• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 10
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 45
  • 15
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Crouzeix's Conjecture and the GMRES Algorithm

Luo, Sarah McBride 13 July 2011 (has links) (PDF)
This thesis explores the connection between Crouzeix's conjecture and the convergence of the GMRES algorithm. GMRES is a popular iterative method for solving linear systems and is one of the many Krylov methods. Despite its popularity, the convergence of GMRES is not completely understood. While the spectrum can in some cases be a good indicator of convergence, it has been shown that in general, the spectrum does not provide sufficient information to fully explain the behavior of GMRES iterations. Other sets associated with a matrix that can also help predict convergence are the pseudospectrum and the numerical range. This work focuses on convergence bounds obtained by considering the latter. In particular, it focuses on the application of Crouzeix's conjecture, which relates the norm of a matrix polynomial to the size of that polynomial over the numerical range, to describing GMRES convergence.
22

Regularization Methods for Ill-posed Problems

Neuman, Arthur James, III 15 June 2010 (has links)
No description available.
23

Modélisation de la transition vers la turbulence d'écoulements en tuyau de fluides rhéofluidifiants par calcul numérique d'ondes non linéaires / Modelling the transition to turbulence in pipe flows of shear-thinning fluids by computing nonlinear waves

Roland, Nicolas 10 September 2010 (has links)
L'étude théorique de la transition vers la turbulence d'écoulements en tuyau de fluides non newtoniens rhéofluidifiants (fluides de Carreau) est menée, avec l'approche consistant à calculer des «~structures très cohérentes~» sous la forme d'«~ondes non linéaires~». Pour cela un code pseudo-spectral de type Petrov-Galerkin, permettant de suivre des solutions ondes non linéaires tridimensionnelles dans l'espace des paramètres par continuation, est développé. Ce code est validé par comparaison à des résultats existants en fluide newtonien, et grâce à un test de consistance en fluide non newtonien. Une convergence spectrale exponentielle est obtenue dans tous les cas. Ce code est utilisé pour chercher (guidé par des résultats expérimentaux récents) de nouvelles solutions de nombre d'onde azimutal fondamental égal à 1, sans succès pour l'instant. Par contre des solutions de nombre d'onde azimutal fondamental égal à 2 ou 3 sont obtenues par continuation à partir du cas newtonien. La rhéofluidification induit, en termes de nombres de Reynolds critiques, un retard à l'apparition de ces ondes par rapport au cas newtonien. Ce retard est caractérisé, et le parallèle est fait avec divers résultats expérimentaux qui montrent un retard à l'apparition de bouffées turbulentes en fluides non newtoniens / The transition to turbulence in pipe flows of shear-thinning fluids is studied theoretically. The method used is the computation of `exact coherent structures' that are tridimensional nonlinear waves. For this purpose a pseudo-spectral Petrov-Galerkin code is developped, which also allows to follow solution branches in the parameter space with continuation methods. This code is validated by recovering already published results in the Newtonian case, and by a consistency test in the non-Newtonian case. A spectral exponential convergence is obtained in all cases. This code is used to seek (guided by recent experimental results) new solutions of fundamental azimuthal wavenumber equal to 1,without success at the time being. On the contrary solutions with a fundamental azimuthal wavenumber equal to 2 and 3 are obtained by continuation from the Newtonian case. The shear-thinning effects induce, in terms of critical Reynolds numbers, a delay for the onset of these waves, as compared with the Newtonian case. This delay is characterized. An analogy is made with various experimental results that show a delay in the transition to turbulence, more precisely, in the onset of `puffs', in non-Newtonian fluids
24

Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles / Matrix Krylov methods applied to partial differential equations

Hached, Mustapha 07 December 2012 (has links)
Cette thèse porte sur des méthode de résolution d'équations matricielles appliquées à la résolution numérique d'équations aux dérivées partielles ou des problèmes de contrôle linéaire. On s'intéressen en premier lieu à des équations matricielles linéaires. Après avoir donné un aperçu des méthodes classiques employées pour les équations de Sylvester et de Lyapunov, on s'intéresse au cas d'équations linéaires générales de la forme M(X)=C, où M est un opérateur linéaire matriciel. On expose la méthode de GMRES globale qui s'avère particulièrement utile dans le cas où M(X) ne peut s'exprimer comme un polynôme du premier degré en X à coefficients matriciels, ce qui est le cas dans certains problèmes de résolution numérique d'équations aux dérivées partielles. Nous proposons une approche, noté LR-BA-ADI consistant à utiliser un préconditionnement de type ADI qui transforme l'équation de Sylvester en une équation de Stein que nous résolvons par une méthode de Krylox par blocs. Enfin, nous proposons une méthode de type Newton-Krylov par blocs avec préconditionnement ADI pour les équations de Riccati issues de problèmes de contrôle linéaire quadratique. Cette méthode est dérivée de la méthode LR-BA-ADI. Des résultats de convergence et de majoration de l'erreur sont donnés. Dans la seconde partie de ce travail, nous appliquons les méthodes exposées dans la première partie de ce travail à des problèmes d'équations aux dérivées partielles. Nous nous intéressons d'abord à la résolution numérique d'équations couplées de type Burgers évolutives en dimension 2. Ensuite, nous nous intéressons au cas où le domaine borné est choisi quelconque. Nous établissons des résultats théoriques de l'existence de tels interpolants faisant appel à des techniques d'algèbre linéaire. / This thesis deals with some matrix equations involved in numerical resolution of partial differential equations and linear control. We first consider some numerical resolution techniques of linear matrix equation. In the second part of this thesis, we apply these resolution techniques to problems related to partial differential equations.
25

Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes / Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometries

Montagnier, Julien 01 July 2010 (has links)
La prévention des risques industriels nécessite de simuler la dispersion turbulente de polluants. Cependant, les outils majoritairement utilisés à ce jour ne permettent pas de traiter les champs proches dans le cas de géométries complexes, et il est nécessaire d'utiliser les outils de CFD (“ Computational Fluid Dynamics ”) plus adaptés, mais plus coûteux. Afin de simuler les écoulements atmosphériques avec dispersion de polluants, les modèles CFD doivent modéliser correctement d'une part, les effets de flottabilité, et d'autre part les effets de la turbulence. Plusieurs approches existent, notamment dans la prise en compte des effets de flottabilité et la modélisation de la turbulence, et nécessitent des méthodes numériques adaptées aux spécificités mathématiques de chacune d'entre elles, ainsi que des schémas numériques précis pour ne pas polluer la modélisation. Une formulation d'ordre élevé en volumes finis, sur maillages non structurés, parallélisée, est proposée pour simuler les écoulements atmosphériques avec dispersion de polluants. L'utilisation de schémas d'ordre élevé doit permettre d'une part de réduire le nombre de cellules et diminuer les temps de simulation pour atteindre une précision donnée, et d'autre part de mieux contrôler la viscosité numérique des schémas en vue de simulations LES (Large Eddy Simulation), pour lesquelles la viscosité numérique des schémas peut masquer les effets de la modélisation. Deux schémas d'ordre élevé ont été étudiés et implémentés dans un solveur 3D Navier Stokes incompressible sur des maillages volumes finis non structurés. Nous avons développé un premier schéma d'ordre élevé, correspondant à un schéma Padé volumes finis, et nous avons étendu le schéma de reconstruction polynomiale de Carpentier (2000) aux écoulements incompressibles. Les propriétés numériques des différents schémas implémentés dans le même code de calcul sont étudiées sur différents cas tests bi-dimensionnels (calcul de flux convectifs et diffusifs sur une solution a-priori, convection d'une tâche gaussienne, décroissance d'un vortex de Taylor et cavité entraînée) et tri-dimensionnel (écoulement autour d'un obstacle cubique). Une attention particulière a été portée à l'étude de la précision et du traitement des conditions limites. L'implémentation proposée du schéma polynomial permet d'approcher, pour un maillage identique, les temps de simulation obtenus avec un schéma décentré classique d'ordre 2, mais avec une précision supérieure. Le schéma compact donne la meilleure précision. En utilisant une méthode de Jacobi sans calcul implicite de la matrice pour calculer le gradient, le temps de simulation devient intéressant uniquement lorsque la précision requise est importante. Une alternative est la résolution du système linéaire par une méthode multigrille algébrique. Cette méthode diminue considérablement le temps de calcul du gradient et le schéma Padé devient performant même pour des maillages grossiers. Enfin, pour réduire les temps de simulation, la parallélisation des schémas d'ordre élevé est réalisée par une décomposition en sous domaines. L'assemblage des flux s'effectue naturellement et différents solveurs proposés par les librairies PETSC et HYPRE (solveur multigrille algébrique et méthode de Krylov préconditionnée) permettent de résoudre les systèmes linéaires issus de notre problème. / The prevention of industrial risks requires simulating turbulent dispersion of pollutants. However, the tools mostly used so far do not allow near fields treated in the case of complex geometries, and it is necessary to utilize the tools of CFD (Computational Fluid Dynamics ") more suitable but more expensive. To simulate atmospheric flows with dispersion of pollutants, the CFD models must correctly model the one hand, the effects of buoyancy, and secondly the effects of turbulence. Several approaches exist, including taking into account the effects of buoyancy and turbulence modeling, and require numerical methods adapted to the specific mathematics of each, and accurate numerical schemes to avoid pollution modeling. A formulation of high order finite volume on unstructured meshes, parallelized, is proposed to simulate the atmospheric flows with dispersion of pollutants. The use of high order schemes allow one hand to reduce the number of cells and decrease the simulation time to achieve a given accuracy, and secondly to better control the viscosity numerical schemes for simulation LES (Large Eddy Simulation), for which the numerical viscosity patterns may mask the effects of modeling. Two high-order schemes have been studied and implemented in a 3D Navier Stokes solver on unstructured mesh finite volume. We developed the first high-order scheme, corresponding to a Padé finite volume scheme, and we have extended the scheme of reconstruction polynomial Carpentier (2000) for incompressible flows. The numerical properties of the various schemes implemented in the same computer code are studied different two-dimensional test cases (calculation of diffusive and convective flow on a solution a priori, a task Gaussian convection, decay of a vortex of Taylor and driven cavity) and tri-dimensional (flow past an obstacle cubic). Particular attention has been paid to the study of the accuracy and treatment of boundary conditions. The implementation of the polynomial allows to obtain quasi identical simulation time compared to a classical upwind scheme of order 2, but with higher accuracy. The compact layout gives the best accuracy. Using a Jacobi method without calculation implied matrix to calculate the gradient, the simulation time becomes interesting only when the required accuracy is important. An alternative is the resolution of linear system by an algebraic multigrid method. This method significantly reduces the computation time of the gradient and the Padé scheme is effective even for coarse meshes. Finally, to reduce simulation time, the parallelization schemes of high order is achieved by a decomposition into subdomains. The assembly flow occurs naturally and different solvers provided by PETSc libraries and HYORE (algebraic multigrid solver and preconditioned Krylov method) used to solve linear systems from our problem. The work was to identify and determine the parameters that lead to lowest time resolution simulation. Various tests of speed-up and scale-up were used to determine the most effective and optimal parameters for solving linear systems in parallel from our problem. The results of this work have been the subject of a communication in an international conference "Parallel CFD 2008" and an article submitted to "International Journal for Numerical Methods in Fluids" (Analysis of high-order finite volume schemes for the incompressible Navier Stokes equations)
26

Inner-outer iterative methods for eigenvalue problems : convergence and preconditioning

Freitag, Melina January 2007 (has links)
Many methods for computing eigenvalues of a large sparse matrix involve shift-invert transformations which require the solution of a shifted linear system at each step. This thesis deals with shift-invert iterative techniques for solving eigenvalue problems where the arising linear systems are solved inexactly using a second iterative technique. This approach leads to an inner-outer type algorithm. We provide convergence results for the outer iterative eigenvalue computation as well as techniques for efficient inner solves. In particular eigenvalue computations using inexact inverse iteration, the Jacobi-Davidson method without subspace expansion and the shift-invert Arnoldi method as a subspace method are investigated in detail. A general convergence result for inexact inverse iteration for the non-Hermitian generalised eigenvalue problem is given, using only minimal assumptions. This convergence result is obtained in two different ways; on the one hand, we use an equivalence result between inexact inverse iteration applied to the generalised eigenproblem and modified Newton's method; on the other hand, a splitting method is used which generalises the idea of orthogonal decomposition. Both approaches also include an analysis for the convergence theory of a version of inexact Jacobi-Davidson method, where equivalences between Newton's method, inverse iteration and the Jacobi-Davidson method are exploited. To improve the efficiency of the inner iterative solves we introduce a new tuning strategy which can be applied to any standard preconditioner. We give a detailed analysis on this new preconditioning idea and show how the number of iterations for the inner iterative method and hence the total number of iterations can be reduced significantly by the application of this tuning strategy. The analysis of the tuned preconditioner is carried out for both Hermitian and non-Hermitian eigenproblems. We show how the preconditioner can be implemented efficiently and illustrate its performance using various numerical examples. An equivalence result between the preconditioned simplified Jacobi-Davidson method and inexact inverse iteration with the tuned preconditioner is given. Finally, we discuss the shift-invert Arnoldi method both in the standard and restarted fashion. First, existing relaxation strategies for the outer iterative solves are extended to implicitly restarted Arnoldi's method. Second, we apply the idea of tuning the preconditioner to the inner iterative solve. As for inexact inverse iteration the tuned preconditioner for inexact Arnoldi's method is shown to provide significant savings in the number of inner solves. The theory in this thesis is supported by many numerical examples.
27

ANALYSES AVANCÉES DE LA MÉTHODE HYBRIDE GMRES/LS-ARNOLDI ASYNCHRONE PARALLÈLE ET DISTRIBUÉE POUR LES GRILLES DE CALCUL ET LES SUPERCALCULATEURS

He, Haiwu 08 July 2005 (has links) (PDF)
De nombreux problèmes scientifiques et industriels ont besoin de la résolution de systèmes linéaires non symétriques à grande échelle, qui sont décrits par des matrices creuses de très grande taille. On utilise fréquemment dans ce cas des méthodes numériques itératives et on fait appel au parallélisme pour une résolution rapide et efficace. L'algorithme GMRES(m) est une méthode itérative qui donne de bons résultats dans la plupart des cas. Mais on observe une limitation à sa parallélisation en raison des nombreuses communications produites. Dans quelques cas, la convergence est atteinte très lentement, voire jamais. Nous présentons dans cette thèse une méthode hybride GMRES(m)/LS-Arnoldi qui accélère la convergence grâce à la connaissance des valeurs propres calculées parallèlement par la méthode d'Arnoldi pour les cas réels, avec son implantation sur des supercalculateurs. Une extension aux cas complexes est également étudiée. La dernière tendance du calcul global, le calcul de grille, propose l'exploitation massive des ressources vacantes des réseaux locaux ainsi que sur Internet. Son avantage peut être énorme pour l'exécution d'applications parallèles. L'environnement XtremWeb est un système de grille léger, tolérant aux défaillances et sécurisé pour l'exécution d'applications parallèles. Il est un environnement de calcul haute-performance, une plate- forme de grille logicielle d'expérimentation pour des institutions académiques ou industrielles. Nous présentons dans cette thèse les implantations de la méthode GMRES(m) sur ce système de grille XtremWeb ainsi que sur un environnement distribué de calcul LAM-MPI. Nous avons fait de multiples tests sur grille et supercalculateur. Des performances que nous avons obtenues, nous constatons les avantages et les inconvénients de ces plates-formes de calcul différentes.
28

DSA Preconditioning for the S_N Equations with Strictly Positive Spatial Discretization

Bruss, Donald 2012 May 1900 (has links)
Preconditioners based upon sweeps and diffusion-synthetic acceleration (DSA) have been constructed and applied to the zeroth and first spatial moments of the 1-D transport equation using SN angular discretization and a strictly positive nonlinear spatial closure (the CSZ method). The sweep preconditioner was applied using the linear discontinuous Galerkin (LD) sweep operator and the nonlinear CSZ sweep operator. DSA preconditioning was applied using the linear LD S2 equations and the nonlinear CSZ S2 equations. These preconditioners were applied in conjunction with a Jacobian-free Newton Krylov (JFNK) method utilizing Flexible GMRES. The action of the Jacobian on the Krylov vector was difficult to evaluate numerically with a finite difference approximation because the angular flux spanned many orders of magnitude. The evaluation of the perturbed residual required constructing the nonlinear CSZ operators based upon the angular flux plus some perturbation. For cases in which the magnitude of the perturbation was comparable to the local angular flux, these nonlinear operators were very sensitive to the perturbation and were significantly different than the unperturbed operators. To resolve this shortcoming in the finite difference approximation, in these cases the residual evaluation was performed using nonlinear operators "frozen" at the unperturbed local psi. This was a Newton method with a perturbation fixup. Alternatively, an entirely frozen method always performed the Jacobian evaluation using the unperturbed nonlinear operators. This frozen JFNK method was actually a Picard iteration scheme. The perturbed Newton's method proved to be slightly less expensive than the Picard iteration scheme. The CSZ sweep preconditioner was significantly more effective than preconditioning with the LD sweep. Furthermore, the LD sweep is always more expensive to apply than the CSZ sweep. The CSZ sweep is superior to the LD sweep as a preconditioner. The DSA preconditioners were applied in conjunction with the CSZ sweep. The nonlinear CSZ DSA preconditioner did not form a more effective preconditioner than the linear DSA preconditioner in this 1-D analysis. As it is very difficult to construct a CSZ diffusion equation in more than one dimension, it will be very beneficial if the results regarding the effectiveness of the LD DSA preconditioner are applicable to multi-dimensional problems.
29

ITERATIVE SOLVERS FOR DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS

SINGH, ONKAR DEEP 06 October 2004 (has links)
No description available.
30

Efficient Algorithms for Future Aircraft Design: Contributions to Aerodynamic Shape Optimization

Hicken, Jason 24 September 2009 (has links)
Advances in numerical optimization have raised the possibility that efficient and novel aircraft configurations may be ``discovered'' by an algorithm. To begin exploring this possibility, a fast and robust set of tools for aerodynamic shape optimization is developed. Parameterization and mesh-movement are integrated to accommodate large changes in the geometry. This integrated approach uses a coarse B-spline control grid to represent the geometry and move the computational mesh; consequently, the mesh-movement algorithm is two to three orders faster than a node-based linear elasticity approach, without compromising mesh quality. Aerodynamic analysis is performed using a flow solver for the Euler equations. The governing equations are discretized using summation-by-parts finite-difference operators and simultaneous approximation terms, which permit nonsmooth mesh continuity at block interfaces. The discretization results in a set of nonlinear algebraic equations, which are solved using an efficient parallel Newton-Krylov-Schur strategy. A gradient-based optimization algorithm is adopted. The gradient is evaluated using adjoint variables for the flow and mesh equations in a sequential approach. The flow adjoint equations are solved using a novel variant of the Krylov solver GCROT. This variant of GCROT is flexible to take advantage of non-stationary preconditioners and is shown to outperform restarted flexible GMRES. The aerodynamic optimizer is applied to several studies of induced-drag minimization. An elliptical lift distribution is recovered by varying spanwise twist, thereby validating the algorithm. Planform optimization based on the Euler equations produces a nonelliptical lift distribution, in contrast with the predictions of lifting-line theory. A study of spanwise vertical shape optimization confirms that a winglet-up configuration is more efficient than a winglet-down configuration. A split-tip geometry is used to explore nonlinear wake-wing interactions: the optimized split-tip demonstrates a significant reduction in induced drag relative to a single-tip wing. Finally, the optimal spanwise loading for a box-wing configuration is investigated.

Page generated in 0.0584 seconds