Spelling suggestions: "subject:"gluconacetobacter"" "subject:"gluconacetobacterium""
1 |
Characterization of a novel cellulose biosynthesis inhibitor, CBI28, in Gluconacetobacter xylinusHarripaul, Ricardo Simeon 01 May 2010 (has links)
To study the underlying mechanisms for microbial cellulose biosythesis, a novel compound, CBI28, was used as an inhibitor along with classical genetics and EMS mutagenesis. An EZ-Link Biotin Hydrazide Kit was used to create a CBI28-Biotin conjugate for further studies. Gluconacetobacter xylinus cells were exposed to 10 uM CBI28 to induce cellulose biosythesis inhibition, lysed and small hydrophobic molecules were extracted using methanol and Waters Oasis HLB SPE-Paks. Samples were separated and detected using the Ultra Performance Liquid Chromatograph-Mass Spectrometer/Photo Diode Array. Putative mutants were isolated but did not survive for further study. An ion with the expected mass of a CBI28-Biotin conjugate (552 m/z) was detected but not in sufficiently high concentrations for characterization. Metabolite studies revealed putative metabolites derived from the HLB SPE and methanol extractions with no significant difference in extraction methods. Potential metabolites with masses of ~281.77 m/z and ~79 m/z were detected in CBI28 exposed cells. Further analysis needs to be performed to determine if CBI28 metabolites prevent cellulose production. / UOIT
|
2 |
Evaluación del rendimiento de producción de celulosa bacteriana usando microalgas como fuente sustentable de oxígeSandoval Vargas, Diego Esteban 05 1900 (has links)
La celulosa es un polisacárido que se encuentra presente en la naturaleza, el cual
es de importancia mundial, debido a sus propiedades únicas que lo hacen fundamental en
aplicaciones industriales tan diversas, como lo son en la producción del papel, en la
industria biomédica, en el vestuario, cosméticos, entre otros. No sólo los organismos
vegetales son capaces de producir celulosa, sino que también microorganismos como las
bacterias Acetobacter, entre ellas la bacteria Gluconacetobacter xylinus (G. xylinus), la
cual es el organismo más estudiado por el rendimiento de biopelícula producida, como
también por la fuente de celulosa limpia obtenida sin necesidad de purificación. Sin
embargo, este rendimiento varía según las condiciones en las que crece la bacteria, como
lo son la fuente de glucosa utilizada y la oxigenación que necesita al ser un
microorganismo aeróbico estricto. Se ha utilizado esta bacteria a nivel industrial de
producción, no obstante, el alto costo de mantenimiento por las necesidades antes
mencionadas, no ha logrado concretar el potencial que esta fuente entrega. Es por esto,
que en el presente estudio se buscó una fuente natural de oxigenación, como lo es la
microalga Chlorella vulgaris (C.vulgaris), la cual es de fácil manejo y económicamente
rentable de mantener en laboratorio por sus amplios usos, como también su capacidad de
producir oxigeno bajo luminosidad constante como fotoperiodo.
Así es como en este trabajo de investigación se caracterizó el crecimiento de G.
xylinus y C. vulgaris. Luego, se realizaron co-cultivos (CC) y cultivos separados (CS)
entre ambos microorganismos. El objetivo de esta investigación fue estudiar la capacidad
de optimizar la producción de celulosa bacteriana, entregando oxigenación controlada
xv
desde las microalgas fotosintéticamente activas (bajo fotoperiodo y luz constante) hacia
el cultivo bacteriano.
Nuestros resultados indican que, mediante la metodología de CS y bajo
luminosidad constante al sexto día de cultivo estático, se produjo un rendimiento de
celulosa bacteriana, dos veces mayor al producido por los controles, siendo el oxígeno
producido por las microalgas esencial para esta producción.
Estos resultados sugieren que sería más eficiente producir CS por sólo seis días
que dejar cultivos por doce días estáticos, siendo factible producir más de dos cultivos
para producir un mayor rendimiento que uno por más días. / Cellulose is a polysaccharide that is present in nature, which is of global
importance, due to its unique properties that make it essential in industrial applications as
diverse as in paper production in the biomedical industry, clothes, cosmetics, among
others. Not only are plants capable of producing cellulose, but also microorganisms such
as the bacteria Acetobacter, including the bacteria Gluconacetobacter xylinus (G. xylinus),
which is the organism most studied for the biofilm yield produced, as well as by the source
of clean cellulose obtained without purification. However, this yield varies depending on
the conditions in which the bacteria grow, such as the source of glucose used and the
oxygenation it needs as a strict aerobic microorganism. This bacteria has been used at the
industrial production level, however, the high cost of maintenance because of the
aforementioned needs, has failed to realize the potential that this source delivers.For this
reason, in the present study, a natural source of oxygenation was sought, as is the
microalga Chlorella vulgaris (C.vulgaris), which is easy to use and economically
profitable to maintain in the laboratory for its wide uses, as well as its ability to produce
oxygen under constant light as photoperiod.
Therefore,the growth of G. xylinus and C. vulgaris was characterized in this research
work, by performing co-cultures (CC) and separate cultures (CS) between both
microorganisms. The objective of this research was to study the ability to optimize the
production of bacterial cellulose, by delivering controlled oxygenation from
photosynthetically active microalgae (under photoperiod and constant light) to the
bacterial culture.
xvii
Our results indicate that, through the CS methodology and under constant luminosity at
the sixth day of static cultivation, a yield of bacterial cellulose, was produced twice as
high as that produced by the controls, the oxygen produced by the microalgae being
essential for this production.
These results suggest that it would be more efficient to produce CS for only six days than
to leave cultures for twelve static days, being feasible to produce more than two cultures
to produce a higher yield than one for more days. / Programa de Estímulo a la Excelencia
Institucional (PEEI) de la Universidad de Chile
|
3 |
Evaluación del rendimiento de producción de celulosa bacteriana usando microalgas como fuente sustentable de oxígenoSandoval Vargas, Diego Esteban 05 1900 (has links)
Seminario de Título entregado a la Universidad de Chile en cumplimiento parcial de los requisitos para optar al Título de Ingeniero en Biotecnología Molecular / La celulosa es un polisacárido que se encuentra presente en la naturaleza, el cual
es de importancia mundial, debido a sus propiedades únicas que lo hacen fundamental en
aplicaciones industriales tan diversas, como lo son en la producción del papel, en la
industria biomédica, en el vestuario, cosméticos, entre otros. No sólo los organismos
vegetales son capaces de producir celulosa, sino que también microorganismos como las
bacterias Acetobacter, entre ellas la bacteria Gluconacetobacter xylinus (G. xylinus), la
cual es el organismo más estudiado por el rendimiento de biopelícula producida, como
también por la fuente de celulosa limpia obtenida sin necesidad de purificación. Sin
embargo, este rendimiento varía según las condiciones en las que crece la bacteria, como
lo son la fuente de glucosa utilizada y la oxigenación que necesita al ser un
microorganismo aeróbico estricto. Se ha utilizado esta bacteria a nivel industrial de
producción, no obstante, el alto costo de mantenimiento por las necesidades antes
mencionadas, no ha logrado concretar el potencial que esta fuente entrega. Es por esto,
que en el presente estudio se buscó una fuente natural de oxigenación, como lo es la
microalga Chlorella vulgaris (C.vulgaris), la cual es de fácil manejo y económicamente
rentable de mantener en laboratorio por sus amplios usos, como también su capacidad de
producir oxigeno bajo luminosidad constante como fotoperiodo.
Así es como en este trabajo de investigación se caracterizó el crecimiento de G.
xylinus y C. vulgaris. Luego, se realizaron co-cultivos (CC) y cultivos separados (CS)
entre ambos microorganismos. El objetivo de esta investigación fue estudiar la capacidad
de optimizar la producción de celulosa bacteriana, entregando oxigenación controlada
xv
desde las microalgas fotosintéticamente activas (bajo fotoperiodo y luz constante) hacia
el cultivo bacteriano.
Nuestros resultados indican que, mediante la metodología de CS y bajo
luminosidad constante al sexto día de cultivo estático, se produjo un rendimiento de
celulosa bacteriana, dos veces mayor al producido por los controles, siendo el oxígeno
producido por las microalgas esencial para esta producción.
Estos resultados sugieren que sería más eficiente producir CS por sólo seis días
que dejar cultivos por doce días estáticos, siendo factible producir más de dos cultivos
para producir un mayor rendimiento que uno por más días. / Cellulose is a polysaccharide that is present in nature, which is of global
importance, due to its unique properties that make it essential in industrial applications as
diverse as in paper production in the biomedical industry, clothes, cosmetics, among
others. Not only are plants capable of producing cellulose, but also microorganisms such
as the bacteria Acetobacter, including the bacteria Gluconacetobacter xylinus (G. xylinus),
which is the organism most studied for the biofilm yield produced, as well as by the source
of clean cellulose obtained without purification. However, this yield varies depending on
the conditions in which the bacteria grow, such as the source of glucose used and the
oxygenation it needs as a strict aerobic microorganism. This bacteria has been used at the
industrial production level, however, the high cost of maintenance because of the
aforementioned needs, has failed to realize the potential that this source delivers.For this
reason, in the present study, a natural source of oxygenation was sought, as is the
microalga Chlorella vulgaris (C.vulgaris), which is easy to use and economically
profitable to maintain in the laboratory for its wide uses, as well as its ability to produce
oxygen under constant light as photoperiod.
Therefore,the growth of G. xylinus and C. vulgaris was characterized in this research
work, by performing co-cultures (CC) and separate cultures (CS) between both
microorganisms. The objective of this research was to study the ability to optimize the
production of bacterial cellulose, by delivering controlled oxygenation from
photosynthetically active microalgae (under photoperiod and constant light) to the
bacterial culture.
xvii
Our results indicate that, through the CS methodology and under constant luminosity at
the sixth day of static cultivation, a yield of bacterial cellulose, was produced twice as
high as that produced by the controls, the oxygen produced by the microalgae being
essential for this production.
These results suggest that it would be more efficient to produce CS for only six days than
to leave cultures for twelve static days, being feasible to produce more than two cultures
to produce a higher yield than one for more days. / Programa de Estímulo a la Excelencia
Institucional (PEEI) de la Universidad de Chile
|
4 |
AvaliaÃÃo do potencial do lÃquido de sisal e do suco de caju para a produÃÃo de celulose bacteriana / Evaluation of sisal juice and cashew apple juice for bacterial cellulose productionHelder Levi Silva Lima 25 February 2014 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / A celulose bacteriana (CB) desperta grande interesse por parte dos pesquisadores por apresentar estrutura nanomÃtrica, alto Ãndice de cristalinidade, alta porosidade,
biocompatibilidade e elevado potencial tecnolÃgico. Diversas fontes de carbono alternativas tÃm sido estudadas para a produÃÃo de CB obtendo-se resultados satisfatÃrios quando compara-se com mÃtodos tradicionais que utilizam meio sintÃticos. O objetivo do presente
trabalho consistiu em avaliar a produÃÃo de CB utilizando fontes agroindustriais (lÃquido de sisal e suco de caju) como substrato, no cultivo de Gluconacetobacter hansenii ATCC 23769 sob condiÃÃes estÃticas. Para tal, avaliou-se o efeito da concentraÃÃo de aÃÃcares, pH e suplementaÃÃo do meio com fontes de nitrogÃnio na produÃÃo de CB. Avaliou-se tambÃm a eficiÃncia da purificaÃÃo e o grau de cristalinidade da CB obtida. A maior produÃÃo de CB foi obtida apÃs cultivo da bactÃria por 10 dias utilizando meio obtido atravÃs da diluiÃÃo do lÃquido de sisal para 15 g/L de aÃÃcares, com ajuste de pH em 5 e suplementaÃÃo do meio com 7,5 g/L de extrato de levedura. Para o suco de caju a maior produÃÃo obtida foi de 0,34 g/L, apÃs 5 dias de cultivo e com meio ajustado para 50 g/L de aÃÃcares. Quanto Ãs caracterizaÃÃes tÃrmicas (TGA e DSC), Raio X e FTIR, a CB obtida a partir do lÃquido do sisal apresenta perfis semelhantes à CB obtida em meio padrÃo. Conclui-se que o lÃquido do sisal à o substrato mais promissor para a produÃÃo de CB. / Bacterial cellulose (BC) is an interesting biomaterial for researchers because it presents structure in nanoscale dimensions, high crystallinity degree, high porosity, biocompatibility, and high technological potential. Alternative carbon sources have been studied to replace traditional synthetic medium as a substrate for BC production, achieving satisfactory results.
The aim of this work was to evaluate BC production using agro-industrial sources (sisal juice and cashew apple juice) as substrates in Gluconacetobacter hansenii ATCC 23769 cultivation under static conditions. The effects of sugars concentration, pH, and nitrogen sources
supplementation were evaluated on the BC yield production. The efficiency of the BC purification process and the crystallinity degree of BC were also evaluated. The higher yield of BC was obtained after 10 days of cultivation in the medium based on sisal juice with the following parameters: 15 g/L of sugars, pH 5, and nitrogen supplementation with 7.5 g/L of yeast extract. When use cashew apple juice, the higher yield of BC was obtained after 5 days of cultivation in the medium with 50 g/L of sugars. The BC from the sisal juice medium presented similar TG, DSC, XRD, and FTIR characteristics to the BC from the standard medium. Thus, the sisal juice is a suitable substrate for BC production.
|
5 |
Produção de celulose bacteriana por Gluconacetobacter xylinus e elaboração de filmes comestíveisCOIMBRA, Cynthia Gisele de Oliveira 28 October 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-07-19T13:51:41Z
No. of bitstreams: 3
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese Cynthia Coimbra BC.pdf: 5378162 bytes, checksum: c76cbf49b8ae27ba5d421eba30de2290 (MD5)
Tese Cynthia Coimbra BC.pdf: 5378162 bytes, checksum: c76cbf49b8ae27ba5d421eba30de2290 (MD5) / Made available in DSpace on 2016-07-19T13:51:41Z (GMT). No. of bitstreams: 3
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese Cynthia Coimbra BC.pdf: 5378162 bytes, checksum: c76cbf49b8ae27ba5d421eba30de2290 (MD5)
Tese Cynthia Coimbra BC.pdf: 5378162 bytes, checksum: c76cbf49b8ae27ba5d421eba30de2290 (MD5)
Previous issue date: 2015-10-28 / Celulose bacteriana é um biopolímero flexível, constituído por fibras mais finas e poros menores do que as da celulose vegetal. Muitas aplicações já são conhecidas, mas ainda são necessárias informações para a viabilização de sua produção em escala industrial. Este trabalho visou contribuir com informações sobre os fatores que influenciam sua produção, sua purificação e elaboração de filmes para uso na área farmacêutica e de alimentos, bem como a interação entre estes fatores. Para tanto, foi realizado um estudo em três etapas: (1) avaliação da interação entre diversas fontes de carbono (glicose, xilose, sacarose, frutose e glicerol) e a velocidade de agitação sobre crescimento da biomassa, produção de celulose, sua capacidade de retenção de água e produção de acetana; (2) estudo do tratamento da celulose bacteriana, interrelacionando diferentes concentrações de NaOH e tempos de aquecimento em forno de micro-ondas de acordo com a efetividade de purificação e a possíveis alterações estruturais; e (3) aproveitamento da celulose produzida sob forma de filmes comestíveis, pela associação com glicerol e manitol em diferentes proporções e a caracteriação dos mesmos. Identificou-se, para as condições investigadas, que: (1) a maior produção de celulose (1,08 ± 0,07gL-1) é obtida com a mistura de glicose e frutose, em cultivo estático, já que a modificação das velocidades de agitação propiciou aumento da biomassa, sem acarretar maior produção de celulose e que as melhores condições de produção de celulose diferem das para a produção de acetana; (2) as condições ideais para a purificação da celulose é com NaOH a 0,85 mol.L-1 e 3,3 min de aquecimento em forno de micro-ondas; (3) o aquecimento a partir de 7 min promoveu modificações estruturais nos domínios cristalinos da celulose e que a partir de 12,5 min obtém-se a mercerização completa da celulose; e (4) é possível determinar as características finais dos filmes produzidos manipulando-se as proporções de manitol e glicerol associados à celulose, de forma a adequá-lo à aplicação desejada. Tais resultados conduziram à conclusão de que as determinações e os tratamentos realizados em cada uma das etapas possibilitou o conhecimento de que dois importantes fatores influenciam juntos a produção de celulose e de acetana por Gluconacetobacter xylinus, bem como a purificação de membranas de celulose e a elaboação de filmes comestíveis com possibilidade de manipulação de suas características para ampliação dos usos deste biopolímero na área farmacêutica. / Bacterial cellulose is a polymer flexible, consisting of thinner fibers and smaller pores than plant cellulose. Many applications are already known, but are still necessary more information about its production for the viability of its production on an industrial scale. This work contributed with information on the factors that influence its production, purification and preparation of films for use in pharmaceuticals and food, as well as the interaction between these factors. To this end, this thesis was prepared in three stages: (1) evaluation of the interaction of various carbon sources (glucose, xylose, sucrose, fructose and glycerol), and the stirring rate on biomass growth, cellulose production, water retention capacity and acetan production; (2) study of the treatment of the bacterial cellulose, cross correlating different concentrations of NaOH and heating time in a microwave oven according to the effectiveness of the purification and the possible structural changes; and (3) use of the cellulose produced in the form of edible films, the combination with glycerol and mannitol in different proportions and characterization thereof. It was identified that (1) higher production of pulp (1.08 ± 0.07 gL-1) was obtained with the mixture of glucose and fructose in static culture, since the modification of agitation rates resulted in an increase of the biomass, without causing larger cellulose production and the best cellulose producing conditions different from those for the production of acetan; (2) optimum conditions for the purification of cellulose is with NaOH 0.85 mol L -1 and 3.3 min of heating in microwave oven; (3) the heating from 7 min promoted structural modifications on cellulose crystalline domains and heating times from the 12.5 min cause complete mercerizing cellulose; and (4) it can determine the final characteristics of the films produced by manipulating the proportions of mannitol and glycerol associated with the cellulose in order to adjust it to the desired application. These results led to the conclusion that the proposed aims have been achieved, since the requirements and treatments carried out in each of steps allowed the understanding of how two important factors influencing together, the synthesis of cellulose and acetan by Gluconacetobacter xylinus and the purification of cellulose membranes and the preparation of edible films with the possibility of handling characteristics to expand the uses of this biopolymer in pharmaceutical area.
|
6 |
Estudos estruturais das enzimas envolvidas com o mecanismo de produção de ácidos orgânicos da bactéria Gluconacetobacter diazotrophicus utilizando métodos computacionais / Strucutural studies on the enzymes related to the mechanism of organic acid production in the Gluconacetobacter diazotrophicus bacteria using computational methodsCaminha, Isabel Pereira, 1983- 18 August 2018 (has links)
Orientador: Paula Regina Kuser Falcão / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-18T04:08:35Z (GMT). No. of bitstreams: 1
Caminha_IsabelPereira_M.pdf: 3436107 bytes, checksum: b845e4fcef68195720f058be396caa68 (MD5)
Previous issue date: 2011 / Resumo: A capacidade de Gluconacetobacter diazotrophicus produzir ácidos orgânicos representa uma das suas potenciais aplicações biotecnológicas. Entretanto, a via metabólica do gluconato é bastante complexa e, muitas vezes, inviável economicamente. Este estudo tem como objetivo buscar uma maneira de otimizar a síntese do produto de interesse. A opção sugerida é alterar as enzimas envolvidas na conversão de gluconato em cetogluconatos, visando aumentar a concentração de ácido glicônico. A mutagênese dirigida é uma técnica utilizada neste tipo de estudo, entretanto, realizar e avaliar diversos tipos de mutações exige grande demanda de tempo e recursos financeiros. A biologia computacional pode ajudar a encurtar o caminho dos processos experimentais, por isto foi utilizada neste estudo. Após uma busca no genoma de G. diazotrophicus, foram selecionadas oito ORFs relacionadas com a produção de ácido glicônico. Como nenhuma delas possui uma estrutura resolvida experimentalmente, foi utilizada uma técnica de predição, a modelagem por homologia, com o objetivo de inferir a respeito do funcionamento de cada proteína. Uma estratégia de substituição de resíduos selecionados por alaninas aliada à modelagem molecular foi utilizada para avaliar o impacto dessa mutação. Um estudo da via metabólica do gluconato em diversos organismos forneceu dados suficientes para eleger os dois melhores alvos para a mutagênese, uma gluconato 5-desidrogenase e uma putativa gluconato quinase, ambas relacionadas com a conversão de ácido glicônico em cetogluconatos. A partir de um estudo do mecanismo catalítico das enzimas, foi possível selecionar os possíveis resíduos críticos para a atividade enzimática. Estes foram substituídos, in silico, por alaninas, e as consequências das alterações foram analisadas. As mutações que acusaram um impacto no funcionamento da enzima foram Arginina 106 e Serina 152 na gluconato 5-desidrogenase, e Histidina 133 na gluconato quinase. Espera-se que, ao substituirmos estes resíduos, o potencial catalítico seja minimizado ou até mesmo inativado, diminuindo a quantidade de gluconato convertido em outros produtos. Estes resultados serão testados experimentalmente por colaboradores. / Abstract: The ability of Gluconacetobacter diazotrophicus to produce organic acids represents one of its potential biotechnological applications. However, the metabolic pathway of gluconate is quite complex and often impracticable economically. This study aims to find a way to optimize the synthesis product of interest. The suggested option is to alter the enzymes involved in the conversion of gluconate into cetogluconates, to increase the concentration of gluconic acid. Site directed mutagenesis is a technique used in this type of study, however, implement and evaluate various types of mutations requires a great deal of time and financial resources. The computational biology can help shorten the path of experimental processes, so it was used in this study. After a search in the genome of G. diazotrophicus, eight ORFs were selected related to the production of gluconic acid. As there is little physical or structural information available for this enzyme, we used a technique of prediction, homology modeling, in order to infer about the function of each protein. A molecular modeling approach with an amino acid replacement by alanines strategy was employed to assess the impact of this mutation. A study of the metabolic pathway of gluconate in several organisms has provided sufficient data to choose the two best targets for mutagenesis, a gluconate 5-dehydrogenase and a putative gluconate kinase, both related to the conversion of gluconic acid in cetogluconates. From a study of the catalytic mechanism of enzymes, it was possible to select any residues critical for enzymatic activity. These were replaced in silico by alanines, and the consequences of changes were analyzed. Detailed analysis of the modeled structures reveals that the mutations that may cause an impact on the functioning of the enzyme were Arginine 106 and Serine 152 in gluconate 5- dehydrogenase, and Histidine 133 in gluconate kinase. It is expected that, in replacing these residues, the catalytic potential is minimized or even inactivated, reducing the amount of gluconate converted into other products. These results will be experimentally tested by collaborators, and once proved right our findings may be applicable in the use of this bacteria in biotechnological processes / Mestrado / Bioinformatica / Mestre em Genética e Biologia Molecular
|
7 |
Influences of some ecological factors on bacterial cellulose (BC) membrane forming process in Spirulina medium / Ảnh hưởng của một số yếu tố sinh thái tới quá trình tạo màng bacterial cellulose (BC) trên môi trường tảo xoắn SpirulinaDinh, Thi Kim Nhung, Nguyen, Thi Kim Ngoan 24 August 2017 (has links) (PDF)
Formed by a kind of bacteria called Gluconacetobacter, bacterial cellulose (biocellulose, BC) membrane, compared to cellulose from plants, has superior properties for the strength, toughness, durability and elasticity. The subjects of this study are bacteria being able to produce Bacterial cellulose in Spirulina medium. The study aims to investigate the influences of some ecological factors on the Bacterial cellulose membrane forming process in Spirulina medium, and then find out appropriate nutritional media and conditions for the fermentation in Bacterial cellulose forming process. The study has some major findings: (1) Select two strains of bacteria: Gluconacetobacter xylinus T6 and Gluconacetobacter xylinus T9, which prove to be capable of producing cellulose membrane to be used in making nourishing face masks for its thinness, smoothness, toughness and uniformity; (2) Find out the appropriate medium for the formation of Bacterial cellulose membrane, including (NH4)2SO4: 0,5 (g), KH2PO4: 1 (g), glucose: 10 (g), algae powder: 20 (g), and distilled water: 1000 (ml). Successful fermentation for membrane production could be done in appropriate pH of 5 and appropriate temperature of 320C. The ratio of surface area per volume of fermentation (S/V) is 0.8, and the membrane can be collected after 5 days. / Màng cellulose vi khuẩn (Bacterial cellulose; Biocellulose; BC) do vi khuẩn Gluconacetobacter tạo ra có những đặc tính vượt trội so với cellulose của thực vật về độ dẻo dai, độ bền, chắc khỏe và độ đàn hồi. Đối tượng: vi khuẩn có khả năng tạo màng Bacterial cellulose từ môi trường tảo xoắn Spirulina. Mục tiêu: Khảo sát ảnh hưởng của một số yếu tố đến quá trình tạo màng Bacterial cellulose trên môi trường tảo xoắn Spirulina, từ đó tìm ra được môi trường dinh dưỡng và điều kiện thích hợp cho quá trình lên men tạo màng Bacterial cellulose. Kết quả: tuyển chọn được 2 chủng vi khuẩn Gluconacetobacter xylinus T6 và Gluconacetobacter xylinus T9 có khả năng tạo màng cellulose có đặc tính mỏng, nhẵn, đồng đều, dai phù hợp với các tiêu chí làm mặt nạ dưỡng da. Xác định được môi trường thích hợp cho sự hình thành màng Bacterial cellulose gồm (NH4)2SO4: 0,5 (g), KH2PO4: 1(g), glucose: 10 (g), bột tảo: 20 (g), nước cất 1000 (ml) với thời gian thu màng là 5 ngày, pH thích hợp là 5 và nhiệt độ thuận lợi cho quá trình lên men tạo màng là 320C, tỉ lệ diện tích bề mặt trên thể tích lên men là S/V = 0,8.
|
8 |
Influences of some ecological factors on bacterial cellulose (BC) membrane forming process in Spirulina medium / Ảnh hưởng của một số yếu tố sinh thái tới quá trình tạo màng bacterial cellulose (BC) trên môi trường tảo xoắn SpirulinaDinh, Thi Kim Nhung, Nguyen, Thi Kim Ngoan 24 August 2017 (has links)
Formed by a kind of bacteria called Gluconacetobacter, bacterial cellulose (biocellulose, BC) membrane, compared to cellulose from plants, has superior properties for the strength, toughness, durability and elasticity. The subjects of this study are bacteria being able to produce Bacterial cellulose in Spirulina medium. The study aims to investigate the influences of some ecological factors on the Bacterial cellulose membrane forming process in Spirulina medium, and then find out appropriate nutritional media and conditions for the fermentation in Bacterial cellulose forming process. The study has some major findings: (1) Select two strains of bacteria: Gluconacetobacter xylinus T6 and Gluconacetobacter xylinus T9, which prove to be capable of producing cellulose membrane to be used in making nourishing face masks for its thinness, smoothness, toughness and uniformity; (2) Find out the appropriate medium for the formation of Bacterial cellulose membrane, including (NH4)2SO4: 0,5 (g), KH2PO4: 1 (g), glucose: 10 (g), algae powder: 20 (g), and distilled water: 1000 (ml). Successful fermentation for membrane production could be done in appropriate pH of 5 and appropriate temperature of 320C. The ratio of surface area per volume of fermentation (S/V) is 0.8, and the membrane can be collected after 5 days. / Màng cellulose vi khuẩn (Bacterial cellulose; Biocellulose; BC) do vi khuẩn Gluconacetobacter tạo ra có những đặc tính vượt trội so với cellulose của thực vật về độ dẻo dai, độ bền, chắc khỏe và độ đàn hồi. Đối tượng: vi khuẩn có khả năng tạo màng Bacterial cellulose từ môi trường tảo xoắn Spirulina. Mục tiêu: Khảo sát ảnh hưởng của một số yếu tố đến quá trình tạo màng Bacterial cellulose trên môi trường tảo xoắn Spirulina, từ đó tìm ra được môi trường dinh dưỡng và điều kiện thích hợp cho quá trình lên men tạo màng Bacterial cellulose. Kết quả: tuyển chọn được 2 chủng vi khuẩn Gluconacetobacter xylinus T6 và Gluconacetobacter xylinus T9 có khả năng tạo màng cellulose có đặc tính mỏng, nhẵn, đồng đều, dai phù hợp với các tiêu chí làm mặt nạ dưỡng da. Xác định được môi trường thích hợp cho sự hình thành màng Bacterial cellulose gồm (NH4)2SO4: 0,5 (g), KH2PO4: 1(g), glucose: 10 (g), bột tảo: 20 (g), nước cất 1000 (ml) với thời gian thu màng là 5 ngày, pH thích hợp là 5 và nhiệt độ thuận lợi cho quá trình lên men tạo màng là 320C, tỉ lệ diện tích bề mặt trên thể tích lên men là S/V = 0,8.
|
9 |
Functional analysis of the acsD gene for understanding cellulose biosynthesis in Gluconacetobacter xylinusMehta, Kalpa Pravin 23 October 2012 (has links)
The acsD gene is a unique gene present in the cellulose biosynthesis operon in G. xylinus. With the use of homologous recombination, the acsD gene disruption mutation was created in the G. xylinus genome. Phenotypic characterization of the acsD gene mutant was investigated with the assistance of light and electron microscopy observations, carboxymethyl cellulose alterations, and lower temperature incubation. The microscopic analysis of the cellulose ribbons secreted from the acsD gene mutant shows that the polymerization and the crystallization components in mutant cells were functional. Observations of the mutant cells after incubation with carboxymethyl cellulose and temperature changes indicate that the arrangements of the pores on the cell surface have been altered. These arrangements led to decreased cellulose secretion capacity of the mutant cells. Successful complementation was achieved by using gene expression plasmids with green fluorescence protein tag in the acsD mutant background. Anti-GFP antibodies were used to determine the in vitro localization of the protein. Using subcellular fractionation and western blotting, the AcsD protein was found to be localized in the periplasm of the cells. Taking all these results together, a new model for bacterial cellulose biosynthesis has been suggested and discussed. / text
|
10 |
Produção de biofilme (membrana de biocelulose) por Gluconacetobacter xylinus em meio de resíduos de frutas e folhas de chá verde / Biofilm production (biocellulose membrane), production by Gluconacetobacter xylinus in fruits residues and green tea mediumVieira, Denise Cristina Moretti 04 April 2013 (has links)
A biomembrana, que é uma membrana de celulose bacteriana (C6H10O5)n formada na superfície do meio de cultivo durante a fermentação acética, foi obtida através do cultivo associado de Gluconacetobacter xylinus (formalmente Acetobacter xylinum) e Saccharomyces cerevisiae em meio de folhas de chá verde, resíduos de frutas (abacaxi, mamão, laranja), resíduos de vegetais (beterraba), vinho e colágeno em condições estáticas a 28 ± 2°C de 7 a 30 dias de cultivo. Foi incorporado à biomembrana, extrato hidroalcoólico de Calendula officinalis, devido as suas propriedades anti-inflamatórias, antioxidantes e cicatrizantes. A espessura, o diâmetro e o peso da biomembrana foram mensurados e foram calculados a produtividade, bem como o fator de conversão de açúcar em celulose. A caracterização da biomembrana foi realizada por Differential Scanning Calorimetric, espectroscopia infravermelho, Brunauer-Emmett-Teller, resistência à tração e alongamento, microscopia eletrônica (Escola Politécnica - USP) e difração de raio-X. Através destas análises verificou-se que a biomembrana obtida nos diferentes meios de cultivo é composta por celulose, o tamanho médio dos poros variou de 517,9 a 1582,0 nm, a resistência à tração variou de 0,76 a 4,32 kN/m e o índice de cristalinidade entre 75% e 91%, a espessura da biomembranas variou de 0,16 a 6,38 mm. Foram realizados 576 experimentos, a maior produtividade (8,23 g de celulose/dia) foi atingida no meio de mamão com suco de laranja (suco de mamão: 50% v/v e suco de laranja: 19% v/v) em 7 dias de cultivo. O maior fator de conversão (2,36 g celulose/g de açúcar) foi obtido no meio de chá verde em 25 dias de cultivo. A adição de 1,5% p/v de colágeno ao meio de chá verde dobrou a massa da biomembrana. A incorporação do extrato de calêndula aumentou a flexibilidade, a cristalinidade e as propriedades mecânicas da biomembrana de chá verde. / The biomembrane, cellulose membrane (C6H10O5)n formed in medium surface, was obtained from an associate culture Gluconacetobacter xylinus (formally Acetobacter xylinum) and Saccharomyces cerevisiae in green tea leaves, fruit residues (pineapple, papaya, orange), vegetables residues (beet), wine and collagen media in static condition , at 28 ± 2 ºC in 7 - 30 days cultivation. The Calendula officinalis hydroalcoholic extract was incorporated in the Biomembrane, due to its anti-inflammatory, anti-oxidants and cicatrizing proprieties. The biomembrane thickness, diameter and weight were measured. The productivity and conversion factor from cellulose to sugar were calculated. The biomembrane caracterization was performed by Differential Scanning Calorimetric, infrared spectroscopy, Brunauer-Emmett-Teller, resistance to tension, elongation, eletrocnic microscopy and raio-X difraction. In these analyses were verified that biomembrane obtained in different media were composed by cellulose, average porous size varied from 517.9 to 1582.0 nm, the resistance to tension varied from 0.76 to 4.32 kN/m and cristalinity index varied from 75% to 91%. The biomembrane thickness varied from 0,16 to 6,38 mm. It was performed 596 tests, the highest bacterial cellulose yield (8.23 ± 0.58 g cellulose/day) was obtained in papaya with orange (papaya juice: 50% v/v and orange juice: 19% v/v) in 7 cultivation days. The highest conversion factor (2,36 g cellulose/g sugar) was obtained in green tea medium in 25 days. The addition of 1.5% w/v collagen to the green tea media increased 2 times the biomembrane weight. The biomembrane absorption capacity for water and Marigold hydroalcoholic extract (1:1), were from 1.73 to 22 and, from 1.75 to 24 times dry weight, respectively. The Marigold extract improved the green tea biomembrane flexibility, cristalinity, and physical proprieties.
|
Page generated in 0.0737 seconds