Spelling suggestions: "subject:"autorenouvellement"" "subject:"d’autorenouvellement""
1 |
Étude fonctionnelle des complexes transcriptionnels SCL hématopoïétiquesLambert, Julie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
2 |
Mise au point d'un modèle d'étude des bases moléculaires de l'auto-renouvellement des cellules souches hématopoïétiques induit par HOXB4Laurin, Mélanie January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
Étude fonctionnelle des complexes transcriptionnels SCL hématopoïétiquesLambert, Julie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
4 |
Mécanismes de l'auto-renouvellement non-tumoral des macrophages matures / Identification of Non-tumorigenic Self-renewal Mechanisms of Differentiated macrophagesBeniazza, Meryam 29 September 2014 (has links)
Chez les métazoaires, la différenciation terminale est généralement accompagnée par une sortie définitive du cycle cellulaire. Cependant, les macrophages et très peu d'autres types cellulaires rompent avec ce dogme. En effet, il est maintenant admis que les macrophages conservent la capacité de s'auto-renouveler indépendamment des cellules souches ou progénitrices. À cet égard, nous avons démontré que la double déficience en facteurs Maf dans les macrophages (Maf-DKO) leur confère la capacité de s'auto-renouveler indéfiniment en culture sans se dé-différencier ou devenir tumorigènes. Ce phénotype d'auto-renouvellement semble être médié par un réseau transcriptionnel de de gènes régissant l'auto-renouvellement qui sont également actifs dans les cellules souches embryonnaires, parmi lesquels Myc et Klf4. Ces deux facteurs sont activés et nécessaires pour l'auto-renouvellement des Maf-DKO. De façon intéressante, l'expression de Myc seul induit une prolifération illimitée des macrophages, mais provoque une transformation tumorale. Nous avons donc cherché à décrypter les mécanismes grâce auxquels Myc et Klf4 induisent l'auto-renouvellement des macrophages, en comparaison à la transformation cellulaire causée par l'expression de Myc uniquement. En outre, nous nous sommes concentrés sur l'identification de gènes candidats permettant un auto-renouvellement illimité des macrophages, tout en les protégeant de la transformation cancéreuse. Notre objectif est de contribuer à l'identification du programme transcriptionnel régulant l'auto-renouvellement non tumoral des macrophages. / In metazoan, terminal differentiation is generally accompanied by permanent exit from the cell cycle. Yet, macrophages and very few other examples break with this dogma. Indeed, it has become evident that macrophages retain the ability to self-renew independently of stem or progenitor cells. In this regard, we have previously shown that MafB/c-Maf double deficient (Maf-DKO) macrophages are able to self-renew indefinitely in vitro without dedifferentiating or becoming tumorigenic. This self-renewal phenotype appears to be mediated by a transcriptional network of self-renewal genes also active in embryonic stem cells, among which Myc and Klf4. Interestingly, these two factors are activated and required for Maf-DKO self-renewal. By contrast, Myc alone induces an unlimited proliferation of macrophages but causes malignant transformation. We aimed to decipher the mechanisms by which Myc and Klf4 induce stem cell-like self-renewal in macrophages, in comparison to cellular transformation caused by the expression of Myc alone. Additionally, we focused on identifying candidate genes allowing an unlimited self-renewal of macrophages while protecting them from tumorigenic transformation or aberrant proliferation. Our objective is to contribute to the identification of the transcriptional program regulating non-tumorigenic self-renewal in macrophages.
|
5 |
Self-renewal of macrophages : Fighting Mafs for eternity / Macrophages : Combattant Maf pour l'éternitéGeirsdottir, Laufey 12 October 2015 (has links)
Les macrophages ont une contribution essentielle dans la bonne santé et la maladie. Comment les macrophages sont capables d'auto-renouvellement reste une question sans réponse. Au sein du laboratoire il a était démontré que les macrophages déficients pour MafB et c-Maf (Maf-DKO) ont la capacité de s'autorenouveller indéfiniment in vitro et ceci sans perdre leur identité de macrophages ni devenir cancéreux (Aziz et al. 2009). En utilisant les macrophages Maf-DKO comme outil d'étude de l'auto-renouvellement, nous avons pu identifier un réseau de genes qui permet l'auto-renouvellement des macrophages en absence de MafB. De plus nous montrons que des macrophages génétiquement non modifiés sont capables d'exprimer des genes du réseau d'auto-renouvellement des cellules souches embryoniques. Ce réseau d'auto-renouvellement est inhibé par MafB, qui peut-être sous exprimé in vivo. Les macrophages alvéolaires (MA) expriment constitutivement de faibles niveaux de MafB et c-Maf comme montré par Gautier et al. 2013. Les MA montrent une importante capacité d'auto-renouvellement, ils peuvent être amplifiés ex vivo. La surpression de MafB dans les MA in vitro et in vivo réduit la capacité d'auto-renouvellement de ces derniers. Nous avons finalement identifié GSK3 comme une cible pharmacologique pour l'inhibition de MafB dans les macrophages. Il a était montré que GSK3 tait nécessaire pour l'activation de MafB par phosphorylation directe. Nous avons montré que par inhibition de GSK3, les macrophages étaient capables s'auto-renouveler même s'ils exprimés de façon endogène/exogène MafB et c-Maf. / Macrophages contribute to essential functions in health and disease. Some macrophages are short lived but some macrophages are able to self-renew. However, in which manner macrophages are able to self-renew remains an open question. In our lab, we have demonstrated that macrophages deficient in MafB and c-Maf (Maf-DKO macrophages) can self-renew indefinitely in vitro, without neither loosing their macrophage identity nor becoming cancerous (Aziz et. al 2009).Using Maf-DKOs as a tool to study molecular mechanisms of self-renewal of macrophages, we have now been able to identify a network of genes, which allows macrophage self-renewal in the absence of MafB. We identified 25 genes, which affected only self-renewal. Additionally, we show that genetically unmodified macrophages are able to express self-renewal gene network. This self-renewal network is inhibited by MafB, which can be downregulated in vivo after mitogenic stimuli. Recently, Gautier et al., showed that Alveolar macrophages (AMs) constitutively express very low levels of MafB and c-Maf. We were able to demonstrate that AMs are able to self-renew in vitro and in vivo. Overexpression of MafB in AM in vitro and in vivo reduced the ability of AMs to self-renew. Additionally, we identified GSK3 as a pharmaceutical target for MafB regulation in macrophages. GSK3 has been shown to be required for Maf activation through direct phosphorylation. We showed that by inhibiting GSK3, macrophages were able to self-renew even if they were expressing endogenous or exogenous MafB and c-Maf.
|
6 |
Pw1/Peg3 regulates skeletal muscle growth and satellite cell self-renewal / Pw1/Peg3 règle la croissance du tissu musculaire et l'auto-renouvellement des cellules satellitesCorrera, Rosa Maria 03 October 2016 (has links)
Pw1/Peg3 est un gène d’empreinte parental exprimé par l’allèle paternel. Il est exprimé dans l’ensemble des populations de cellules souches, y compris les cellules satellites du tissu musculaire. Nous avons découvert que la perte constitutive de Pw1/Peg3 entraîne une perte de la masse musculaire, résultat d’une diminution du nombre de fibres musculaires. Le nombre de fibres réduit est présent dès la naissance. De plus, les souris double KO ont un nombre de fibres encore inférieur, suggérant que l’allèle maternel est fonctionnel pendant le développement pré-natal, et des analyses de souris hybrides C57BL6J/CAST/Ei révèlent une expression bi-allélique de Pw1/Peg3 d’environ 10%. Pw1/Peg3 est également fortement exprimé après blessure du muscle squelettique. Chez les souris Pw1/Peg3 KO, nous avons observé que les cellules satellites montrent une réduction de leur capacité d’auto-renouvèlement à la suite d’une blessure. Pw1/Peg3 est également exprimé dans une sous-population de cellules souches interstitielles, les PICS. Afin de déterminer le rôle spécifique de Pw1/Peg3 dans les cellules satellites nous avons croisé notre allèle conditionnel Pw1/Peg3 avec la lignée Pax7-Cre-ER. Ces souris ont un phénotype présentant un défaut de régénération prononcé, montrant ainsi un rôle clair et direct de Pw1/Peg3 dans la fonction régénératrice des cellules satellites. En résumé, l’ensemble de ces données montre un rôle de Pw1/Peg3 dans le développement fœtal et la détermination du nombre de fibres musculaires par son action dans l’auto-renouvellement des cellules satellites du tissu musculaire. / Pw1/Peg3 is a parentally imprinted gene expressed from the paternal allele. It is expressed in all adult progenitor/stem cell populations examined to date including muscle satellite cells. We examined the impact of loss-of-function of Pw1/Peg3 in skeletal muscle, a tissue that greatly contributes to body mass. We found that constitutive loss of Pw1/Peg3 results in reduced muscle mass resulting from a decrease in muscle fiber number. The reduced fiber number is present at birth. Mice lacking both the paternal and maternal alleles display a lower fiber number as compared to mice carrying the paternal deletion, suggesting that the maternal allele is functional during prenatal development. Hybrid analyses (C57BL6J and Cast/Ei) of muscle tissue reveal a bi-allelic expression of Pw1/Peg3 around 10%. Pw1/Peg3 is strongly up-regulated in response to muscle injury. Using the constitutive Pw1/Peg3 knock out mouse, we observed that satellite cells display a reduced self-renewal capacity following muscle injury. Pw1/Peg3 is expressed in satellite cells as well as a subset of muscle interstitial cells (PICs). To determine the specific role of Pw1/Peg3 in satellite cells, we crossed our conditional Pw1/Peg3 allele with the Pax7-CreER line. Interestingly, these mice displayed a more pronounced phenotype of impaired regeneration revealing a clear and direct role for Pw1/Peg3 in satellite cells. Taken together, our data show that Pw1/Peg3 plays a role during fetal development in the determination of muscle fiber number that is gene-dosage dependent and plays a specific role in muscle satellite cell self-renewal.
|
7 |
Rôle de la protéine TRRAP, co-facteur des HATs, dans la régulation de la pluripotence des cellules souches embryonnaires et hématopoiétiques / TRRAP : an essential player in the regulation of stemness in embryonic and hematopoietic stem cellsSawan-Vaissière, Carla 22 September 2010 (has links)
Les cellules souches embryonnaires et adultes sont strictement contrôlées et régulées par différents mécanismes comme l’auto-renouvellement, la différentiation et l’apoptose. Les enzymes impliquées dans la modification des histones et les différents statuts de la chromatine seraient responsables de la mise en place, du maintien et de la propagation des différents profils d’expression des gènes mais le mécanisme sous-jacent reste néanmoins mal compris. Dans nos études, nous avons identifié le rôle de Trrap, un cofacteur des histones acétyltransférases dans le maintien de l’auto-renouvellement des cellules souches embryonnaires et adultes. La perte de la moelle épinière et une mortalité croissante sont survenues suite à la délétion conditionnelle du gène Trrap chez la souris. Ceci est dû à la perte des cellules hématopoïétiques progénitrices ainsi que des cellules hématopoïétiques souches par un mécanisme cellulaire autonome. L’analyse des cellules progénitrices, purifiées, de la moelle épinière à permis de révéler que ces anomalies sont associées à l’induction de l’apoptose indépendante de p53 ainsi qu’à la dérégulation des facteurs de transcription Myc. De plus, la délétion conditionnelle de Trrap dans les cellules souches embryonnaires induit la différentiation due au rôle important que Trrap joue dans la régulation du couplage de la méthylation de l’histone H3 aux lysines K4 et K27 appelées « domaines bivalents », le maintien du statut hyperdynamique de la chromatine et la régulation des gènes spécifiques à l’auto-renouvellement. Ceci est cohérent avec l’essentiel rôle de Trrap impliqué dans le mécanisme qui restreint l’induction de l’apoptose ou de la différentiation, ceci selon le type de cellules souches, et favorise le maintien de l’auto-renouvellement. Ces études ont permis d’identifier les différents rôles essentiels que Trrap joue dans le mécanisme qui permet le maintien des cellules souches embryonnaires et adultes ce qui soulève la possibilité que Trrap et les modifications des histones qui contrôlent l’auto-renouvellement pourraient être importants pour le développement et le maintien des cellules souches cancéreuses. Une meilleure compréhension du mécanisme commun qui implique Trrap et les modifications des histones contrôlant les éléments essentiels des cellules souches normales et cancéreuses s’avèrerait essentiel et très bénéfique pour les stratégies de thérapies épigénétiques qui ont pour but d’éradiquer les cellules souches cancéreuses / Embryonic and adult stem cells are tightly controlled and regulated by self-renewal, differentiation and apoptosis. Histone modifiers and chromatin states are believed to govern establishment, maintenance, and propagation of distinct patterns of gene expression in stem cells, however the underlying mechanism remains poorly understood. In our studies, we identified a role for the histone acetyltransferase cofactor Trrap in the maintenance of embryonic stem cells and hematopoietic stem/progenitor cells. Conditional deletion of the Trrap gene in mice resulted in ablation of bone marrow and increased lethality. This was due to the depletion of early hematopoietic progenitors, including hematopoietic stem cells, via a cell-autonomous mechanism. Analysis of purified bone marrow progenitors revealed that these defects are associated with induction of p53-independent apoptosis and deregulation of Myc transcription factors. Moreover, conditional deletion of Trrap in embryonic stem cells was found to results in unscheduled differentiation. This was due to the essential role of Trrap in coupling of H3K4 and H3K27 methylation ("bivalent-domains"), the maintenance of hyperdynamic chromatin state and regulation of the stemness genes, consistent with the essential function of Trrap in the mechanism that restricts apoptosis or differentiation depending on stem cell type and promotes the maintenance of self-renewal. Together, these studies have identified critical roles for Trrap in the mechanism that maintains embryonic and hematopoietic stem cells and raise the possibility that Trrap and histone modifications controlling self-renewal may be important for the development and maintenance of cancer stem cells. Better understanding of a common molecular mechanism involving HATs and histone modifications that controls key features of normal and cancer stem cells may prove highly beneficial for epigenetics-based therapeutic strategies aiming to eradicate cancer stem cells
|
8 |
Pourquoi la thérapie HAART remanie-t-elle les différents sites du tissu adipeux de manière hétérogène ? : importance de l’origine des dépôts, modélisation et mécanismes moléculaires / Study of the heterogeneous effects of the HAART therapy on the adipose tissue : importance of the depots origins, modelling and molecular mechanismRavaud, Christophe 30 March 2017 (has links)
Le tissu adipeux (TA) est réparti dans tout le corps en différents dépôts. Il existe deux types distincts aux fonctions biens spécifiques : le tissu adipeux blanc sert de réservoir énergétique et stocke les lipides et le tissu adipeux brun permet la thermogénèse. Par ses fonctionnalités et son pouvoir endocrine, le TA assure le maintien de l’homéostasie énergétique. De graves désordres métaboliques résultent d’une surabondance retrouvée au cours de l’obésité ou lors d’un remodelage dans les lipodystrophies. Certaines ont une origine génétique, d’autres sont induites par des médicaments comme les inhibiteurs de la protéase (IP) du VIH administrés dans la thérapie antirétrovirale. Le pool de progéniteur adipeux (PA) présent dans chaque dépôt est essentiel au maintien de ce tissu car il permet de renouveler le stock d’adipocytes. Nous avons caractérisé et identifié de nouveaux gènes impliqués dans la boucle autocrine/paracrine de l’activineA qui est responsable de l’auto-renouvellement du pool de PA dont IER3. Son expression augmente chez les patients obèses et diminue sous traitement par les IP. La modélisation des différents dépôts montre que les IP inhibent préférentiellement l’auto-renouvellement ou la différenciation adipocytaire des PA en fonction de leur localisation. Les lipodystrophies induites par la thérapie antirétrovirale auraient des causes multifactorielles. Enfin, nos résultats révèlent que les IP diminuent drastiquement et sélectivement la production d’adipocytes bruns. Ces effets doivent être considérés dans un contexte de développement inopportun du tissu adipeux brun afin de corriger des désordres métaboliques associés à certaines pathologies. / The adipose tissue (AT) is distributed throughout the body in different depots. There are two distinct types with specific functions: the white adipose tissue is used as an energetic reservoir and stores the lipids whereas the brown adipose tissue allows the thermogenesis. By its functionalities and its endocrinal capacity, the AT ensures the energetic homeostasis maintenance. Severe metabolic disorders result from an excess found during obesity or a remodelling in the lipodystrophies. Some of them have a genetic origin, the others are induced by drugs such as the HIV-protease inhibitors (PI) administered in the antiretroviral therapy against HIV. The adipose progenitor (AP) pool present in each depot is necessary for the maintenance of this tissue because it allows to renew the adipocyte stock. We characterized and identified new genes involved in the autocrine/paracrine Activin A loop which is responsible for AP pool self-renewal of whom is IER3. Its expression increases in obese patients and decreases under PI treatment. The modelling of the different depots shows that PI inhibit preferentially PA self-renewal or adipose differentiation depending on their localisation. Thus, lipodystrophies induced by antiretroviral therapy would have multifactorial causes. Finally, our results reveal PI dramatically and selectively reduce the brown adipocyte production. These effects should be considered in the context of inappropriate brown adipose tissue development in order to correct metabolic disorders associated to some pathologies.
|
9 |
Étude moléculaire de la fonction du gène Bmi1 dans le processus de sénescence du système nerveuxChatoo, Wassim 05 1900 (has links)
Des études présentées dans cette thèse ont permis de démontrer que le gène du groupe Polycomb (PcG) Bmi1 est essentiel à l’auto-renouvellement des progéniteurs rétiniens immatures et pour le développement rétinien après la naissance. Ce travail illustre chez l’embryon que Bmi1 est hautement enrichie dans une sous-population de progéniteurs rétiniens exprimant le marqueur de surface SSEA-1 et différents marqueurs de cellules souches. À tous les stades de développement analysés, l’absence de Bmi1 résulte en une diminution de la prolifération et de l’auto-renouvellement des progéniteurs immatures. Pour mieux comprendre la cascade moléculaire en absence de Bmi1, nous avons inactivé p53 dans les colonies Bmi1-/-. Cette inactivation a permis une restauration partielle du potentiel d’auto-renouvellement. De plus, en absence de Bmi1, la prolifération et la maintenance de la population de progéniteurs rétiniens immatures localisés dans le corps ciliaire sont aussi affectées après la naissance. Bmi1 permet donc de distinguer les progéniteurs immatures de la population principale de progéniteurs, et est requis pour le développement normal de la rétine. Nous avons également démontré que l’oncogène Bmi1 est requis dans les neurones pour empêcher l’apoptose et l’induction d’un programme de vieillissement prématuré, causé par une baisse des défenses anti-oxydantes. Nous avons observé dans les neurones Bmi1-/- une augmentation des niveaux de p53, de la concentration des ROS et de la sensibilité aux agents neurotoxiques. Nous avons démontré ainsi que Bmi1 contrôle les défenses anti-oxydantes dans les neurones en réprimant l’activité pro-oxydante de p53. Dans les neurones Bmi1-/-, p53 provoque la répression des gènes anti-oxydants, induisant une augmentation des niveaux de ROS. Ces résultats démontrent pour la première fois que Bmi1 joue un rôle critique dans la survie et le processus de vieillissement neuronal. / The studies presented in this thesis establish that the Polycomb Group (PcG) gene Bmi1 is required for the self-renewal of immature retinal progenitor cells (RPCs) and for postnatal retinal development. Work performed in mouse embryos reveals that Bmi1 is highly enriched in a RPC subpopulation expressing the cell surface antigen SSEA-1 and different stem cell markers. Furthermore, at all developmental stages analysed, Bmi1 deficiency resulted in reduced proliferation and self-renewal of immature RPCs. To better understand the molecular cascade leading to this phenotype, we inactivated p53 in Bmi1-deficient colonies. p53 inactivation partially restored RPCs self-renewal potential. Moreover, the proliferation and the postnatal maintenance of an immature RPC population located in the ciliary body was also impaired in absence of Bmi1. Thus, Bmi1 distinguishes immature RPCs from the main RPC population and is required for normal retinal development. We have also shown that the oncogene Bmi1 is required in neurons to prevent apoptosis and the induction of a premature aging-like program characterized by reduced antioxidant defenses. We observed in Bmi1-deficient neurons an increased p53 and ROS levels, and a hypersensitivity to neurotoxic agents. We demonstrated that Bmi1 regulate antioxidant defenses in neurons by suppressing p53 pro-oxidant activity. In Bmi1-/- neurons, p53 induces antioxidant genes repression, resulting in increased ROS levels. These findings reveal for the first time the major role of Bmi1 on neuronal survival and aging.
|
10 |
Rôle du gène Polycomb BMI1 dans le maintien et la radiorésistance des cellules souches cancéreusesFacchino, Sabrina 09 1900 (has links)
Le glioblastome multiforme (GBM) est la tumeur cérébrale la plus commune et
létale chez l’adulte. Malgré les avancés fulgurantes dans la dernière décennie au niveau des
thérapies contre le cancer, le pronostique reste inchangé. Le manque de spécificité des
traitements est la cause première de la récurrence de cette tumeur. Une meilleure
compréhension au niveau des mécanismes moléculaires et biologiques de cette tumeur est
impérative. La découverte des cellules souches cancéreuses (CD133+) au niveau du GBM
offre une nouvelle opportunité thérapeutique contre cette tumeur. Effectivement, les
cellules CD133+ seraient responsables de l’établissement, le maintien et la progression du
GBM. De plus, elles sont également la cause de la résistance du GBM faces aux traitements
de radiothérapies. Ces cellules représentent une cible de choix dans le but d’éradiquer le
GBM. L’oncogène BMI1 a été associé à plusieurs types de tumeurs et est également
essentielle au maintien de différentes populations de cellules souches normales et
cancéreuses. Une forte expression de BMI1 est observée au niveau du GBM et plus
précisément, un enrichissement préférentiel de cette protéine est noté au niveau des cellules
CD133+. L’objectif principal de cette thèse est d’évaluer le rôle potentiel de BMI1 dans le
maintien et la radiorésistance des cellules souches cancéreuses (CSC), CD133+ du GBM.
La fonction principale de BMI1 est la régulation négative du locus INK4A/ARF. Ce locus
est impliqué dans l’activation de deux voies majeurs anti-tumorales : P53 et RB. Or, la
perte de BMI1 induit in vitro une diminution des capacités prolifératives, une augmentation
de la différentiation et de l’apoptose, ainsi qu’une augmentation de la radiosensibilité des
CSC du GBM indépendamment de la présence du locus INK4A/ARF. Effectivement, deux
tumeurs sur trois possèdent une délétion de ce locus, ce qui suggère que BMI1 possède
d’autre(s) cible(s) transcriptionnelle(s). Parmi ces nouvelles cibles ont retrouve la protéine
P21, un régulateur négatif du cycle cellulaire. De plus, la perte de BMI1 inhibe
l’établissement d’une tumeur cérébrale lors d’études de xénogreffe chez la souris
NOD/SCID. Également, une nouvelle fonction de BMI1 indépendante de son activité
transcriptionnel a été démontrée. Effectivement, suite à l’induction d’un bris double brin
(BDB) de l’ADN, BMI1 est rapidement recruté au niveau de la lésion et influence le
recrutement des protéines de reconnaissance du dommage à l’ADN. La perte de BMI1
mène à un défaut au niveau de la reconnaissance et la réparation de l’ADN, alors que sa
surexpression induit plutôt une augmentation de ces mécanismes et procure une
radiorésistance. Ces résultats décrivent pour la première fois l’importance de BMI1 au
niveau du maintien, de l’auto-renouvellement et la radiorésistance des CSC du GBM.
Ainsi, ces travaux démontrent que la protéine BMI1 représente une cible thérapeutique de
choix dans le but d’éradiquer le GBM, une tumeur cérébrale létale. / Glioblastoma multiform (GBM) is the most common and lethal primary brain tumor
found in adults. Despite the advances made in the field of cancer therapy in the last decade,
the median survival rate remains less than a year. Therefore, a better understanding of the
molecular biology of GBM will reveal the mechanisms responsible for the initiation and
progression of the tumor, and allow the development of new therapeutic strategies. GBM
contains a minority cell population, characterized by tumor initiating cells expressing the
stem cell marker, CD133. The CD133+ GBM cells are responsible for tumor initiation,
maintenance, progression and resistance to chemo/radiotherapy. The CD133+ cells
represent a valuable and specific therapeutic target against GBM. The Polycomb (PcG)
group family of transcriptional repressors have been involved in a vast range of cancers.
The PcG protein and oncogene BMI1 is the best-characterized PcG protein. The
implication of BMI1 in normal and cancer stem cell survival, self-renewal and maintenance
has been thoroughly investigated. BMI1 is highly expressed in GBM and more precisely; it
is enriched specifically in CD133+ cell populations. The main goal of this thesis was to
elucidate the potential role of BMI1 in GBM CD133 + cancer stem cell (CSC) maintenance
and radioresistance. The main function of BMI1 is to repress the expression of the genes
encoded by the INK4A/ARF locus, which is implicated in the activation of two major
tumor suppressor pathways, P53 and RB. However, BMI1 depletion in vitro induces a
reduction in proliferation potential, as well as an increase in differentiation, apoptosis, and
radiosensitivity regardless of INK4A/ARF status. Indeed, two-thirds of all tumors posses a
deletion of this locus, suggesting that BMI1 regulates other targets. P21, a cell cycle
regulator, was identified as a new BMI1 target. Moreover, we have observed that the loss of
BMI1 inhibits the establishment of a cerebral tumor in a xenograft mouse model. In
addition to transcription related activity, we identified a new transcription independent
function of BMI1. After the induction of a DNA double-strand-break, BMI1 is rapidly
recruited to the damage site and influences the recruitment of DNA damage response
proteins. Furthermore, defects in DNA damage recognition and repair are observed after
BMI1 knockdown. Consistent with these results, BMI1 overexpression induces DNA
damage response and increases radioresistance potential. These results emphasize for the
first time the requirement of BMI1 for the maintenance, self-renewal, and radioresistance in
GBM CSC, thus providing a potential target for future therapeutic strategies against GBM.
|
Page generated in 0.0717 seconds