Spelling suggestions: "subject:"blobal injective"" "subject:"blobal intersubjectivity""
1 |
Sistemas dinâmicos com um único ponto de equilíbrio e injetividade / Dynamical systems with a single equilibrium point and injectivitySantos, Jean Venato 15 February 2011 (has links)
A primeira parte deste trabalho é dedicada ao estudo de sistemas dinâmicos contínuos e discretos bidimensionais com um único ponto de equillíbrio que é do tipo sela hiperbólica. No caso contínuo, obtemos condições sufiientes para que um campo vetorial planar seja topologicamente equivalente à sela linear L(x; y) = (-x; y). No caso em que o campo vetorial é um difeomorfismo local, a injetividade do campo jogará um papel fundamental na obtenção de tal equivalência topológica. Além disto, apresentamos uma descrição das folheações do plano associadas a campos de vetores com uma única singularidade do tipo sela hiperbólica. No âmbito dos sistemas discretos, apresentamos condições para que um difeomorfismo, possuindo uma sela hiperbólica como único ponto fixo, satisfaça as propriedades básicas de um sistema linear com um ponto fixo que é do tipo sela hiperbólica: as quatro separatrizes do ponto fixo se acumulam só no infinito e os iterados dos pontos que não estão nas variedades invariantes deste ponto fixo se acumulam no infinito tanto no passado quanto no futuro. A segunda parte deste texto, se dedica a problemas de injetividade de difeomorfismos locais em \'R POT. n\'. Mais especificamente, obtemos versões fracas da Conjetura Jacobiana Real de Jelonek e de uma Conjetura apresentada por Nollet e Xavier. Ambos problemas estão intimamente ligados à famosa Conjetura Jacobiana, que foi considerada por Smale em 1998 como um dos dezoito problemas matemáticos mais relevantes ainda em aberto / The first part of this work is dedicated to the study of continuous and discrete twodimensional dynamical systems with a unique equilibrium point which is a hyperbolic saddle. In the continuous case, we obtain sufficient conditions for a planar vector field be topologically equivalent to the linear saddle L(x; y) = (-x; y). In the case where the vector field is a local diffeomorphism, the injectivity of the field will play a key role in obtaining such a topological equivalence. Furthermore, we provide a description of foliations of the plane vector fields associated with a unique singularity of hyperbolic saddle type. In the context of discrete systems, we present conditions for a diffeomorphism, possessing a hyperbolic saddle as the single fixed point, to satisfy the basic properties of a linear system with a fixed point of saddle type which is hyperbolic: the four separatrices of the fixed point accumulate only at infinity and iterated the points that are not in invariant manifolds of this fixed point accumulate in infinity in both the past and future. The second part of this text is devoted to problems of injectivity of local diffeomorphisms on \'R POT. n\'. More specifically, we obtain weaker versions of the Jelonek\'s Real Jacobian Conjecture and a Conjecture given by Nollet and Xavier. Both problems are closely linked to the famous Jacobian Conjecture, which was considered by Smale in 1998 as one of eighteen mathematical problems even more important in open
|
2 |
Sistemas dinâmicos com um único ponto de equilíbrio e injetividade / Dynamical systems with a single equilibrium point and injectivityJean Venato Santos 15 February 2011 (has links)
A primeira parte deste trabalho é dedicada ao estudo de sistemas dinâmicos contínuos e discretos bidimensionais com um único ponto de equillíbrio que é do tipo sela hiperbólica. No caso contínuo, obtemos condições sufiientes para que um campo vetorial planar seja topologicamente equivalente à sela linear L(x; y) = (-x; y). No caso em que o campo vetorial é um difeomorfismo local, a injetividade do campo jogará um papel fundamental na obtenção de tal equivalência topológica. Além disto, apresentamos uma descrição das folheações do plano associadas a campos de vetores com uma única singularidade do tipo sela hiperbólica. No âmbito dos sistemas discretos, apresentamos condições para que um difeomorfismo, possuindo uma sela hiperbólica como único ponto fixo, satisfaça as propriedades básicas de um sistema linear com um ponto fixo que é do tipo sela hiperbólica: as quatro separatrizes do ponto fixo se acumulam só no infinito e os iterados dos pontos que não estão nas variedades invariantes deste ponto fixo se acumulam no infinito tanto no passado quanto no futuro. A segunda parte deste texto, se dedica a problemas de injetividade de difeomorfismos locais em \'R POT. n\'. Mais especificamente, obtemos versões fracas da Conjetura Jacobiana Real de Jelonek e de uma Conjetura apresentada por Nollet e Xavier. Ambos problemas estão intimamente ligados à famosa Conjetura Jacobiana, que foi considerada por Smale em 1998 como um dos dezoito problemas matemáticos mais relevantes ainda em aberto / The first part of this work is dedicated to the study of continuous and discrete twodimensional dynamical systems with a unique equilibrium point which is a hyperbolic saddle. In the continuous case, we obtain sufficient conditions for a planar vector field be topologically equivalent to the linear saddle L(x; y) = (-x; y). In the case where the vector field is a local diffeomorphism, the injectivity of the field will play a key role in obtaining such a topological equivalence. Furthermore, we provide a description of foliations of the plane vector fields associated with a unique singularity of hyperbolic saddle type. In the context of discrete systems, we present conditions for a diffeomorphism, possessing a hyperbolic saddle as the single fixed point, to satisfy the basic properties of a linear system with a fixed point of saddle type which is hyperbolic: the four separatrices of the fixed point accumulate only at infinity and iterated the points that are not in invariant manifolds of this fixed point accumulate in infinity in both the past and future. The second part of this text is devoted to problems of injectivity of local diffeomorphisms on \'R POT. n\'. More specifically, we obtain weaker versions of the Jelonek\'s Real Jacobian Conjecture and a Conjecture given by Nollet and Xavier. Both problems are closely linked to the famous Jacobian Conjecture, which was considered by Smale in 1998 as one of eighteen mathematical problems even more important in open
|
3 |
Injetividade global para aplicações entre espaços euclideanos / Global injectivity for applications between euclidean spacesRibeiro, Yuri Cândido da Silva 19 November 2007 (has links)
Neste texto é feita uma discussão sobre alguns resultados que fornecem condições suficientes para que um difeomorfismo local, do espaço euclideano n-dimensional nele próprio, seja injetivo. Dentro deste cenário, são exploradas as contribuições destes resultados na tentativa de solucionar conhecidas conjecturas no meio científico como a Conjectura Jacobiana e a Conjectura de Ponto Fixo. Do ponto de vista dinâmico, existem relações entre injetividade global e estabilidade assintótica global. Neste sentido, os resultados também são contextualizados com respeito a importantes conjecturas de estabilidade assintótica: Conjectura de Markus-Yamabe e o Problema de LaSalle / We present some results which give suficient conditions for a local diffeomorphism from the n-dimensional Euclidean space into itself be globally injective. Within this context, we consider some partial results addressed to solve the well known Fixed Point Conjecture and Jacobian Conjecture. From the dynamical point of view, there are connections between global injectivity and global asymptotic stability. In this way, we present a solution of the Markus-Yamabe Conjecture and of the LaSalle Problem
|
4 |
Sobre la inyectividad en espacios euclidianos / Sobre la inyectividad en espacios euclidianosRabanal, Roland 25 September 2017 (has links)
We describe some classical results on global injectivity of local dieomorphism on Euclidian spaces. This is not exhaustive, and it does not purport to be a complete history, it simply describes some useful results in injectivity. The first part describes some results related to the Qualitative Theory of Diferential Equations, and presents a characterization of global injectivity on planar applications by using the existence of an isochronous global center. The Global Asymptotic Stability Problem is also described. The second part describes the so called Palais-Smale condition. / Se dan algunos teoremas que garantizan la inyectividad global de los difeomorsmos locales en espacios euclidanos. De momento el trabajo no es aun exaustivo, ni pretende serlo, simplemente se describe algunos resultados utiles en la teoría del estudio de las aplicaciones inyectivas. La primera parte describe algunos resultados relacionados con la teoría cualitativa de las ecuaciones diferenciales, y presenta una caracterización de la inyectividad global de aplicaciones en el plano por medio de la existencia de un centro global isócrono. También se presenta el problema de la estabilidada sintóotica global. La segunda parte describe la "condicion de Palais Smale".
|
5 |
Injetividade global para aplicações entre espaços euclideanos / Global injectivity for applications between euclidean spacesYuri Cândido da Silva Ribeiro 19 November 2007 (has links)
Neste texto é feita uma discussão sobre alguns resultados que fornecem condições suficientes para que um difeomorfismo local, do espaço euclideano n-dimensional nele próprio, seja injetivo. Dentro deste cenário, são exploradas as contribuições destes resultados na tentativa de solucionar conhecidas conjecturas no meio científico como a Conjectura Jacobiana e a Conjectura de Ponto Fixo. Do ponto de vista dinâmico, existem relações entre injetividade global e estabilidade assintótica global. Neste sentido, os resultados também são contextualizados com respeito a importantes conjecturas de estabilidade assintótica: Conjectura de Markus-Yamabe e o Problema de LaSalle / We present some results which give suficient conditions for a local diffeomorphism from the n-dimensional Euclidean space into itself be globally injective. Within this context, we consider some partial results addressed to solve the well known Fixed Point Conjecture and Jacobian Conjecture. From the dynamical point of view, there are connections between global injectivity and global asymptotic stability. In this way, we present a solution of the Markus-Yamabe Conjecture and of the LaSalle Problem
|
6 |
The small-deformation limit in elasticity and elastoplasticity in the presence of cracksGussmann, Pascal 25 June 2018 (has links)
Der Grenzwert kleiner Deformationen in Anwesenheit eines gegebenen Risses wird in drei verschiedenen kontinuumsmechanischen Modellen betrachtet. Erstens wird für rein statische Elastizität mit finiter Spannung im Grenzwert kleiner Belastung bewiesen, dass die Nebenbedingung globaler Injektivität im Sinne der Gamma-Konvergenz eine lokale Nichtdurchdringungsbedingung auf dem Riss ergibt. Zweitens wird Deformationsplastizität mit finiten Spannungen und multiplikativer Zerlegung des Spannungstensors behandelt und die Gamma-Konvergenz zu linearisierter Deformationsplastizität mit Rissbedingungen gezeigt. Drittens wird die ratenunabhängige Evolution der Elastoplastizität betrachtet mit einer allgemeineren Klasse globaler Injektivitätsbedingungen für den finiten Fall. Hierbei wird einerseits die evolutionäre Gamma-Konvergenz unter Vernachlässigung der Nebenbedinung gezeigt, andererseits eine Vermutung aufgestellt, unter deren Voraussetzung die evolutionäre Gamma-Konvergenz auch mit Rissbedingungen gilt. / The small-deformation limit in presence of a given crack is considered in three distinct continuummechanical models. First, a purely static finite-strain elasticity model is considered in the limit of small loading, where the constraint of global injectivity is shown to converge in the sense of Gamma-convergence to a local constraint of non-interpenetration along the crack. Second, finitestrain deformation plasticity based on the multiplicative decomposition of the strain tensor is shown to Gamma-converge to linearized deformation elastoplasticity with crack conditions. Third, the rate-independent evolution of elastoplasticity is considered with a generalized class of global injectivity constraints for the finite-strain model. On the one hand, neglecting the constraints the evolutionary Gamma-converge to linearized elastoplasticity is proven. On the other hand, a conjecture is made, subject to which the evolutionary Gamma-convergence with constraints still holds.
|
7 |
Non-degeneracy of polynomial maps with respect to global Newton polyhedra / Não-degeneração de aplicações polinomiais com respeito à poliedros de Newton globaisHuarcaya, Jorge Alberto Coripaco 02 July 2015 (has links)
Let F : Kn → Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can be considered as a counterpart, in the context of polynomial maps Kn → Kp, of the notion of integral closure of ideals in the ring of analytic function germs (~⌈+. In this work, we are mainly interested in the determination of the convex region S0(F) formed by the exponents of the special monomials with respect to F. Let us fix a convenient Newton polyhedron ⌈ + ~⊆ Rn. We obtain an approximation to S0</sub (F) when F is strongly adapted to ~⊆ +, which is a condition expressed in terms of the faces of ~⌈+ and the principal parts at infinity of F. The local version of this problem has been studied by Bivià-Ausina [4] and Saia [71]. Our result about the estimation of S0(F) allows us to give a lower estimate for the Lojasiewicz exponent at infinity of a given polynomial map with compact zero set. As a consequence of our study of ojasiewicz exponents at infinity we have also obtained a result about the uniformity of the ojasiewicz exponent in deformations of polynomial maps Kn → Kp. Consequently we derive a result about the invariance of the global index of real polynomial maps Rn → Rn. As particular cases of the condition of F being adapted to ~⌈+ there appears the class of Newton non-degenerate polynomial maps at infinity and pre-weighted homogeneous maps. The first class of maps constitute a natural extension for maps of the Newton non-degeneracy condition introduced by Kouchnirenko for polynomial functions. We characterize the Newton non-degeneracy at infinity condition of a given polynomial map F : Kn → Kp in terms of the set S0((F, 1)), where (F, 1) : Kn → Kp+1 is the polynomial map whose last component function equals 1. Motivated by analogous problems in local algebra we also derive some results concerning the multiplicity of F. / Seja F :Kn → Kp uma aplicação polinomial, onde K = C ou K = R. Motivados pela caracterização do fecho integral de ideais no anel On por meio de desigualdades analíticas provadas por Lejeune-Teissier [46], definimos o conjunto Sp(F) de polinomios especiais com respeito a F. O conjunto Sp(F) pode ser considerado como um homólogo, no contexto das aplicações polinomiais Kn → Kp, da noção de fecho integral de ideais no anel de germes de funções analíticas (Kn 0) → K. Neste trabalho, estamos interessados principalmente na determinação da região convexa S0 (F) formado pelos expoentes dos monômios especiais com respeito a F. Fixado um poliedro de Newton conveniente ~⌈ + ~⊆ Rn, é obtida uma aproximação de S0(F), quando F é fortemente adaptada a ⌈ + o qual é uma condição expressada em termos das faces de ~⌈ + e as partes principais no infinito de F. A versão local deste problema foi estudado por Bivià-Ausina [4] e Saia [71]. Nosso resultado sobre a estimativa de S0(F) nos permite dar uma estimativa inferior para o expoente Lojasiewicz no infinito de uma aplicação polinomial Kn → Kp, com conjunto F-1(0) compacto. Como uma consequência do estudo dos expoentes de Lojasiewicz no infinito também foi obtido um resultado sobre a uniformidade do expoente Lojasiewicz em deformações de aplicações polinomiais Kn → Kp e consequentemente, um resultado sobre a invariância do índice global de aplicações polinomiais reais Rn → Rn. Como casos particulares da condição de F ser adaptada a ~⌈ + aparecem a classe de aplicações polinomiais Newton não degeneradas e as aplicações polinomiais pre-quase homogêneas. A primeira classe de aplicações constitui uma extensão natural da condição Newton não-degeneração introduzida por Kouchnirenko para funções polinomiais. Caracterizamos a condição Newton não-degeneração para uma determinada aplicação polinomial F : Kn → Kp em termos do conjunto S0((F, 1)), onde (F, 1) : Kn → Kp+1 é a aplicação polinomial cuja última função componente é igual a 1. Motivados por problemas análogos em álgebra local, também obtivemos alguns resultados sobre a multiplicidade de F.
|
8 |
Non-degeneracy of polynomial maps with respect to global Newton polyhedra / Não-degeneração de aplicações polinomiais com respeito à poliedros de Newton globaisJorge Alberto Coripaco Huarcaya 02 July 2015 (has links)
Let F : Kn → Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can be considered as a counterpart, in the context of polynomial maps Kn → Kp, of the notion of integral closure of ideals in the ring of analytic function germs (~⌈+. In this work, we are mainly interested in the determination of the convex region S0(F) formed by the exponents of the special monomials with respect to F. Let us fix a convenient Newton polyhedron ⌈ + ~⊆ Rn. We obtain an approximation to S0</sub (F) when F is strongly adapted to ~⊆ +, which is a condition expressed in terms of the faces of ~⌈+ and the principal parts at infinity of F. The local version of this problem has been studied by Bivià-Ausina [4] and Saia [71]. Our result about the estimation of S0(F) allows us to give a lower estimate for the Lojasiewicz exponent at infinity of a given polynomial map with compact zero set. As a consequence of our study of ojasiewicz exponents at infinity we have also obtained a result about the uniformity of the ojasiewicz exponent in deformations of polynomial maps Kn → Kp. Consequently we derive a result about the invariance of the global index of real polynomial maps Rn → Rn. As particular cases of the condition of F being adapted to ~⌈+ there appears the class of Newton non-degenerate polynomial maps at infinity and pre-weighted homogeneous maps. The first class of maps constitute a natural extension for maps of the Newton non-degeneracy condition introduced by Kouchnirenko for polynomial functions. We characterize the Newton non-degeneracy at infinity condition of a given polynomial map F : Kn → Kp in terms of the set S0((F, 1)), where (F, 1) : Kn → Kp+1 is the polynomial map whose last component function equals 1. Motivated by analogous problems in local algebra we also derive some results concerning the multiplicity of F. / Seja F :Kn → Kp uma aplicação polinomial, onde K = C ou K = R. Motivados pela caracterização do fecho integral de ideais no anel On por meio de desigualdades analíticas provadas por Lejeune-Teissier [46], definimos o conjunto Sp(F) de polinomios especiais com respeito a F. O conjunto Sp(F) pode ser considerado como um homólogo, no contexto das aplicações polinomiais Kn → Kp, da noção de fecho integral de ideais no anel de germes de funções analíticas (Kn 0) → K. Neste trabalho, estamos interessados principalmente na determinação da região convexa S0 (F) formado pelos expoentes dos monômios especiais com respeito a F. Fixado um poliedro de Newton conveniente ~⌈ + ~⊆ Rn, é obtida uma aproximação de S0(F), quando F é fortemente adaptada a ⌈ + o qual é uma condição expressada em termos das faces de ~⌈ + e as partes principais no infinito de F. A versão local deste problema foi estudado por Bivià-Ausina [4] e Saia [71]. Nosso resultado sobre a estimativa de S0(F) nos permite dar uma estimativa inferior para o expoente Lojasiewicz no infinito de uma aplicação polinomial Kn → Kp, com conjunto F-1(0) compacto. Como uma consequência do estudo dos expoentes de Lojasiewicz no infinito também foi obtido um resultado sobre a uniformidade do expoente Lojasiewicz em deformações de aplicações polinomiais Kn → Kp e consequentemente, um resultado sobre a invariância do índice global de aplicações polinomiais reais Rn → Rn. Como casos particulares da condição de F ser adaptada a ~⌈ + aparecem a classe de aplicações polinomiais Newton não degeneradas e as aplicações polinomiais pre-quase homogêneas. A primeira classe de aplicações constitui uma extensão natural da condição Newton não-degeneração introduzida por Kouchnirenko para funções polinomiais. Caracterizamos a condição Newton não-degeneração para uma determinada aplicação polinomial F : Kn → Kp em termos do conjunto S0((F, 1)), onde (F, 1) : Kn → Kp+1 é a aplicação polinomial cuja última função componente é igual a 1. Motivados por problemas análogos em álgebra local, também obtivemos alguns resultados sobre a multiplicidade de F.
|
Page generated in 0.0479 seconds