• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • Tagged with
  • 14
  • 14
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle du gène Polycomb BMI1 dans le maintien et la radiorésistance des cellules souches cancéreuses

Facchino, Sabrina 09 1900 (has links)
Le glioblastome multiforme (GBM) est la tumeur cérébrale la plus commune et létale chez l’adulte. Malgré les avancés fulgurantes dans la dernière décennie au niveau des thérapies contre le cancer, le pronostique reste inchangé. Le manque de spécificité des traitements est la cause première de la récurrence de cette tumeur. Une meilleure compréhension au niveau des mécanismes moléculaires et biologiques de cette tumeur est impérative. La découverte des cellules souches cancéreuses (CD133+) au niveau du GBM offre une nouvelle opportunité thérapeutique contre cette tumeur. Effectivement, les cellules CD133+ seraient responsables de l’établissement, le maintien et la progression du GBM. De plus, elles sont également la cause de la résistance du GBM faces aux traitements de radiothérapies. Ces cellules représentent une cible de choix dans le but d’éradiquer le GBM. L’oncogène BMI1 a été associé à plusieurs types de tumeurs et est également essentielle au maintien de différentes populations de cellules souches normales et cancéreuses. Une forte expression de BMI1 est observée au niveau du GBM et plus précisément, un enrichissement préférentiel de cette protéine est noté au niveau des cellules CD133+. L’objectif principal de cette thèse est d’évaluer le rôle potentiel de BMI1 dans le maintien et la radiorésistance des cellules souches cancéreuses (CSC), CD133+ du GBM. La fonction principale de BMI1 est la régulation négative du locus INK4A/ARF. Ce locus est impliqué dans l’activation de deux voies majeurs anti-tumorales : P53 et RB. Or, la perte de BMI1 induit in vitro une diminution des capacités prolifératives, une augmentation de la différentiation et de l’apoptose, ainsi qu’une augmentation de la radiosensibilité des CSC du GBM indépendamment de la présence du locus INK4A/ARF. Effectivement, deux tumeurs sur trois possèdent une délétion de ce locus, ce qui suggère que BMI1 possède d’autre(s) cible(s) transcriptionnelle(s). Parmi ces nouvelles cibles ont retrouve la protéine P21, un régulateur négatif du cycle cellulaire. De plus, la perte de BMI1 inhibe l’établissement d’une tumeur cérébrale lors d’études de xénogreffe chez la souris NOD/SCID. Également, une nouvelle fonction de BMI1 indépendante de son activité transcriptionnel a été démontrée. Effectivement, suite à l’induction d’un bris double brin (BDB) de l’ADN, BMI1 est rapidement recruté au niveau de la lésion et influence le recrutement des protéines de reconnaissance du dommage à l’ADN. La perte de BMI1 mène à un défaut au niveau de la reconnaissance et la réparation de l’ADN, alors que sa surexpression induit plutôt une augmentation de ces mécanismes et procure une radiorésistance. Ces résultats décrivent pour la première fois l’importance de BMI1 au niveau du maintien, de l’auto-renouvellement et la radiorésistance des CSC du GBM. Ainsi, ces travaux démontrent que la protéine BMI1 représente une cible thérapeutique de choix dans le but d’éradiquer le GBM, une tumeur cérébrale létale. / Glioblastoma multiform (GBM) is the most common and lethal primary brain tumor found in adults. Despite the advances made in the field of cancer therapy in the last decade, the median survival rate remains less than a year. Therefore, a better understanding of the molecular biology of GBM will reveal the mechanisms responsible for the initiation and progression of the tumor, and allow the development of new therapeutic strategies. GBM contains a minority cell population, characterized by tumor initiating cells expressing the stem cell marker, CD133. The CD133+ GBM cells are responsible for tumor initiation, maintenance, progression and resistance to chemo/radiotherapy. The CD133+ cells represent a valuable and specific therapeutic target against GBM. The Polycomb (PcG) group family of transcriptional repressors have been involved in a vast range of cancers. The PcG protein and oncogene BMI1 is the best-characterized PcG protein. The implication of BMI1 in normal and cancer stem cell survival, self-renewal and maintenance has been thoroughly investigated. BMI1 is highly expressed in GBM and more precisely; it is enriched specifically in CD133+ cell populations. The main goal of this thesis was to elucidate the potential role of BMI1 in GBM CD133 + cancer stem cell (CSC) maintenance and radioresistance. The main function of BMI1 is to repress the expression of the genes encoded by the INK4A/ARF locus, which is implicated in the activation of two major tumor suppressor pathways, P53 and RB. However, BMI1 depletion in vitro induces a reduction in proliferation potential, as well as an increase in differentiation, apoptosis, and radiosensitivity regardless of INK4A/ARF status. Indeed, two-thirds of all tumors posses a deletion of this locus, suggesting that BMI1 regulates other targets. P21, a cell cycle regulator, was identified as a new BMI1 target. Moreover, we have observed that the loss of BMI1 inhibits the establishment of a cerebral tumor in a xenograft mouse model. In addition to transcription related activity, we identified a new transcription independent function of BMI1. After the induction of a DNA double-strand-break, BMI1 is rapidly recruited to the damage site and influences the recruitment of DNA damage response proteins. Furthermore, defects in DNA damage recognition and repair are observed after BMI1 knockdown. Consistent with these results, BMI1 overexpression induces DNA damage response and increases radioresistance potential. These results emphasize for the first time the requirement of BMI1 for the maintenance, self-renewal, and radioresistance in GBM CSC, thus providing a potential target for future therapeutic strategies against GBM.
12

Rôle du gène Polycomb BMI1 dans le maintien et la radiorésistance des cellules souches cancéreuses

Facchino, Sabrina 09 1900 (has links)
Le glioblastome multiforme (GBM) est la tumeur cérébrale la plus commune et létale chez l’adulte. Malgré les avancés fulgurantes dans la dernière décennie au niveau des thérapies contre le cancer, le pronostique reste inchangé. Le manque de spécificité des traitements est la cause première de la récurrence de cette tumeur. Une meilleure compréhension au niveau des mécanismes moléculaires et biologiques de cette tumeur est impérative. La découverte des cellules souches cancéreuses (CD133+) au niveau du GBM offre une nouvelle opportunité thérapeutique contre cette tumeur. Effectivement, les cellules CD133+ seraient responsables de l’établissement, le maintien et la progression du GBM. De plus, elles sont également la cause de la résistance du GBM faces aux traitements de radiothérapies. Ces cellules représentent une cible de choix dans le but d’éradiquer le GBM. L’oncogène BMI1 a été associé à plusieurs types de tumeurs et est également essentielle au maintien de différentes populations de cellules souches normales et cancéreuses. Une forte expression de BMI1 est observée au niveau du GBM et plus précisément, un enrichissement préférentiel de cette protéine est noté au niveau des cellules CD133+. L’objectif principal de cette thèse est d’évaluer le rôle potentiel de BMI1 dans le maintien et la radiorésistance des cellules souches cancéreuses (CSC), CD133+ du GBM. La fonction principale de BMI1 est la régulation négative du locus INK4A/ARF. Ce locus est impliqué dans l’activation de deux voies majeurs anti-tumorales : P53 et RB. Or, la perte de BMI1 induit in vitro une diminution des capacités prolifératives, une augmentation de la différentiation et de l’apoptose, ainsi qu’une augmentation de la radiosensibilité des CSC du GBM indépendamment de la présence du locus INK4A/ARF. Effectivement, deux tumeurs sur trois possèdent une délétion de ce locus, ce qui suggère que BMI1 possède d’autre(s) cible(s) transcriptionnelle(s). Parmi ces nouvelles cibles ont retrouve la protéine P21, un régulateur négatif du cycle cellulaire. De plus, la perte de BMI1 inhibe l’établissement d’une tumeur cérébrale lors d’études de xénogreffe chez la souris NOD/SCID. Également, une nouvelle fonction de BMI1 indépendante de son activité transcriptionnel a été démontrée. Effectivement, suite à l’induction d’un bris double brin (BDB) de l’ADN, BMI1 est rapidement recruté au niveau de la lésion et influence le recrutement des protéines de reconnaissance du dommage à l’ADN. La perte de BMI1 mène à un défaut au niveau de la reconnaissance et la réparation de l’ADN, alors que sa surexpression induit plutôt une augmentation de ces mécanismes et procure une radiorésistance. Ces résultats décrivent pour la première fois l’importance de BMI1 au niveau du maintien, de l’auto-renouvellement et la radiorésistance des CSC du GBM. Ainsi, ces travaux démontrent que la protéine BMI1 représente une cible thérapeutique de choix dans le but d’éradiquer le GBM, une tumeur cérébrale létale. / Glioblastoma multiform (GBM) is the most common and lethal primary brain tumor found in adults. Despite the advances made in the field of cancer therapy in the last decade, the median survival rate remains less than a year. Therefore, a better understanding of the molecular biology of GBM will reveal the mechanisms responsible for the initiation and progression of the tumor, and allow the development of new therapeutic strategies. GBM contains a minority cell population, characterized by tumor initiating cells expressing the stem cell marker, CD133. The CD133+ GBM cells are responsible for tumor initiation, maintenance, progression and resistance to chemo/radiotherapy. The CD133+ cells represent a valuable and specific therapeutic target against GBM. The Polycomb (PcG) group family of transcriptional repressors have been involved in a vast range of cancers. The PcG protein and oncogene BMI1 is the best-characterized PcG protein. The implication of BMI1 in normal and cancer stem cell survival, self-renewal and maintenance has been thoroughly investigated. BMI1 is highly expressed in GBM and more precisely; it is enriched specifically in CD133+ cell populations. The main goal of this thesis was to elucidate the potential role of BMI1 in GBM CD133 + cancer stem cell (CSC) maintenance and radioresistance. The main function of BMI1 is to repress the expression of the genes encoded by the INK4A/ARF locus, which is implicated in the activation of two major tumor suppressor pathways, P53 and RB. However, BMI1 depletion in vitro induces a reduction in proliferation potential, as well as an increase in differentiation, apoptosis, and radiosensitivity regardless of INK4A/ARF status. Indeed, two-thirds of all tumors posses a deletion of this locus, suggesting that BMI1 regulates other targets. P21, a cell cycle regulator, was identified as a new BMI1 target. Moreover, we have observed that the loss of BMI1 inhibits the establishment of a cerebral tumor in a xenograft mouse model. In addition to transcription related activity, we identified a new transcription independent function of BMI1. After the induction of a DNA double-strand-break, BMI1 is rapidly recruited to the damage site and influences the recruitment of DNA damage response proteins. Furthermore, defects in DNA damage recognition and repair are observed after BMI1 knockdown. Consistent with these results, BMI1 overexpression induces DNA damage response and increases radioresistance potential. These results emphasize for the first time the requirement of BMI1 for the maintenance, self-renewal, and radioresistance in GBM CSC, thus providing a potential target for future therapeutic strategies against GBM.
13

Multimodal radiomics in neuro-oncology / Radiomique multimodale en neuro-oncologie

Upadhaya, Taman 02 May 2017 (has links)
Le glioblastome multiforme (GBM) est une tumeur de grade IV représentant 49% de toutes les tumeurs cérébrales. Malgré des modalités de traitement agressives (radiothérapie, chimiothérapie et résection chirurgicale), le pronostic est mauvais avec une survie globale médiane de 12 à 14 mois. Les aractéristiques issues de la neuro imagerie des GBM peuvent fournir de nouvelles opportunités pour la classification, le pronostic et le développement de nouvelles thérapies ciblées pour faire progresser la pratique clinique. Cette thèse se concentre sur le développement de modèles pronostiques exploitant des caractéristiques de radiomique extraites des images multimodales IRM (T1 pré- et post-contraste, T2 et FLAIR). Le contexte méthodologique proposé consiste à i) recaler tous les volumes multimodaux IRM disponibles et en segmenter un volume tumoral unique, ii) extraire des caractéristiques radiomiques et iii) construire et valider les modèles pronostiques par l’utilisation d’algorithmes d’apprentissage automatique exploitant des cohortes cliniques multicentriques de patients. Le coeur des méthodes développées est fondé sur l’extraction de radiomiques (incluant des paramètres d’intensité, de forme et de textures) pour construire des modèles pronostiques à l’aide de deux algorithmes d’apprentissage, les machines à vecteurs de support (support vector machines, SVM) et les forêts aléatoires (random forest, RF), comparées dans leur capacité à sélectionner et combiner les caractéristiques optimales. Les bénéfices et l’impact de plusieurs étapes de pré-traitement des images IRM (re-échantillonnage spatial des voxels, normalisation, segmentation et discrétisation des intensités) pour une extraction de métriques fiables ont été évalués. De plus les caractéristiques radiomiques ont été standardisées en participant à l’initiative internationale de standardisation multicentrique des radiomiques. La précision obtenue sur le jeu de test indépendant avec les deux algorithmes d’apprentissage SVM et RF, en fonction des modalités utilisées et du nombre de caractéristiques combinées atteignait 77 à 83% en exploitant toutes les radiomiques disponibles sans prendre en compte leur fiabilité intrinsèque, et 77 à 87% en n’utilisant que les métriques identifiées comme fiables.Dans cette thèse, un contexte méthodologique a été proposé, développé et validé, qui permet la construction de modèles pronostiques dans le cadre des GBM et de l’imagerie multimodale IRM exploitée par des algorithmes d’apprentissage automatique. Les travaux futurs pourront s’intéresser à l’ajout à ces modèles des informations contextuelles et génétiques. D’un point de vue algorithmique, l’exploitation de nouvelles techniques d’apprentissage profond est aussi prometteuse. / Glioblastoma multiforme (GBM) is a WHO grade IV tumor that represents 49% of ail brain tumours. Despite aggressive treatment modalities (radiotherapy, chemotherapy and surgical resections) the prognosis is poor, as médian overall survival (OS) is 12-14 months. GBM’s neuroimaging (non-invasive) features can provide opportunities for subclassification, prognostication, and the development of targeted therapies that could advance the clinical practice. This thesis focuses on developing a prognostic model based on multimodal MRI-derived (Tl pre- and post-contrast, T2 and FLAIR) radiomics in GBM. The proposed methodological framework consists in i) registering the available 3D multimodal MR images andsegmenting the tumor volume, ii) extracting radiomics iii) building and validating a prognostic model using machine learning algorithms applied to multicentric clinical cohorts of patients. The core component of the framework rely on extracting radiomics (including intensity, shape and textural metrics) and building prognostic models using two different machine learning algorithms (Support Vector Machine (SVM) and Random Forest (RF)) that were compared by selecting, ranking and combining optimal features. The potential benefits and respective impact of several MRI pre-processing steps (spatial resampling of the voxels, intensities quantization and normalization, segmentation) for reliable extraction of radiomics was thoroughly assessed. Moreover, the standardization of the radiomics features among methodological teams was done by contributing to “Multicentre Initiative for Standardisation of Radiomics”. The accuracy obtained on the independent test dataset using SVM and RF reached upto 83%- 77% when combining ail available features and upto 87%-77% when using only reliable features previously identified as robust, depending on number of features and modality. In this thesis, I developed a framework for developing a compréhensive prognostic model for patients with GBM from multimodal MRI-derived “radiomics and machine learning”. The future work will consists in building a unified prognostic model exploiting other contextual data such as genomics. In case of new algorithm development we look forward to develop the Ensemble models and deep learning-based techniques.
14

Modélisation radiobiologique pour la planification des traitements en radiothérapie à partir de données d’imagerie spécifiques aux patients

Trépanier, Pier-Yves 07 1900 (has links)
Un modèle de croissance et de réponse à la radiothérapie pour le glioblastome multiforme (GBM) basé le formalisme du modèle de prolifération-invasion (PI) et du modèle linéaire-quadratique a été développé et implémenté. La géométrie spécifique au patient est considérée en modélisant, d'une part, les voies d'invasion possibles des GBM avec l'imagerie du tenseur de diffusion (DTI) et, d'autre part, les barrières à la propagation à partir des images anatomiques disponibles. La distribution de dose réelle reçue par un patient donné est appliquée telle quelle dans les simulations, en respectant l'horaire de traitement. Les paramètres libres du modèle (taux de prolifération, coefficient de diffusion, paramètres radiobiologiques) sont choisis aléatoirement à partir de distributions de valeurs plausibles. Un total de 400 ensembles de valeurs pour les paramètres libres sont ainsi choisis pour tous les patients, et une simulation de la croissance et de la réponse au traitement est effectuée pour chaque patient et chaque ensemble de paramètres. Un critère de récidive est appliqué sur les résultats de chaque simulation pour identifier un lieu probable de récidive (SPR). La superposition de tous les SPR obtenus pour un patient donné permet de définir la probabilité d'occurrence (OP). Il est démontré qu'il existe des valeurs de OP élevées pour tous les patients, impliquant que les résultats du modèle PI ne sont pas très sensibles aux valeurs des paramètres utilisés. Il est également démontré comment le formalisme développé dans cet ouvrage pourrait permettre de définir un volume cible personnalisé pour les traitements de radiothérapie du GBM. / We have developed and implemented a model of growth and response to radiotherapy for glioblastoma multiforme (GBM) based on the proliferation-invasion (PI) formalism and linear-quadratic model. We take into account patient-specific geometry to model the possible invasion pathways of GBM with diffusion tensor imaging (DTI) and the barriers to dispersal from anatomical images available. The actual dose distribution received by a given patient is applied as such in the simulation, respecting the treatment schedule. The free parameters in the model (proliferation rate, diffusion coefficient, radiobiological parameters) are randomly chosen from a distribution of plausible values. A total of 400 sets of values for the free parameters are thus chosen for all patients, and a simulation of the growth and the response to treatment is performed for each patient and each set of parameters. A failure criterion is applied to the results of each simulation to identify a site of potential recurrence (SPR). The superposition of all SPR obtained for a given patient defines the occurrence probability (OP). We show that high OP values exist for all patients and conclude that the PI model results are not very sensitive to the values of the parameters used. Finally, we show how the formalism developed in this work could help to define a custom target volume for radiation treatment of GBM.

Page generated in 0.0892 seconds