calculation is to understand how FDR enters with in the theory. The only new result is the modified form of Yvon-Born-Green(YBG) equations for a sheared fluid. Then we extend the theory for the case of a confined fluid under steady shear and show that a confined fluid will show shear thinning at a much lower shear rate than the bulk fluid. When a system is quenched past a phase transition point, phase ordering kinetics begins. The properties of the system show “aging” with time, and the characteristic length scale of the quenched system grows as one waits. The analogous question for glasses has also been asked in the contexts of various numerical and experimental works. We formulate a theory in chapter five for rationalizing these findings. We find that MCT, surprisingly, offers an answer to this key question in glass forming liquids. The challenge of this theory is that care must be taken in using some equilibrium relations like the fluctuation-dissipation relation(FDR), which is one of the key steps in most of the derivations of MCT. We find that the qualitative, and some times even the quantitative, picture is in agreement with numerical findings. A similar calculation for the spin-glass case also predicts increase of the correlation volume with the waiting time, but with a smaller exponent than the structural glass case. We extended this theory to the case of shear and find that shear cuts off the growth of the length-scale of glassy correlations when the waiting time becomes of the order of the inverse shear rate. For the case of sheared fluid, if we take the limit of the infinite waiting time, the system will reach a steady state. Then, the resulting theory will describe a fluid in sheared steady state. The advantage of this theory over the existing mode-coupling theories for a sheared fluid is that FDR has not been used in any stage. This is an important development since the sheared steady state is driven away from equilibrium. Interestingly, the theory captures a suitably-defined effective temperature and gives results that are consistent with numerical experiments of steady state fluids(both glass and granular materials). We give the details of a theoretical model for jamming and large deviations in micellar gel in the sixth chapter. This theory is motivated by experiments. Through the main ingredient of the attachment-detachment kinetics and some simple rules for the dynamics, the theory is capable of capturing all the experimental findings. The novel prediction of this work is that in a certain parameter range, the fluctuation relations may be violated although the large deviation function exists. We argue that a wider class of physical systems can be understood in terms of the present theory. In the final chapter, we summarize the problems studied in this thesis and point out some future directions.
9

Slow Dynamics In Complex Fluids : Confined Polymers And Soft Colloids

Kandar, Ajoy Kumar 07 1900 (has links) (PDF)
The thesis describes the study of slow dynamics of confined polymers and soft colloids. We study the finite size effect on the dynamics of glassy polymers using newly developed interfacial microrheology technique. Systematic measurement have been performed to address the issue of reduction of glass transition under confinements. Slow and heterogeneous dynamics are the underlined observed behavior for dynamics in confined glassy polymers. The slow relaxation dynamics and dynamical heterogeneity in polymer grafted nanoparticles (PGNPs) systems were studied using advanced X - ray photon correlation spectroscopy (XPCS) techniques. Our studies presented in this thesis on dynamics of polymer grafted nanoparticle systems in melts and solution are the first attempt to study them experimentally. Thus our work shed the light about new technique to study confined system more accurately and explore new soft colloidal system to study fascinating dynamics and interesting phase behavior. In Chapter 1, we provide the theoretical background along with brief review of the literature for understanding the results presented in this thesis. The details of the experimental set up and their operating principle along with the details of the experimental conditions are provided in Chapter 2. In Chapter 3 we present our newly developed technique (interfacial microrhelogy) and its consequences to study the complex fluids at interface. Chapter 4 discusses the concentration and temperature dependent glassy dynamics in confined glassy polymers. In Chapter 5 we provide the structural and dynamical study of polymer grafted nanoparticles in melts and solutions. We provide the summary of our result and the future prospective of the work in Chapter 6. Chapter-1 provides the ground work and theoretical aspects for understanding the results presented in this thesis. It starts with the discussion about the slow dynamics of complex fluids and transit to dynamic behavior of polymer in confinement, glassy dynamics in confinements . This also discusses the basic aspects of studying viscoelastic properties using rheology, interface rheology, microrheology, interface microrheology techinques. In continuation it discusses structure and dynamics of different soft colloids investigated for last decade and then theoretical aspects of XPCS is discussed. Towards the end of this Chapter, we discuss the procedure to explain and understand systems dynamical heterogeneity near glass like phase transition. Chapter-2 contains the details of the experimental techniques which has been used for the study of confined polymers and soft colloids. Brief introduction to basic principles of the measurements followed by details of the material and methods have been provided. Chapter-3 we discuss the interafacial microrheology of different complex fluids and advantages of the techniques is discussed in Chapter 3. This includes discussion about the technique sensitivity at the surface using quantum dots (QDs) as a probe and about the configuration of the QDs at/on monolayer. Later on establishment of the technique has been demonstrated through easurements on arachidic acid, poly(methylmethacrylate) (PMMA), poly(vinylacetate) (PVAc), poly(methylacrylate) (PMA) monolayers. The extracted subdiffusive nature of QDs in on monolayers through mean square displacement has been explained using fractional Brownian motion model. Towards the end of the chapter we discuss about the extraction of real and imaginary elastic modulus from mean square displacement data using generalized Stokes-Einstein relation for the quasi two dimensional systems and explains about the possible viscoelastic transition in the different monolayers. The concentration and temperature dependent glassy dynamics of confined polymers (PMMA) are discussed in Chapter-4. We demonstrate the microscopic nature of spatio-temporal variation of dynamics of glassy polymers confined to a monolayer of 2 3 nm thickness as a function of surface density and temperature. It illustrates the systems dynamical heterogeneity and explain the observed large reduction of glass transition temperature in confined system through finite size effect. In Chapter 5 we discuss the result based on systematic studies of dynamics of PGNPs in melts and solutions. In addition it also illustrates the structural anisotropy and anomalous dynamical transitions in binary mixture of PGNPs and homopolymers in good solvent condition. It provides temperature and wave vector dependent XPCS measurements on polymer grafted nanoparticles with the variation of functionality. The functionality ( f ) dependent nonmonotonic relaxation in melts of PGNPs and solvent quality dependent non monotonic relaxation of PGNPs system have been elaborated in the continuation. We present possible phase behavior of PGNPs system in good solvent with addition of homopolymer of two different molecular weight. Chapter 6 contains the summary and the future perspective of the work presented.
10

Dynamics of Glass-Forming Liquids and Shear-Induced Grain Growth in Dense Colloidal Suspensions

Shashank, Gokhale Shreyas January 2015 (has links) (PDF)
The work presented in this doctoral thesis employs colloidal suspensions to explore key open problems in condensed matter physics. Colloidal suspensions, along with gels, polymers, emulsions and liquid crystals belong to a family of materials that are collectively labelled as soft matter. Compositionally, colloidal suspensions consist of particles whose size ranges from a few nanometers to a few microns, dispersed in a solvent. A hallmark feature of these systems is that they exhibit Brownian motion, which makes them suitable for investigating statistical mechanical phenomena. Over the last fifteen years or so, colloids have been used extensively as model systems to shed light on a wide array of such phenomena typically observed in atomic systems. The chief reason why colloids are good mimics of atomic systems is their large size and slow dynamics. Unlike atomic systems, the dynamics of colloids can be probed in real time with single-particle resolution, which allows one to establish the link between macroscopic behavior and the microscopic processes that give rise to it. Yet another important feature is that colloidal systems exhibit various phases of matter such as crystals, liquids and glasses, which makes them versatile model systems that can probe a broad class of condensed matter physics problems. The work described in this thesis takes advantage of these lucrative features of colloidal suspensions to gain deeper insights into the physics of glass formation as well as shear-induced anisotropic grain growth in polycrystalline materials. The thesis is organized into two preliminary chapters, four work chapters and a concluding chapter, as follows. Chapter 1 provides an introduction to colloidal suspensions and reviews the chief theo-retical concepts regarding glass formation and grain boundary dynamics that form an integral part of subsequent chapters. Chapter 2 describes the experimental methods used for performing the work presented in the thesis and consists of two parts. The first part describes the protocols followed for synthesizing the size-tunable poly (N-isoprolypacrylamide) (PNIPAm) particles used in our study of shear-induced grain growth. The second part describes the instrumentation and techniques, such as holographic optical tweezers, confocal microscopy, rheology and Bragg diffraction microscopy, used to perform the measurements described in the thesis. Chapter 3 deals with our work on the dynamical facilitation (DF) theory of glass forma-tion. Despite decades of research, it remains to be established whether the transformation of a liquid into a glass is fundamentally thermodynamic or dynamic in origin. While obser-vations of growing length scales are consistent with thermodynamic perspectives, the purely dynamic approach of the DF theory has thus far lacked experimental support. Further, for glass transitions induced by randomly freezing a subset of particles in the liquid phase, theory and simulations support the existence of an underlying thermodynamic phase transi-tion, whereas the DF theory remains unexplored. In Chapter 3, using video microscopy and holographic optical tweezers, we show that dynamical facilitation in a colloidal glass-forming liquid grows with density as well as the fraction of pinned particles. In addition, we observe that heterogeneous dynamics in the form of string-like cooperative motion, which is consid-ered to be consistent with thermodynamic theories, can also emerge naturally within the framework of facilitation. These findings suggest that a deeper understanding of the glass transition necessitates an amalgamation of existing theoretical approaches. In Chapter 4, we further explore the question of whether glass formation is an intrinsi-cally thermodynamic or dynamic phenomenon. A major obstacle in answering this question lies in determining whether relaxation close to the glass transition is dominated by activated hopping, as espoused by various thermodynamic theories, or by the correlated motion of localized excitations, as proposed in the Dynamical Facilitation (DF) approach. In Chapter 4, we surmount this central challenge by developing a scheme based on real space micro-scopic analysis of particle dynamics and applying it to ascertain the relative importance of hopping and facilitation in a colloidal glass-former. By analysing the spatial organization of excitations within cooperatively rearranging regions (CRRs) and examining their parti-tioning into shell-like and core-like regions, we establish the existence of a crossover from a facilitation-dominated regime at low area fractions to a hopping-dominated one close to the glass transition. Remarkably, this crossover coincides with the change in morphology of CRRs predicted by the Random First-Order Transition theory (RFOT), a prominent ther-modynamic framework. Further, we analyse the variation of the concentration of excitations with distance from an amorphous wall and find that the evolution of these concentration profiles with area fraction is consistent with the presence of a crossover in the relaxation mechanism. By identifying regimes dominated by distinct dynamical processes, our study offers microscopic insights into the nature of structural relaxation close to the glass transi-tion. In Chapter 5, we extend our investigation of the glass transition to systems composed of anisotropic particles. The primary motivation for this is to bridge a long-standing di-vide between theories and simulations on one hand, and experiments on molecular liquids on the other. In particular, theories and simulations predominantly focus on simple glass-formers composed of spherical particles interacting via isotropic interactions. Indeed, even the prominent theory of Dynamical Facilitation has not even been formulated to account for anisotropic shapes or interactions. On the other hand, an overwhelming majority of liquids possess considerable anisotropy, both in particle shape as well as interactions. In Chapter 5, we mitigate this situation by developing the DF theory further and applying it to systems with orientational degrees of freedom as well as anisotropic attractive interactions. By analyzing data from experiments on colloidal ellipsoids, we show that facilitation plays a pivotal role in translational as well as orientational relaxation. Further, we demonstrate that the introduction of attractive interactions leads to spatial decoupling of translational and rotational facilitation, which subsequently results in the decoupling of dynamical het-erogeneities. Most strikingly, the DF theory can predict the existence of reentrant glass transitions based on the statistics of localized dynamical events, called excitations, whose duration is substantially smaller than the structural relaxation time. Our findings pave the way for systematically testing the DF approach in complex glass-formers and also establish the significance of facilitation in governing structural relaxation in supercooled liquids. In Chapter 6, we turn our attention away from the glass transition and address the problem of grain growth in sheared polycrystalline materials. The fabrication of functional materials via grain growth engineering implicitly relies on altering the mobilities of grain boundaries (GBs) by applying external fields. While computer simulations have alluded to kinetic roughening as a potential mechanism for modifying GB mobilities, its implications for grain growth have remained largely unexplored owing to difficulties in bridging the disparate length and time scales involved. In Chapter 6, by imaging GB particle dynamics as well as grain network evolution under shear, we present direct evidence for kinetic roughening of GBs and unravel its connection to grain growth in driven colloidal polycrystals. The capillary fluctuation method allows us to quantitatively extract shear-dependent effective mobilities. Remarkably, our experiments reveal that for sufficiently large strains, GBs with normals parallel to shear undergo preferential kinetic roughening resulting in anisotropic enhancement of effective mobilities and hence directional grain growth. Single-particle level analysis shows that the anisotropy in mobility emerges from strain-induced directional enhancement of activated particle hops normal to the GB plane. Finally, in Chapter 7, we present our conclusions and discuss possible future directions.

Page generated in 0.0538 seconds