• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 9
  • 4
  • Tagged with
  • 44
  • 16
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Blood Perfusion and Early Wound Healing Following Implant Placement: A Comparison Between Grafted and Non-Grafted Sites

Kofina, Vrisiis 20 December 2018 (has links)
No description available.
22

Itaconate-based Periodically Grafted Polyesters

Chanda, Sananda January 2016 (has links) (PDF)
Block copolymers can self-assemble into a variety of periodic nanostructures and therefore, are promising candidates for a diverse range of applications. While self-assembly of block copolymers has been widely studied and exploited, graft copolymers have remained far less explored in this context. One of the primary reasons for this is that the most commonly used methods to prepare graft copolymers leads to polymers that do not have precisely defined structures; specifically, controlling the precise location of the grafted segments is a synthetically difficult challenge. In typical chain polymerization processes, statistically random incorporation of monomers takes place and consequently, the periodicity of the grafted segment along the backbone is very difficult to control precisely; therefore, such methods cannot be utilized to prepare periodically grafted copolymers. Some recent efforts towards the preparation of sequence regulated copolymers using controlled radical polymerization in conjunction with periodic dosing of a commoner could provide an alternative to better regulate the periodicity, although this will also not be perfectly periodic. The only approach to control the periodicity perfectly is to utilize condensation polymerization approaches, wherein one of the monomers serve as a spacer whereas the other provides the opportunity to install the graft segment, as depicted in Scheme 1. One of the earliest examples of the utilization of a condensation approach to locate desired units at periodic intervals was reported by Wagener and co-workers using Acrylic Diene Metathesis (ADMET) process.1 ]n periodicity ]n graft segment Scheme 1. Synthetic scheme for the preparation of periodically grafted copolymers using condensation polymerization. From our lab, Roy et al. developed periodically grafted amphiphilic copolymers (PGAC), based on a readily available starting material, diethyl malonate;2 melt trans-esterification between diethyl malonate, containing a pendant hexaethylene glycol monomethyl ether (HEG) segment and 1,22-docosane diol resulted in PGAC wherein the hydrophilic oligo ethylene glycol units were placed on every 27th atom along the backbone (Scheme 2). Such PGAC underwent self-segregation and adopted a folded zigzag conformation, which was driven by the intrinsic immiscibility of the alkylene and HEG segments and was reinforced by the strong tendency for long chain alkylene segments to crystallize in a paraffinic lattice. However, one of the drawbacks of the above approach was that the hydrophilic pendant unit was installed at the monomer stage and consequently, the synthetic approach does not allow easy variation of the hydrophilic grafted segment; this limits the flexibility and any structural variation of the pendant segment would be synthetically tedious. 150 oC DBTDL 5 20 DBTDL = Dibutyltin dilaurate Scheme 2. Synthesis of PGAC, based on diethyl malonate, and immiscibility-driven folding of such PGACs. Mandal et al. developed a more general strategy for the synthesis of such periodically grafted systems; they prepared periodically clickable polyesters carrying propargyl groups at regular intervals, by the solution polycondensation of 2-propargyl-1,3-propanediol or 2,2-dipropargyl-1,3-propanediol and the acid chloride of 1,20-eicosanedioic acid. Such periodically clickable polyesters were shown to react quantitatively with a fluoroalkyl azide3 and PEG 350 azide4, thus allowing them to place different kinds of functionalities precisely along the backbone, as shown in Scheme 3. The immiscibility of the alkylene and fluoroalkyl/PEG segments caused the polymer chains to fold in a zigzag fashion, thereby facilitating the segregation of these segments, as observed earlier in the study by Roy et al.2 The objective of this study was to place various desired functionalities along the polymer backbone and examine their effect on the self-assembly behaviour and morphology of such periodically clicked systems. Scheme 3. Synthetic scheme for the generation of periodically clickable polyesters and their subsequent functionalization via Cu-catalysed click chemistry. In Chapter 2, we describe an alternative general strategy for the scalable synthesis of periodically graftable polyesters and their subsequent functionalization to generate a wide variety of periodically grafted systems. The importance of our approach lies in our choice of the monomer, which is based on itaconic acid, an inexpensive and bio-sourced molecule. We demonstrated that dibutyl itaconate can be melt-condensed with aliphatic diols to generate unsaturated polyesters (Scheme 4); importantly, we showed that the double bonds in the itaconate moiety remain unaffected during the melt polymerization. A particularly useful attribute of these polyesters is that the exo-chain double bonds are conjugated to the ester carbonyl and therefore, can serve as excellent Michael acceptors. A variety of organic thiols, such as alkane thiols, MPEG thiol, thioglycerol, derivative cysteine etc., were shown to quantitatively Michael-add to the exo-chain double bonds and generate interesting functionalized polyesters; similarly, organic amines, such as N-methylbenzylamine, diallyl amine and proline also underwent Michael addition across the double bond (Scheme 4). Thus, such poly(alkylene itaconate)s could be utilized to place diverse functionalities at regular intervals along the polymer backbone. Scheme 4. Preparation of periodically graftable polyesters, based on itaconic acid, and their subsequent modification by Michael addition. In Chapter 3, we examined a series of periodically grafted polyesters carrying long crystallizable alkylene (C-20) segments along the backbone and pendant polyethylene glycol monomethyl ether (MPEG) segments grafted at periodic intervals. Such periodically grafted amphiphilic copolymers (PGAC) having MPEG graft segments of varying lengths were prepared by utilizing the activated exo-chain double bonds in poly(icosyl itaconate) (PII) that carries a 20-carbon alkylene segment; MPEG thiols of varying lengths (TREG, 350, 550 and 750) were quantitatively grafted under standard Michael addition conditions to yield the required graft copolymers, as shown in Scheme 5. Scheme 5. Synthesis of a series of periodically grafted amphiphilic copolymers (PGAC) utilizing post-polymerization modification via Michael addition with MPEG thiols of varying lengths. The immiscibility of the backbone alkylene and pendant MPEG segments, and the strong propensity of the alkylene segments to crystallize in a paraffinic lattice, drive these systems to fold in a zigzag fashion and subsequently organize into a lamellar morphology, as shown in Scheme 6. Interestingly, all the graft copolymers exhibited a clear and invariant melting transition at ~44°C that suggested the crystallization of the backbone C-20 segment; the MPEG segments were, however, amorphous except in the case of polymers carrying MPEG 550/MPEG-750 segments, wherein a second melting transition corresponding to the independent crystallization of the PEG segment was also seen. SAXS studies indicated that all of the samples exhibited lamellar morphologies wherein more importantly, the inter-lamellar spacing was seen to increase linearly with the MPEG length (Scheme 6). This study provides a new design for controlling the dimensions of the microphase-separated nanostructures at significantly smaller length scales (sub-10 nm) than is typically possible using block copolymers. Scheme 6. Schematic representation of formation of lamellar morphology in PGACs and control of interlamellar spacing in such systems. In order to understand the influence of having a mixture of MPEG lengths on the self-assembled morphology, in Chapter 4 we prepared a series of PGACs by co-grafting the parent poly(icosyl itaconate) with a mixture of two different MPEG thiols, namely MPEG-350 and MPEG-750; the mole-ratios of these two PEGs were varied to generate co-grafted PGACs, carrying different amounts of the two MPEG segments randomly distributed along the chain (Scheme 7). Parallely, we also examined the behaviour of physical mixtures of two different PGACs, one bearing MPEG-350 and the other MPEG-750 grafts; keeping the total MPEG content constant, we sought to examine the differences in the behaviour of randomly co-grafted polymers and physical mixtures. Scheme 7. Preparation of co-grafted PGACs and physical mixtures of two different PGACs. The co-grafted PGACs also exhibited a lamellar morphology; interestingly, the inter- lamellar spacing increased linearly with the total volume of PEG domain. This suggested that despite the presence of MPEG segments of two different lengths in the co-grafted samples, there occurred a reorganization of the PEG chains within the amorphous domain ensuring that the condition of incompressibility is not violated, thereby giving rise to a weighted average interlamellar spacing, as shown in Scheme 8. In contrast, the SAXS patterns of the physical mixtures revealed the presence of two distinct lamellar domains in the sample; this indicated that the two homo-grafted samples do not mix and form separate lamellar domains. The self- segregation induced folding and subsequent crystallization of the central alkylene segments clearly appeared to dominate the final morphology. Scheme 8. Schematic depiction of the possible scenarios that could arise when MPEG segments of two different lengths, namely MPEG350 and MPEG750, are present in the PGACs; top panel depicts the co-grafted PGACs, whereas the bottom panel shows the case of mixtures of PGACs with two different MPEG lengths. In Chapter 5, we have dealt with the design and synthesis of chain-end functionalizable polyalkylene itaconates. Changing the monomer from dibutyl itaconate to dipropargyl itaconate and using it in controlled excess allowed us to generate chain-end functionalizable polymers containing propargyl groups at the chain ends, in addition to the exo-chain double bonds along the backbone, thereby providing the opportunity for orthogonal functionalization. In order to obtain three different telechelic polymers with target DPs (degree of polymerization) of 5, 10 and 20 respectively, 3 different mole ratios of the two monomers (dipropargyl itaconate and 1,20-eicosanediol) were used (Scheme 9). Scheme 9. Synthetic scheme for the generation of chain-end functionalizable polyalkylene itaconates. Orthogonal functionalization of the resultant polymers was carried out using thiol-Michael addition and Cu(I)-catalysed alkyne-azide cycloaddition (AAC), without interference between the functional handles present along the polymer backbone and the chain-end, respectively. Michael addition with triethylene glycol thiol and subsequent Cu-catalysed click reaction with MPEG 750 azide led to the generation of ABA type triblock copolymers where the middle block is a periodically grafted amphiphilic block and the two linear end blocks are hydrophilic in nature. Furthermore, such propargyl-terminated polyalkylene itaconates were used as macromonomers to prepare multiblock copolymers. The telechelic polymers were first treated with PEG 600 diazide, resulting in the formation of alternating multiblock copolymers; these multiblock copolymers were further reacted with thioglycerol to generate amphiphilic multiblock copolymers where one of the blocks is a periodically functionalized amphiphilc block, as depicted in Scheme 10. In both these amphiphilic block copolymer systems, a key feature is that the periodically functionalized amphiphilic block folds into a zigzag form, as evident from the presence of a nearly invariant melting peak corresponding to the crystallization of the alkylene segment. Scheme 10. Preparation of multiblock copolymers utilizing propargyl-terminated polyalkylene itaconates as a macromonomer. In summary, the thesis has demonstrated the design and synthesis of a series of novel amphiphilic copolymers using a bio-sourced monomer, wherein the driving theme is the immiscibility driven self-segregation that leads to the folding of the chain; these have been thoroughly examined using DSC, SAXS, WAXS, variable temperature FT-IR and AFM measurements. References (1) Berda, E. B.; Lande, R. E.; Wagener, K. B. Macromolecules 2007, 40, 8547. (2) Roy, R. K.; Gowd, E. B.; Ramakrishnan, S. Macromolecules 2012, 45, 3063. (3) Mandal, J.; Krishna Prasad, S.; Rao, D. S. S.; Ramakrishnan, S. Journal of the American Chemical Society 2014, 136, 2538. (4) Mandal, J.; Ramakrishnan, S. Langmuir 2015, 31, 6035.
23

Nouveaux copolymères dérivés d'esters cellulosiques par polymérisation radicalaire contrôlée. Application à la purification du carbonate de diméthyle par un procédé de séparation par membrane / New copolymer derivatives from cellulosic esters by controlled radical polymerization - Application to the dimethyl carbonate purification with a membrane-based separation process

Heurtefeu, Magali 09 October 2008 (has links)
Ce travail a consisté en la synthèse de nouveaux copolymères d’acétate de cellulose greffés par du poly(méthyl diéthylène glycol méthacrylate) avec un nombre et une longueur de greffons variables par une méthode de polymérisation radicalaire contrôlée : l’Atom Transfer Radical Polymerization (ATRP). Deux familles de matériaux ont été obtenues ayant mêmes compositions (entre 20 et 50% en masse de greffons) mais des architectures différentes : de nombreux greffons courts ou peu de greffons longs. Ces matériaux ont ensuite été étudiés pour la séparation par pervaporation de mélanges azéotropiques de type aprotique/protique : carbonate de diméthyle/méthanol et éthyl tert-butyl éther/éthanol. Pour la séparation du premier mélange, la réticulation des copolymères s’est avérée nécessaire, conduisant à des matériaux qui restent fragiles sous contrainte et qui présentent des flux élevés au détriment d’une très faible sélectivité. Pour cette séparation, ces matériaux permettent cependant de dépasser la limite thermodynamique imposée par l’azéotrope. Pour le mélange éthyl tert-butyl éther/éthanol, les copolymères montrent d’excellentes performances en extrayant l’éthanol de manière très sélective. L’introduction de greffons permet d’augmenter le flux de pervaporat tout en ne diminuant que faiblement la sélectivité par rapport à l’acétate de cellulose précurseur. L’analyse de la microstructure des copolymères montre que les copolymères avec peu de greffons longs sont beaucoup plus ségrégés que ceux avec de nombreux greffons courts. Les résultats de perméabilité montrent des comportements différents selon l’architecture du copolymère cohérents avec leur microstructure / This work deals with the synthesis of new copolymers of cellulose acetate grafted with poly(methyl diethylene glycol methacrylate) with different numbers and lengths of grafted chains by controlled radical polymerization (Atom Transfer Radical Polymerization ATRP). Two families of materials were obtained with the same compositions (between 20 and 50% in mass of grafted chains) but different architectures : a lot of short chains or a few long chains. These materials were then studied for the pervaporation separation of two aprotic/protic azeotropic mixtures : dimethyl carbonate/methanol and ethyl tert-butyl ether/ethanol. For the separation of the first mixture, copolymers had to be cross-linked but their mechanical withstanding was poor under stress and they showed high fluxes but very low selectivity. Nevertheless, the materials allowed to go over the thermodynamical azeotropic limit. For ethyl tert-butyl ether/ethanol separation, copolymers showed excellent performances with a very selective extraction of ethanol. The presence of grafted chains increased flux along with a slight decrease in selectivity compared with the cellulose acetate precursor. The analysis of the copolymer microstructure showed that copolymers with long grafted chains were more segregated than those with short grafted chains. The results of permeability showed different behaviours according to the copolymer architecture in good agreement with their microstructure
24

De Mycobacterium tuberculosis à la protéomique chimique : utilisation et greffage d'inhibiteurs de lipases et carboxylestérases / From Mycobacterium tuberculosis to chemical proteomics : application and grafting of lipases and carboxylesterases inhibitors

Delorme, Vincent 06 July 2012 (has links)
La tuberculose reste l'une des maladies les plus meurtrières dans le monde et de nouvelles stratégies sont urgemment demandées pour combattre Mycobacterium tuberculosis (Mtb), l'agent éthiologique de la maladie. Les lipides jouent un rôle important dans le cycle de vie de la bactérie et sont largement présents dans sa membrane et son cytoplasme, où ils peuvent servir en tant que sources de carbone et d'énergie pour favoriser la pathogénicité et la survie pendant les phases d'infection et de persistance. Dans ce contexte, les rôles des enzymes lipolytiques restent mal définis et demandent à être davantage caractérisés. La première partie de ce travail de thèse a été consacrée à l'étude des douze enzymes de Mtb homologues à la lipase hormono-sensible humaine. Les effets du MmPPOX, un composé oxadiazolone très sélectif de cette famille de protéines, ont été évalués sur les enzymes recombinantes et directement in vivo sur Mtb et M. bovis BCG. Cet inhibiteur a démontré une activité antimycobactérienne, suggérant des rôles métaboliques importants pour ces enzymes. La seconde partie de ce travail a été consacrée à l'étude des mécanismes physico-chimiques dont dépendent fortement les inhibitions des lipases et des carboxylestérases in vivo, comme la présence de substrats et/ou de détergents. La spectrométrie de masse a également été introduite en tant qu'outil rapide et puissant pour caractériser les adduits [enzyme-inhibiteur]. Enfin, nous avons développé une approche de chimie protéomique pour capturer sélectivement des hydrolases à sérine à partir de milieux biologiques complexes. / Tuberculosis remains one of the deadliest diseases in the world and new strategies are urgently needed to combat Mycobacterium tuberculosis (Mtb), its etiologic agent. Lipids play an important part in the lifetime of the bacterium, as they are widely present in the membrane and stored in the cytoplasm, where they could be used as carbon and energy sources to promote pathogenicity and survival during infection and persistence. In this context, roles of lipolytic enzymes are still poorly understood and remain to be characterized. The first part of my work was devoted to the study of twelve Mtb enzymes homologous to the human hormone-sensitive lipase. Effects of MmPPOX, an oxadiazolone compound highly selective for this family of proteins, were investigated using recombinant enzymes and directly tested in vivo using Mtb and M. bovis BCG. This inhibitor demonstrated antimycobacterial activities, suggesting important metabolic roles for these enzymes. The second part of this work was devoted to the study of physico-chemical mechanisms on which lipase and carboxylesterase inhibition could strongly depend in vivo, like presence of substrates and/or detergents. Mass spectrometry was also introduced as a direct and powerful tool to characterize [enzyme-inhibitor] adducts. Finally, we developed chemical proteomics approaches to specifically capture serine hydrolases from complex biological media. We aimed to synthesize a grafted alkylphosphonate inhibitor on a solid support by assaying several grafting strategies and matrices of various chemical natures.
25

Functionalized Hyperbranched Polymers And Nonionenes

Roy, Raj Kumar 07 1900 (has links) (PDF)
In 1980’s a new class of material named as dendrimer became popular both in the field of polymer science and engineering. Dendrimer is an example of symmetric, highly branched three dimensional globular nano-object. It possess several interesting physical and chemical properties like low solution and melt-viscosity, lower intermolecular chain entanglement, large number of end groups placed at the molecular periphery, relatively high solubility with respect to their linear counterpart. In order to get this perfectly branched structure, one has to go through the tedious multistep synthetic approach, repetitive chromatographic purification and protection-deprotection strategies in every step; all of which limits the large scale production and thus commercialization. On the other hand, hyperbranched polymer, a highly branched analogue of dendritic polymer with few defects in their branching architecture, which can be prepared in a single step, show similar physical and chemical properties as that of dendrimer. Polymerization of AB2 monomer is one of the well established method to generate hyperbranched polymer which upon polymerization, generates plenty of ‘B ’groups at the periphery along with a single ‘A’ group as a focal point in the resulting hyperbranched polymer as shown in Figure 1. From the structural point of view, hyperbranched polymers consist of three distinctly different compartments such as periphery, interior and a (single) focal point. During the past decade our lab have developed a novel melt trans-etherification process to generate polyethers and have utilized to access to a wide variety of hyperbranched structures. One of the challenges we addressed is to selectively functionalize the periphery of the hyperbranched polymer during the polymerization process. Polycondensation of ‘AB2’ monomer is not sufficient enough to generate a wide variety of hyperbranched polymer as the periphery of hyperbranched polymer is limited to the ‘B’ functional group unless it could be modified via ‘post-polymerization modifications’. Copolymerization of ‘AB2’ monomer with stoichiometric amount of ‘A-R’ monomer should result in hyperbranched polymer decorated with ‘R’ groups in the periphery that can be prepared in a single step. One of the prerequisite in the ‘AB2+A-R’ approach is that the comonomer ‘A-R’ should have silent ‘R’ group which does not interfere during the polymerization. During the copolymerization process with stoichiometric amount of ‘A-R’ monomer, ‘AB2’ monomer having one equivalent excess of ‘B’ can react with the ‘A’ group from ‘A-R’ monomer eventually generating the hyperbranched structure with peripheral ‘R’ groups. By appropriately choosing the ‘R’ group, one can access a wide class of hyperbranched polymer with the required functionality. Further by having a reactive ‘R’ group that is not participating in polymerization can act as a handle for post-polymerization modifications. For instance, copolymerization of 1-(6-Hydroxyhexyloxy)-3,5-bis(methoxymethyl)-2,4,6-trimethylbenzene (Hydroxy as ‘A’ and methoxy as ‘B’) and 6-bromo-1-hexanol where ‘OH’ and ‘-(CH2)6Br’ is ‘A’ and ‘R’ functional groups respectively, generates hyperbranched polymer with peripheral alkyl bromide functional groups as shown in Figure 2. The peripheral alkylbromides has been quantitatively transformed to quaternary ammonium or pyridinium salts using trimethyl amine or pyridine respectively. Thus by the post polymerization modification, we have transformed a hydrophobic hyperbranched polymer to a water soluble cationic hyperbranched polymer by simple and efficient post-polymerization modification. In a slightly different objective we Another problem that I have addressed is the difficulty associated with the aforementioned copolymerization approach. In spite of the fact that stoichiometric amounts of ‘A-R’ type monomer was taken in ‘AB2 + A-R’ approach, the extent of peripheral functionalization i.e. the incorporation of ‘R’ group is relatively lower. Further the molecular weight of the hyperbranched polymer obtained is also not high. One of the reasons we adopted ‘AB2 + A-R’ approach is to provide a functional handle for the subsequent post-polymerization modification. We modified the ‘AB2’ type monomer with a functionalizable handle to circumvent the lower amount of incorporation of the ‘A-R’ type monomer in ‘AB2 + A-R’ approach. Of all the readily functionalizable handles, click chemistry found to be a very useful tool for the post-polymerization modifications as the reactions conditions are mild, no side product, high selectivity, easy purification, etc. Another advantage of this reaction is that, we can incorporate any type of functional group starting from a single clickable parent hyperbranched polymer. In this particular project, I have Earlier design of the ‘AB2’ type monomer in our group, to prepare hyperbranched polymer via melt transetherification process, involved benzylic methoxy groups as ‘B’ in ‘AB2’ monomer leading to a hyperbranched polymer with peripheral methoxy groups. Transetherification under melt-conditions is an equilibrium reaction which was driven towards the hyperbranched polymer by continuous removal of methanol from the system as a volatile alcohol. In the new design of ‘AB2’ monomer; we have used benzylic allyloxy groups as ‘B’ in ‘AB2’ monomer, where in polymerization is driven by the continuous removal of allyl alcohol (instead of methanol as in the previous case), generates hyperbranched polymer with peripheral allyloxy group containing hyperbranched polymer. The allyloxy groups can be subsequently functionalized with a variety of thiol, we prepared a hydrocarbon-soluble octadecyl-derivative, amphiphilic systems using 2-mercaptoethanol and chiral amino acid (N-benzoyl cystine) hyperbranched structures by using thiol-ene click reactions (Figure 3). Polymers prepared from the parent hyperbranched polymer have significantly different physical properties like glass transition temperature (Tg), melting point (Tm) etc; thus considering the versatility of functionalization, parent polymer could be envisioned as a clickable hyperscaffold. More interestingly by functionalizing cystine derivative, we have demonstrated the possibility of biconjugation of the hyperbranched polymer. In summary, the limitations of ‘AB2+A-R’ copolymerization approach (low molecular weight Molecular weight and molecular weight distribution are very important parameters that influence the physical property and thus the application of the polymeric materials. As predicted by Flory, hyperbranched polymers are inherently polydisperse in nature and it tends to infinity when the percent of conversion is very high. Experimentally observed value of polydispersity is also significantly higher compared to their linear analogues. Control of the molecular weight and polydispersity of hyperbranched polymer by using a suitable amount of reactive multifunctional core has been demonstrated in this project. We have substantiated by using very little amount of ‘B3’ core along with ‘AB2’ monomer; wherein ‘B’ in ‘B3’ are more reactive than ‘B’ in ‘AB2’ monomer, regulate the molecular weight and polydispersity of the resulting hyperbranched polymer. As the ratio of core to monomer increases the molecular weight and polydispersity reduces in nearly linear fashion. In a slightly different objective, the core and periphery are functionalized with two different fluorophore by using orthogonal click reactions and demonstrated the possibility of energy transfer from periphery to the core of the hyperbranched polymer. In this section of my thesis, the self-assembly behavior of a periodically grafted amphiphilic copolymer has been studied. Polymer was synthesized via melt transesterification approach where hexaethylene glycol monomethyl ether (HEG) containing diester monomers are reacted with alkylyne diol monomers with varying carbon spacer (C12 and Another interesting problem, I approached is to functionalize the interior part of the hyperbranched polymer. In the case of dendrimer, as it is a step-wise synthesis, internal functionalization could be accomplished with the order of monomer addition i.e. by putting the internal functional group containing monomer first followed by other monomer not having those functional groups, whereas it is a bit challenging task for hyperbranched polymers especially when dealing with polycondensation of AB2 monomers, as it is a single step polymerization process. For a hyperbranched polymer in the polycondensation of ‘AB2’ monomer, the internal functional group should reside in between of the ‘A’ and ‘B’ functional group wherein the internal functional groups are silent during the process of polymerization. In order to do so, we have designed and synthesized a new AB2 monomer (a in Figure: 4). Here decanol is the volatile condensate that was removed during the transetherification reactions leading to a hyperbranched polymer having allyl group as the internal functional group and decyloxy as the peripheral functional group (b in Figure: 4). As a post-polymerization modification, the interior allyl groups were modified by thiol-ene click reaction with variety of thiol derivatives. In one example, the inherent hydrophobic nature of the parent hyperbranched polymer which is enhanced by the decyl chain at the molecular periphery, is converted to a alkaline water soluble hyperbranched polymer by the click reaction with mercapto succinic acid (d in Figure: 4) or mercapto propionic acid (c in Figure: 4) to the internal allyl groups, generating a novel amphiphilic hypersystem. This kind of amphiphilic systems are very interesting to study for their self-assembly behavior, in this particular case, the modified hyperbranched polymer adopts as a large spherical aggregates in alkaline water evidenced by FESEM (Figure: 4) and AFM images. Further investigation is being carried out to understand the exact nature of these aggregates. As the hyperbranched polymer contained ‘-S-‘ group in the interior, we utilized this as the scaffold for scavenging heavy metal ions like Hg2+ from aqueous solutions to the chloroform solution containing polymer. This hyperbranched polymer could trap Hg2+ ions even when present in ppm level of contamination.
26

Relations entre l’omycète, Pythium oligandrum, et la vigne : étude de l’induction de résistance contre un agent pathogène du bois et impact sur les communautés microbiennes colonisant la plante / Relationships between the oomycete, Pythium oligandrum, and grapevines : induced resistance against a trunk wood pathogen and impact on plant microbial communities

Yacoub, Amira 14 December 2015 (has links)
Il est actuellement estimé qu’environ 13% du vignoble français est improductif suite aux pathologies affectant le bois des ceps, la principale d’entre elles étant l’esca. Parmi les moyens de lutte mis en œuvre, le biocontrôle, via l’utilisation d’un oomycète, Pythium oligandrum, est actuellement développé pour protéger les plants de vigne contre un agent pathogène pionnier de l’esca, Phaeomoniella chlamydospora. La sélection de souches de P. oligandrum, isolées du vignoble, et produisant in vitro des quantités importantes d’une protéine élicitrice, l’oligandrine, des systèmes de défense des végétaux a d’abord été réalisée. Trois essais en serre ont montré qu’une réduction significative (40 à 50%) des nécroses dues P. chlamydospora était observée après application d’inocula de l’oomycète sur les racines des plants de vigne pied-francs Au niveau de la tige, le niveau d’expression de 22 gènes impliqués dans les mécanismes de défenses de Vitis vinifera a été mesuré par PCR quantitative et des réponses spécifiques du végétal ont été observées selon les traitements. Six gènes (protéines PR, voie des phenylpropanoïdes, oxylipines et le système d’oxydo-réduction) ont été fortement induits lorsque les plants ont été pré-inoculés par P. oligandrum puis infectés par P. chlamydospora. Afin de mettre en évidence les mécanismes spécifiques mis en place lors de cette interaction tripartite, l'analyse de la réponse transcriptomique globale de la vigne (par microarray et RNAseq), au niveau de la tige, a été réalisée chez ces plants qui manifestent une résistance induite systémique (ISR). Plusieurs gènes impliqués dans la synthèse de l’éthylène et des jasmonates sont fortement induits, chez les plants pré-traités par l’oomycète puis infectés par l’agent pathogène. Plusieurs facteurs de transcription régulant ces voies de signalisation sont également fortement induits. Suite à l’analyse des populations de messagers (mRNA) de P. chlamydospora, il a été observé que les niveaux d’expression de gènes impliqués dans la synthèse des métabolites secondaires, des facteurs de transcription impliquées dans la régulation de différentes voies chez les champignons et certaines Carbohydrates Actives enZymes étaient modulés en présence de P. oligandrum au niveau racinaire. Ces résultats montrent que la colonisation du végétal par l’oomycète, même à distance de P. chlamydospora, induit un stress indirect important chez celui-ci. Afin d’optimiser l’implantation de cet agent de biocontrôle en pépinière et au vignoble, l’aptitude de P. oligandrum à coloniser les racines de plants de vignes greffés et à les protéger contre P. chlamydospora a été étudiée. Trois portes-greffes (SO4, 3309 et 101-14) greffés sur des cépages (Cabernet Sauvignon et Sauvignon Blanc) ont été inoculés ou non par P. oligandrum. L’oomycète s’implantait sur les différents systèmes racinaires, mais en proportion variable selon les associations cépage/porte-greffe utilisées. Les analyses par empreintes moléculaires (Single Strand Conformation Polymorphism) ont montré que des microflores fongiques et bactériennes complexes et diversifiées colonisaient les feuilles et les racines, mais que l’introduction de P. oligandrum sur la plante n’induisait pas de bouleversements directs ou indirects notables au niveau de ces microflores indigènes. Une protection des jeunes plants de vigne greffés (SO4 + Cabernet Sauvignon) semble être induite par P. oligandrum contre l’agent pathogène, P. chlamydospora. / Approximately 13% of French vineyards are currently considered unproductive due to trunk diseases, mainly Esca, a particularly destructive disease that affects grapevines worldwide. Accordingly, biological control of a pathogen implicated in Esca, Phaeomoniella chlamydospora, was developed using the oomycete, Pythium oligandrum. The selection of P. oligandrum strains, isolated from vineyards, which produced in vitro large quantities of oligandrin, an elicitin-like protein inducing plant defences, was carried out. Three greenhouse assays showed that the necroses caused by P. chlamydospora were significantly reduced (40 to 50%) when P. oligandrum colonized the root system of vine cuttings. At stem level, the expression of a set of 22 genes involved in Vitis vinifera defence mechanisms was measured by quantitative PCR. Depending on the treatments employed, significant differences in grapevine responses were observed. Six of the genes (PR proteins, phenyl-propanoid pathway, oxylipins and the oxydo-reduction system) were strongly induced in plants pre-treated with P. oligandrum, and subsequently infected by P. chlamydospora. In order to characterize the mechanisms occurring during this tri-partite interaction, the global transcriptomic grapevine responses at stem level were analysed, using microarray and RNAseq, in plants in which induced systemic resistance (ISR) had taken place. Several genes involved in ethylene and jasmonate biosynthesis were strongly induced in plants that were pre-treated with P. oligandrum, and subsequently infected by P. chlamydospora. The transcription factors involved in the regulation of these signalisation pathways were also induced. Analysis of the P. chlamydospora RNA messenger (mRNA), showed that certain genes involved in secondary metabolite synthesis, transcription factors implicated in pathway regulations, and certain Carbohydrate Active enZymes, were modulated, when P. oligandrum colonised the roots. These results demonstrated that root inoculation with P. oligandrum induced indirect stress on P. chlamydospora responses. In order to promote P. oligandrum implantation in nurseries and vineyards, the capacity of this biocontrol agent to colonize the roots of grafted-plants, and to protect them against P. chlamydospora attacks, was studied. Three rootstocks (SO4, 3309 and 101-14), grafted on two scion varieties (Cabernet Sauvignon and Sauvignon Blanc), were inoculated or not with P. oligandrum. Depending on the particular scion/rootstock associations, the oomycete colonized the various root systems differently. Single Strand Conformation Polymorphism (SSCP) analyses revealed complex and diverse fungal and bacterial communities in both the rhizosphere and the phyllosphere. These microflora, which were organ-dependent, were not direcly or indirectly affected by the root inoculation of P. oligandrum. Protection of grafted vines (SO4 + Cabernet Sauvignon) was probably induced by P. oligandrum against the pathogen, P. chlamydospora.
27

On the Size and Shape of Polymers and Polymer Complexes : A Computational and Light Scattering Study

Edvinsson, Tomas January 2002 (has links)
<p>Detailed characterization of size and shape of polymers, and development of methods to elucidate the mechanisms behind shape transitions are central issues in this thesis. In particular we characterize grafted polymer chains under confinement in terms of the chain entanglement complexity and mean molecular size. Confinement of polymers into small regions can drastically affect the structural and mechanical properties, and make these systems convenient for a large number of applications, including the design of lubricants, coatings, and various biotechnical applications.</p><p>Using Monte Carlo simulations with a model including both persistence length and intramolecular non-bonded interaction, we find two regimes of polymer behaviour: <i>i) soft mushrooms</i>, where confinement successively flattens the chains with accompanying change in the folding complexity, and <i>ii) hard mushrooms </i>where the compact structures appear to resist confinement and the only way to reorganize the entanglements is by flattening under strong confinement. We also show that a simultaneous use of mean molecular size and chain entanglement complexity renders the possibility to create configurational "phase" diagrams for a wide range of polymers. We have further introduced a new descriptor of folding complexity, <i>the path-space ratio</i>, ζ<sub>α</sub> which captures essential features of molecular shape beyond those conveyed by mean size and asphericity.</p><p>This thesis also contains results of light scattering measurements on supramolecular complexes formed when mixing an adamantane end-capped star polymer with a β-cyclodextrin polymer. The specific interactions result in an interplay between the association of the end-caps and a strong inclusion interaction between adamantane and β-cyclodextrin.</p>
28

On the Size and Shape of Polymers and Polymer Complexes : A Computational and Light Scattering Study

Edvinsson, Tomas January 2002 (has links)
Detailed characterization of size and shape of polymers, and development of methods to elucidate the mechanisms behind shape transitions are central issues in this thesis. In particular we characterize grafted polymer chains under confinement in terms of the chain entanglement complexity and mean molecular size. Confinement of polymers into small regions can drastically affect the structural and mechanical properties, and make these systems convenient for a large number of applications, including the design of lubricants, coatings, and various biotechnical applications. Using Monte Carlo simulations with a model including both persistence length and intramolecular non-bonded interaction, we find two regimes of polymer behaviour: i) soft mushrooms, where confinement successively flattens the chains with accompanying change in the folding complexity, and ii) hard mushrooms where the compact structures appear to resist confinement and the only way to reorganize the entanglements is by flattening under strong confinement. We also show that a simultaneous use of mean molecular size and chain entanglement complexity renders the possibility to create configurational "phase" diagrams for a wide range of polymers. We have further introduced a new descriptor of folding complexity, the path-space ratio, ζα which captures essential features of molecular shape beyond those conveyed by mean size and asphericity. This thesis also contains results of light scattering measurements on supramolecular complexes formed when mixing an adamantane end-capped star polymer with a β-cyclodextrin polymer. The specific interactions result in an interplay between the association of the end-caps and a strong inclusion interaction between adamantane and β-cyclodextrin.
29

Avaliação da reatividade entre o Biopolímero poli (Ácido Lático) (PLA) e o polietileno enxertado com ácido acrílico (PEgAA) e do efeito da concentração de PEgAA nas propriedades e na morfologia da blenda PLA/PEgAA.

ARAÚJO, Jeane Paulino de. 28 June 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-06-28T22:08:37Z No. of bitstreams: 1 JEANE PAULINO DE ARAÚJO – DISSERTAÇÃO (UAEMa) 2015.pdf: 2128480 bytes, checksum: 70c9e8ae2b3e956c8dd6515d58ebc9d0 (MD5) / Made available in DSpace on 2018-06-28T22:08:37Z (GMT). No. of bitstreams: 1 JEANE PAULINO DE ARAÚJO – DISSERTAÇÃO (UAEMa) 2015.pdf: 2128480 bytes, checksum: 70c9e8ae2b3e956c8dd6515d58ebc9d0 (MD5) Previous issue date: 2018-06-28 / Capes / O poli(ácido lático) (PLA) tem despertado grande interesse tanto da academia como da indústria devido principalmente a sua biodegradabilidade, algumas propriedades mecânicas atraentes e por ser sintetizado a partir de matéria-prima de fontes renováveis. Entretanto, o PLA apresenta algumas desvantagens, como alta fragilidade, baixa taxa de cristalização, sensibilidade a umidade e a degradação em altas temperaturas, que limitam suas aplicações e comprometem seu processamento e desempenho final, sendo necessário muitas vezes modificar o PLA para que este possa atender as expectativas de mercado. Desse modo, foi realizada a modificação do PLA através de blendas com o polietileno enxertado com ácido acrílico (PEgAA), sendo avaliada a reatividade entre os grupos funcionais dos dois polímeros e o efeito de diferentes concentrações do copolímero PEgAA nas propriedades das blendas. As blendas PLA/PEgAA contendo 5, 10, 15 e 20% (em massa) do PEgAA foram preparados em uma extrusora dupla-rosca corrotacional, sendo caracterizadas por espectroscopia na região do infravermelho com transformada de Fourier (FTIR), calorimetria exploratória diferencial (DSC), análise térmica dinâmico-mecânica (DMTA), propriedades mecânicas, microscopia eletrônica de varredura (MEV), difratometria de raios X (DRX) e ensaios reológicos. A análise por FTIR indicou a ocorrência de uma reação de poliesterificação entre os grupos hidroxila do PLA e os grupos carboxila do PEgAA. As análises DSC e DMTA indicaram que a adição do PEgAA levou à diminuição tanto da temperatura de transição vítrea (Tg) como da temperatura de cristalização a frio (Tcc) do PLA nas blendas. Com o aumento do teor de PEgAA nas blendas houve aumento do tamanho dos domínios de PEgAA. Com a incorporação do PEgAA houve ligeiro aumento da resistência ao impacto para as blendas com 5 e 10% do PEgAA em relação ao PLA puro. A blenda PLA/PEgAA contendo 15% do PEgAA apresentou maior viscosidade complexa e o módulo de armazenamento a baixas frequências. / The poly(lactic acid) (PLA) has attracted great interest from both academia and industry mainly due to its biodegradability, some attractive mechanical properties and because it is synthesized from raw materials from renewable sources. However, PLA has some drawbacks such as high brittleness, low crystallization rate, sensitivity to moisture, and deterioration at high temperatures, which limit its applications and compromise its processing and final performance, needing to be modified, so it can meet market expectations. Thus, the modification of PLA was carried by blending it with polyethylene grafted with acrylic acid (PEgAA), assessing the reactivity between the functional groups of the two polymers and the effect of different PEgAA copolymer content on the properties of PLA/PEgAA blend. PLA/PEgAA blends containing 5, 10, 15 and 20% (wt) of PEgAA were prepared in a co-rotational twinscrew extruder, and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), mechanical properties, scanning electron microscopy (SEM), X-ray diffraction (XRD) and rheological measurements. FTIR results indicated that a polyesterification reaction between the hydroxyl groups of PLA and the carboxyl groups of PEgAA has occurred. DSC and DMTA analyses indicated that the addition of PEgAA to PLA led to the decrease in both the glass transition (Tg) and the cold crystallization (Tcc) temperatures. The PEgAA domains size increased with the increase in the PEgAA content. With the addition of PEgAA there was a slight increase in the impact strength of the blends containing 5 and 10% of PEgAA, when compared to that of neat PLA. The PLA/PEgAA blend containing 15% (wt) of PEgAA presented the highest complex viscosity and storage modulus at low frequencies.
30

Estudo e desenvolvimento de materiais para aplicações em células solares híbridas / Study and development of materials for applications in hybrid solar cells / Étude et développement des materiaux pour des applications dans les cellules solaires hybrides

Bregadiolli, Bruna Andressa [UNESP] 20 September 2016 (has links)
Submitted by Bruna Andressa Bregadiolli null (brunabregadiolli@hotmail.com) on 2016-11-14T15:01:32Z No. of bitstreams: 1 these Bruna final revisada.pdf: 6701827 bytes, checksum: ff6657984f5cc54c2e587577fbdcfe83 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-11-21T12:28:44Z (GMT) No. of bitstreams: 1 bregadiolli_ba_dr_bauru.pdf: 6701827 bytes, checksum: ff6657984f5cc54c2e587577fbdcfe83 (MD5) / Made available in DSpace on 2016-11-21T12:28:44Z (GMT). No. of bitstreams: 1 bregadiolli_ba_dr_bauru.pdf: 6701827 bytes, checksum: ff6657984f5cc54c2e587577fbdcfe83 (MD5) Previous issue date: 2016-09-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Ce travail vise à étudier et à développer des matériaux pour des applications dans les cellules solaires de troisième génération. Les matériaux synthétisés sont des dérivés de fullerène, l'oxyde de titane et des nanoparticules hybride (polymère@oxyde). Les polymères dérivés de fullerène, de type n, ont été conçues pour contenir C60 dans la chaîne principale. Trois produits différents ont été obtenus, en faisant varier la longueur du comonomère en utilisant une nouvelle voie de polymérisation. Les dispositifs photovoltaïques ont été préparés en utilisant la configuration à hétérojonction en vrac et le rendement le plus élevé atteint était de 1,84 %, ce qui représente une performance prometteuses pour un nouveau matériau. Les nanoparticules de dioxyde de titane ont été synthétisés en utilisant la technique hydrothermique assistée par micro-ondes dans différentes conditions de réaction, tels que le pH, la température et le temps, afin d'obtenir ainsi défini nanométrique morphologie, avec des rendements élevés et une grande surface spécifique. En outre, on a étudié l'influence des ions Na+ sur la croissance cristalline des oxydes et morphologies des oxydes, où c'etait obtenu des nanoparticules, des aiguilles et des structures ressemblant des nanotubes. Les nanoparticules hybrides ont été synthétisés en utilisant l'oxyde synthétisé et un polymére, P3HT, fonctionnalisés afin de lier de manière covalente avec les oxydes. Les nanoparticules sont optiquement caractérisés et ont conclu à être possible d'utiliser pour les études de transfert de charge dans les systèmes hybrides. / Este trabalho tem como objetivo estudar e desenvolver materiais para aplicações em células solares de terceira geração. Os materiais sintetizados são derivados de fulereno, óxido de titânio e nanopartículas híbrido (óxido@polímero). Os polímeros derivados de fulereno, de tipo n, foram planejados para conter C60 na cadeia principal. Três produtos diferentes foram obtidos, variando o comprimento da cadeia alquílica do co-monômero utilizando uma nova rota de polimerização. Os dispositivos fotovoltaicos foram preparados utilizando a configuração de heterojunção no volume e a maior eficiência alcançada foi de 1,84 %, o que representa um desempenho promissor para um novo material. As nanopartículas de dióxido de titânio foram sintetizadas usando a técnica hidrotermal assistida por micro-ondas em diferentes condições reacionais, tais como pH, temperatura e tempo, de modo a obter a morfologia nano dimensionada bem definida, rendimentos elevados e alta área superficial. Além disso, estudou-se a influência dos íons Na+ no crescimento cristalino dos óxidos e em sua morfologia, onde foram obtidas nanopartículas, estruturas tipo agulas e estruturas tipo nanotubos. As nanopartículas híbridas foram sintetizadas utilizando os óxidos sintetizados e um polímero, P3HT, funcionalizado de modo a ligar-se covalentemente aos óxidos. As nanopartículas foram opticamente caracterizadas e concluímos que estas podem ser utilizadas para estudar a transferência de carga em sistemas híbridos. / This work aims to study and develop materials for applications in third generation solar cells. The synthesized materials are fullerene derivatives, titanium oxide, and hybrid (polymer@oxide) nanoparticles. The fullerene derivatives, n-type polymers, were designed to contain C60 in the main chain. Different products were obtained, varying the comonomer alkyl length using a new polymerization route discovery in this work. The photovoltaic devices were prepared using the bulk heterojunction configuration and the highest efficiency reached was 1.84 %, representing a very promising performance for a novel material. The titanium dioxide nanoparticles were synthesized using microwave assisted hydrothermal technique in different reaction condition, such as pH, temperature and time, in order to obtain well defined nano-sized morphologies, high yields and high surface areas. Also, it was investigated the influence of the Na+ ions on the crystalline growth and morphologies of the oxides, where nanoparticles, needles and nanotube-like structures were obtained. The hybrid nanoparticles were synthesized using the prepared oxides and a P3HT functionalized in order to bond covalently with the oxides. The nanoparticles were optically characterized and concluded to be possible to use for studies of charge transfer in hybrid systems. / FAPESP: 2011/02205-3 / CAPES: 11216-12-3

Page generated in 0.0311 seconds