Spelling suggestions: "subject:"brandes échelle"" "subject:"arandes échelle""
121 |
Bruit rayonné par un écoulement subsonique affleurant une cavité cylindrique : caractérisation expérimentale et simulation numérique par une approche multidomaine d'ordre élevéDesvigne, Damien 03 December 2010 (has links) (PDF)
Le bruit de cavité est un phénomène très fréquent dans le domaine des transports aériens.Il survient notamment lors de l'approche à l'atterrissage, où des interactions entre la cellule de l'aéronef et l'écoulement sont à l'origine de fortes émissions tonales. Il devient dès lors une source de pollution acoustique non-négligeable pour les populations résidant à proximité de zones aéroportuaires. Les études numériques et expérimentales décrites jusqu'à présent dans la littérature abordent essentiellement le cas des cavités rectangulaires. Pourtant, les cavités rencontrées en pratique dans l'industrie aéronautique impliquent des géométries souvent plus complexes. Lorsque ces cavités sont soumises à une excitation de nature aérodynamique, leur spécificité géométrique conduit le plus souvent à des réponses acoustiques assez éloignées des estimations issues de modèles académiques construits sur l'observation de cavités rectangulaires. Quelques travaux seulement abordent le cas des cavités cylindriques.Ce travail est consacré à l'étude aéroacoustique des cavités cylindriques, à l'initiative d'Airbus. Il s'inscrit dans le cadre du projet AEROCAV soutenu par la Fondation de Recherche pour l'Aéronautique & l'espace (FRAE). Son objectif est de déterminer les mécanismes impliqués dans les émissions acoustiques intenses et tonales pour les configurations étudiées.Une première partie présente les résultats expérimentaux issus des campagnes de mesures menées dans la soufflerie anéchoïque du Centre Acoustique du LMFA et de l'école Centrale de Lyon. Un modèle semi-empirique, reposant sur l'hypothèse d'une résonance acoustique pilotée par les instabilités présentes dans la couche de cisaillement à l'ouverture de la cavité,est construit à partir du modèle d'Elder (1978). Le modèle permet d'estimer les fréquences susceptibles de dominer l'acoustique rayonnée en champ lointain à partir de la donnée du champ moyen de vitesse longitudinale, que l'on mesure dans le plan de l'écoulement par Vélocimétrie par Imagerie des Particules (PIV).Une seconde partie est destinée au calcul direct du bruit rayonné par un écoulement laminaire ou turbulent affleurant une cavité cylindrique de référence. Il consiste à calculer le champ acoustique directement à partir de la résolution des équations tridimensionnelles de la mécanique des fluides. Le solver Alesia est présenté dans une version modifiée et adaptée à la mise en oeuvre d'une approche multidomaine d'ordre élevé faisant intervenir plusieurs maillages se recouvrant. Des techniques d'interpolation sont spécifiquement développées en vue d'assurer une communication bidirectionnelle entre les différents maillages, malgré des contraintes géométriques fortes. Un modèle d'excitation de l'écoulement est aussi développé afin de disposer de fluctuations dans l'écoulement incident, pour le cas turbulent. Ces deux points font l'originalité des calculs réalisés.Les simulations, menées sur une cavité de rapport d'aspect géométrique égal à 1 et soumise à un écoulement incident à Mach 0.2, montrent que le rayonnement acoustique peut être fidèlement reproduit numériquement. La couche de cisaillement est caractérisée par la présence de deux larges structures tourbillonnaires s'amplifiant lors de leur convection. Leur présence s'accompagne de fortes fluctuations de vitesse à l'origine d'un débit aérodynamique de fluide à l'ouverture qui excite la cavité acoustiquement. Une résonance forcée s'établit dans celle-ci, excitant la couche de mélange au voisinage du point de séparation. Ce couplage auto-entretenu est à l'origine du rayonnement acoustique intense et fortement tonal de la cavité. Il s'établit à une fréquence proche de la fréquence prédite par le modèle semi-empirique développé.
|
122 |
MODELISATION DE LA DISPERSION ET L'EVAPORATION DE SPRAYS DANS DES CHAMBRES DE COMBUSTION AERONAUTIQUESSierra Sanchez, Patricia 23 January 2012 (has links) (PDF)
De nos jours, la combustion représente encore un 90% de la production totale d'énergie au monde. La plupart des brûleurs de type industriel utilisent comme carburant des hydrocarbures en forme liquide. Cependant, un grand nombre d'études ont été dédiés aux flammes gazeuses et l'impact du spray liquide est encore loin d'être totalement compris. Le but de cette étude est l'amélioration de la modélisation des deux phénomènes principaux qui ont lieu entre l'atomisation du spray et la combustion, i.e. la dispersion des gouttes par la turbulence gazeuse et le procès d'évaporation dans le contexte de la Simulation Aux Grandes Echelles (SGE) des configurations complexes. Premièrement, l'approche Euler-Euler mésoscopique (Février et al. (2005)), basée sur une moyenne d'ensemble conditionnée et implémentée dans AVBP est améliorée. Le modèle de fermeture (Simonin et al. (2001); Kaufmann (2004)) pour les moments de deuxième ordre qui apparait dans les équations de transport résolues échoue quand appliqué à des configurations cisaillées (Riber (2007)). Plusieurs modèles proposés récemment par Masi (2010) et qui ont été valides a priori dans une configuration de nappe chargée de particules sont validés a posteriori dans la même configuration. Une analyse quantitative sur plusieurs cas avec diffèrent nombres de Stokes, nombres de Reynolds de la phase gazeuse et résolutions du maillage ont permit de retenir un modèle non-linéaire nommé 2EASM3, qui utilise le tenseur de déformations de la phase dispersée comme échelle de temps caractéristique. La deuxième partie a pour but l'amélioration du modèle d'évaporation implémenté dans AVBP. Ce modèle suppose une conduction infinie dans la phase liquide et symétrie sphérique dans la phase gazeuse ainsi que des lois simplifiées pour les propriétés thermodynamiques et de transport. Un nouveau modèle prenant en compte la dépendance de la viscosité du mélange gazeux avec la composition locale, et des nombres de Prandtl et Schmidt fixés par les valeurs à l'équilibre obtenus par moyen d'une simulation prenant en compte des lois complexes pour les propriétés thermodynamiques et de transport est proposé. Cette nouvelle méthode produit des résultats en bon accord avec les mesures expérimentales pour l'évaporation d'une goutte isolée en une atmosphère d'azote au calme sans pourtant augmenter le cout du calcul. Finalement, l'impact des nouveaux modèles est analysé dans une SGE de la configuration semi-industrielle MERCATO (García-Rosa (2008)). Bien que les données expérimentales ne soient pas suffisantes pour confirmer les résultats, les distributions de gouttes et de carburant gazeux sont significativement affectés par les modèles, ce qui pourrait avoir un impact direct sur le procès d'allumage.
|
123 |
Modélisation des phénomènes de film liquide et d'atomisation pour la Simulation aux Grandes Échelles de brûleurs aéronautiques alimentés par atomiseurs "airblast"Chaussonnet, Geoffroy 13 May 2014 (has links) (PDF)
Les turbines à gaz doivent satisfaire des normes d'émission polluantes toujours en baisse. La formation de polluants est directement liée à la qualité du mélange d'air et de carburant en amont du front de flamme. Ainsi, leur réduction implique une meilleure prédiction de la formation du spray et de son interaction avec l'écoulement gazeux. La Simulation aux Grandes Échelles (SGE) semble un outil numérique approprié pour étudier ces mécanismes. Le but de cette thèse est de développer des modèles phénoménologiques décrivant la phase liquide notamment le film et son atomisation en bout de lèvre d'injecteur, dans un contexte SGE. Ces modèles sont validés ou calibrés sur l'expérience académique réalisée par l'Institut für Thermische Strömungsmaschinen (ITS) de l'université technologique de Karlsruhe (KIT), et appliqués dans une configuration réelle de moteur d'hélicoptère. Dans un premier temps, le film liquide mince est décrit par une approche Lagrangienne. Les particules de film représentent un volume élémentaire de liquide adhérent à la paroi. L'équation du mouvement est donnée par l'intégration des équations de Saint-Venant sur l'épaisseur du film. La dynamique du film est donnée par le gradient de pression longitudinal, le cisaillement interfacial du gaz et la gravité. Dans un second temps, l'atomisation du film est caractérisée par la distribution de taille de gouttes du spray généré. Celle-ci est décrite par une distribution de Rosin-Rammler dont les coefficients sont paramétrés par la vitesse du gaz, la tension superficielle du liquide et l'épaisseur de la lèvre de l'injecteur. Les constantes de ce modèle, baptisé PAMELA, sont calibrées sur l'expérience du KIT-ITS. La simulation de l'expérience KIT-ITS permet de valider le modèle de film, de vérifier la robustesse du modèle PAMELA, et de comparer qualitativement l'angle du spray généré. L'application de ces modèles dans une configuration réelle partiellement instrumentée permet de valider PAMELA sans modification de ses constantes, et d'étudier leur impact sur la structure de flamme, comparé aux méthodes traditionnelles d'injection liquide.
|
124 |
Etude numérique de la diffusion d'une onde acoustique par une couche de cisaillement turbulente à l'aide d'une simulation aux grandes échelles / Study of the scattering of an acoustic wave by a turbulent shear layer using large-eddy simulationBennaceur, Iannis 30 June 2017 (has links)
Lors des mesures acoustiques dans les souffleries à veine ouverte, les ondes acoustiques émises par une maquette ou une source située dans la veine se propagent dans la couche de cisaillement turbulente qui se forme aux abords du jet avant d’être reçues par les microphones localisés en dehors. L’onde acoustique interagit avec le champ de vitesse turbulent de la couche de mélange ce qui a pour effet de modifier son contenu spectral, de redistribuer spatialement son énergie et de moduler sa phase et son amplitude, on parle alors de diffusion acoustique. Cette thèse a consisté à l’étude de la diffusion d’une onde acoustique par une couche de cisaillement turbulente à l’aide d’une simulation numérique aux grandes échelles. Pour cela, il a d’abord été nécessaire de réaliser la simulation numérique aux grandes échelles d’une couche de cisaillement turbulente plane dans son régime auto-similaire. Dans un second temps, nous avons simulé l’interaction entre une onde acoustique et l’écoulement turbulent afin d’étudier les caractéristiques du champ de pression diffusé qui en résulte. Nous avons notamment vérifié que la simulation était capable de prédire précisément les fréquences sur lesquelles est répartie la plupart de l’énergie acoustique ainsi que la forme du spectre de pression diffusé. Finalement, le champ de vitesse du milieu turbulent qui est corrélé avec l’enveloppe du champ de pression diffusé a été reconstruit à l’aide de la méthode de l’estimation stochastique linéaire. Cette méthode nous a notamment permis de visualiser les larges structures turbulentes qui interviennent principalement dans le mécanisme de diffusion acoustique. / During open jet wind tunnel measurements, the acoustic waves emitted by a device or an acoustic source located inside the flow propagate inside the turbulent shear layer that develops at the periphery of the jet before being received by microphones located outside the flow. The acoustic wave interacts with the turbulent velocity field leading to a change of directivity, a phase and amplitude modulation as well as a spectral re-distribution of the acoustic energy over a band of frequencies. This phenomenon is known as acoustic scattering. This work has consisted in the study of the scattering of an acoustic wave by a turbulent shear layer using large-eddy simulation. The first step of the study has consisted in the large-eddy simulation of a turbulent shear layer in its self-similar state. In a second second step, the direct computation of the interaction between the acoustic wave and the turbulent flow has been performed in order to study the characteristics of the resulting scattered pressure field. It has been shown that the numerical simulation is able to accurately predict the frequencies on which the main part of the scattered energy is redistributed, as well as the shape of the scattered pressure spectrum. Finally, the turbulent velocity field which is correlated with the envelope of the scattered pressure field is reconstructed using the linear stochastic estimation method. This method has enabled the visualization of the large turbulent structures that mainly take part in the acoustic scattering mechanism.
|
125 |
Modeling the dispersion and evaporation of sprays in aeronautical combustion chambers / Modélisation de la dispersion et l'évaporation de sprays dans les chambres de combustion aéronautiquesSierra Sànchez, Patricia 23 January 2012 (has links)
De nos jours, la combustion représente encore un 90% de la production totale d'énergie au monde. La plupart des brûleurs de type industriel utilisent comme carburant des hydrocarbures en forme liquide. Cependant, un grand nombre d'études ont été dédiés aux flammes gazeuses et l'impact du spray liquide est encore loin d'être totalement compris. Le but de cet étude est l'amélioration de la modélisation des deux phénomènes principaux qui ont lieu entre l'atomisation du spray et la combustion, i.e. la dispersion des gouttes par la turbulence gazeuse et le procès d'évaporation dans le contexte de la Simulation Aux Grandes Echelles (SGE) des configurations complexes. Premièrement, l'approche Euler-Euler mésoscopique (Février et al. (2005)), basée sur une moyenne d'ensemble conditionnée et implémentée dans AVBP est amélioré. Le modèle de fermeture (Simonin et al. (2001); Kaufmann (2004)) pour les moments de deuxième ordre qui apparait dans les équations de transport résolues échoue quand appliqué à des configurations cisaillées (Riber (2007)). Plusieurs modèles proposés récemment par Masi (2010) et qui ont été valides a priori dans une configuration de nappe chargée de particules sont validés a posteriori dans la même configuration. Un analyse quantitative sur plusieurs cas avec diffèrent nombres de Stokes, nombres de Reynolds de la phase gazeuse et résolutions du maillage ont permit de retenir un modèle non-linéaire nommé 2EASM3, qui utilise le tenseur de déformations de la phase dispersée comme échelle de temps caractéristique. La deuxième partie a pour but l'amélioration du modèle d'évaporation implémenté dans AVBP. Ce modèle suppose une conduction infinie dans la phase liquide et symétrie sphérique dans la phase gazeuse ainsi que des lois simplifiées pour les propriétés thermodynamiques et de transport. Un nouveau modèle prenant en compte la dépendance de la viscosité du mélange gazeux avec la composition locale, et des nombres de Prandtl et Schmidt fixés par les valeurs à l'équilibre obtenus par moyen d'une simulation prenant en compte des lois complèxes pour les propriétés thermodynamiques et de transport est proposé. Cette nouvelle méthode produit des résultats en bon accord avec les mesures expérimentales pour l'évaporation d'une goutte isolé en une atmosphère d'azote au calme sans pourtant augmenter le cout du calcul. Finalement, l'impacte des nouveaux modèles est analysé dans une SGE de la configuration semi-industrielle MERCATO (García-Rosa (2008)). Bien que les données expérimentales ne soient pas suffisantes pour confirmer les résultats, les distributions de gouttes et de carburant gazeux sont significativement affectés par les modèles, ce qui pourrait avoir un impact directe sur le procès d'allumage. / Combustion still represents about 90% of the energy production in the world. Most industrial burners are fuelled with liquid hydrocarbons. However, most studies have been dedicated to gaseous ßames and the impact of liquid spray is still misunderstood. The purpose of this study is to improve the modelisation of two main phenomena occurring between atomization and combustion, i.e. the droplet dispersion in the turbulent gaseous flow and the evaporation process, in the context of Large Eddy Simulation (LES) of complex configurations. First, the mesoscopic Euler-Euler approach (Février et al. (2005)) based on a conditioned ensemble averaging and implemented in AVBP is improved. The closure model (Simonin et al. (2001), Kaufmann (2004)) for the second-order moments appearing in the transport equations solved fails in mean-sheared configurations (Riber (2007)). Several new models proposed by Masi (2010) and a priori tested in a particle-laden slab are tested a posteriori in the same configuration. A quantitative analysis based on several calculations varying the Stokes number, the gaseous Reynolds number and the grid resolution allows to retain a non-linear model using the particle rate-of-strain tensor as timescale and called 2EASM3. The second part consists in improving the evaporation model implemented in AVBP which assumes infinite conduction in the liquid and spherical symmetry in the gas phase along with simplified thermodynamics and transport properties calculation. A new model is proposed, where the dependence of gaseous mixture viscosity on local composition is accounted for, and the Prandtl and Schmidt numbers are fixed by a reference equilibrium calculation using complex thermodynamics and transport properties. This method shows good agreement with experimental measurements in the configuration of an isolated droplet evaporating in quiescent N2 without further increasing the computational cost. Finally, the impact of the new models is analysed in the LES of the MERCATO semi-industrial configuration (García-Rosa (2008)). Although the experimental data are not sufficient to confirm the results, both the droplet distribution and the fuel mass fraction are significantly affected, which would eventually affect the ignition process.
|
126 |
Etude de la structure des flammes diphasiques dans les brûleurs aéronautiques / Analysis of two-phase-flow flame structure in aeronautical burnersHannebique, Grégory 09 April 2013 (has links)
La régulation des polluants a mené à la création de nouveaux systèmes de combustion. Le carburant étant stocké sous forme liquide, sa transformation jusqu’à sa combustion est complexe. La capacité de la Simulation aux grandes échelles à simuler des écoulements turbulents réactifs a été montrée sur des cas académiques comme sur des configurations industrielles, tout en prenant en compte les phénomènes multiphysiques intervenant dans ces configurations, mais les études sur la structure de flamme diphasique sont encore trop peu nombreuses. La présence de deux solveurs pour la simulation d’une phase liquide étant disponible dans le code AVBP, leur utilisation permet une comparaison et une compréhension des phénomènes en jeu combinant dispersion, évaporation, et combustion. La première partie de l’étude relate la validation du modèle d’injection FIM-UR. Ce modèle est capable de reconstruire les profils de vitesses et de granulométrie à l’injecteur sans avoir à simuler les phénomènes d’atomisation primaire et secondaire. Une validation en régime turbulent avait déjà été réalisée, et on propose ici de valider le modèle dans un cas laminaire. Des comparaisons entre simulations monodisperses et polydisperse et des expériences sont effectuées. La simulation monodisperse Lagrangienne donne une bonne structure globale mais la simulation polydisperse Lagrangienne permet de retrouver le comportement au centre du cône avec la présence des petites gouttes et à la périphérie du cône par la présence des grosses gouttes. De plus, des améliorations sont apportées au modèle pour le formalisme Eulérien et montrent de bons résultats. La partie suivante s’intéresse à caractériser un spray polydisperse par une distribution monodisperse. En effet, au cas où une approche polydisperse n’est pas possible, le choix du diamètre moyen à prendre pour une simulation monodisperse est délicat. On propose donc d’analyser le comportement d’un spray polydisperse en le comparant à ceux de sprays monodisperses. Deux configurations académiques sont choisies : des cas de Turbulence Homogène Isotrope chargée en particules pour étudier la dynamique, et des calculs d’évaporation 0D. Trois paramètres sont étudiés pour la dynamique : la concentration préférentielle (ou ségrégation), la traînée moyenne et la traînée réduite moyenne. Cette dernière et la ségrégation de la distribution polydisperse semblent affectées par les tailles de goutte les plus faibles, et la concentration préférentielle apparait alors comme la moyenne des ségrégations des classes qui la composent pondérées par l’inverse du nombre de Stokes associé à chacune de ces classes. La traînée moyenne de la simulation polydisperse possède un comportement proche des diamètres moyens D10 et D20. Ces analyses nous poussent donc à choisir le D10 pour caractériser la dynamique d’un spray polydisperse. Les calculs d’évaporation 0D ne permettent pas dans un premier temps de caractériser efficacement la masse évaporée d’un spray polydisperse par celle d’un spray monodisperse équivalent, mais la définition de nouveaux diamètres issus de la littérature des lits fluidisés comme le D50% le permet, ce qui le place autour du D32. On propose donc de caractériser l’évaporation d’un spray polydisperse par ce diamètre. Enfin, la dernière partie étudie la structure de flamme diphasique dans la chambre MERCATO, à l’aide du formalisme Lagrangien, monodisperse et polydisperse, mais aussi en utilisant le formalisme Eulérien. La validation du modèle FIM-UR du premier chapitre et ses améliorations sont utilisées pour représenter les conditions d’injection liquide. En plus d’un calcul polydisperse, deux simulations monodisperses Lagrangiennes sont réalisées en prenant les diamètres moyens D10 et D32, suite à la partie précédente. Des comparaisons qualitatives et des validations sont réalisées, en comparant des profils de vitesses gazeuses axiale et fluctuante et vitesse axiale liquide issus de l’expérience. / Regulations on pollutants have led to the creation of new combustion systems. Giving that fuel is stored in a liquid form, its evolution until combustion is complex. The ability of Large Eddy Simulation has been demonstrated on academic cases, as well as on industrial configurations, by taking into account the multi-physics phenomena, but there is a lack of studies about two-phase flow flame structures. Two solvers for the simulation of two-phase flows are available in the AVBP code, hence both simulations are performed to compare and increase understanding of the phenomena involved such as dispersion, evaporation and combustion. The first part of the study focuses on the validation of the FIM-UR injection model. This model is able to build velocity and droplet profiles at the injector, without simulating primary and secondary break up. A validation in a turbulent case has already been done, and this study validates the model in a laminar case. Comparisons between monodisperse and polydisperse simulations, and experiments are performed. The monodisperse Lagrangian simulation shows good results but the polydisperse simulation is able to represent profiles in the center of the cone by small droplets and at the peripheral part of the cone, by big ones. Moreover, improvements in the Eulerian model exhibit good results. The next section tries to evaluate the impact of polydispersion. Indeed, when a polydisperse approach is not available, choosing the mean diameter can be tricky. A comparison between the behavior of polydisperse spray and monodisperse sprays ones is realised. Two academic cases are studied: Homogeneous Isotropic Turbulence with particles to analyze the dynamics, and 0D evaporation cases. For the dynamics, preferential concentration, mean drag and reduced mean drag are studied. The latter and preferential concentration are affected by small droplets, and the preferential concentration of a polydisperse spray is equivalent to the average of preferential concentration of classes, extracted from the polydisperse distribution, weighted by the inverse of the Stokes number of each class. The mean drag behaves like the D10 and D20 mean drags. This analysis allows us to choose the D10 to characterize a polydisperse distribution for the dynamics. Zero-D evaporation simulations cannot characterize the polydisperse spray evaporated mass by the evaporated mass of monodisperses sprays. New definitions of diameters from fluidized bed literature enable the use of D50%, which is close to D32. We propose to use this diameter to characterize the evaporation of a polydisperse spray. Finally, the last section studies the structure of two-phase flames in the MERCATO bench, using the Lagrangian formalism, monodisperse and polydisperse but also using the Eulerian formalism. The validation of FIM-UR model and improvements from the first section are used to represent liquid injection conditions. A polydisperse simulation is realized and two monodisperse simulations are computed using mean diameters D10 and D32, thanks to the previous section. Qualitative comparisons and validations are realized, comparing gaseous velocity profiles and liquid velocity profiles. Good agreements are found and the mean diameter D32 seems to be close to the polydisperse spray. A comparison between mean flames is done with an Abel transform of the flame from the experiments. The flame has an "M shape", anchored by small recirculation zones out of the swirler, and by a point at the tip of the central recirculation zone. Then, the impact of droplet distributions is analyzed. Even if few bigger droplets from the polydisperse distribution are convected in the hot gases due to bigger particular time and evaporation time, two-phase flow flame structures are equivalent. Different combustion regimes appeared with premixed flames and pockets of fuel burning in the hot gases.
|
127 |
LES based aerothermal modeling of turbine blade cooling systems / Simulation aux Grandes Échelles pour la modélisation aérothermique des aubages de turbines refroidiesFransen, Rémy 13 June 2013 (has links)
Ce travail de thèse, réalisé dans le cadre d’une convention CIFRE entre TURBOMECA et le CERFACS et en partenariat avec l’IVK, se place dans un contexte d’amélioration des performances des turbines axiales équipant les turboréacteurs d’hélicoptère. Un des points critiques du dimensionnement de tels moteurs est la maitrise de la durée de vie des pales de la turbine haute pression qui font face à de très hautes températures provenant de la chambre de combustion. Les prédictions numériques de l’environnement aérothermique des pales (écoulements dans la veine et système de refroidissement) sont réalisées aujourd’hui dans le milieu industriel à l’aide de la modélisation Reynolds Averaged Navier-Stokes (RANS). Grâce à des capacités de calculs grandissantes, l’approche Simulation aux Grandes Echelles (SGE) offre désormais un nouveau potentiel de prédictions d’écoulements. Les travaux de cette thèse s’intéressent ainsi à la capacité de la SGE à prédire l’écoulement du circuit de refroidissement interne d’une pale de turbine. Pour simplifier l’analyse de ce problème ou plusieurs phénomènes physiques sont en jeu, une progression en trois parties est proposée. La première s’intéresse à l’étude aérothermique de géométries simplifiées de canaux de refroidissement (coude à 180° et canal avec promoteurs de turbulence) en configuration statique. Aux régimes d’écoulement considérés, une approche résolue en paroi avec maillage non-structuré hybride est proposée et validée en vue d’une application industrielle facilitée. La seconde partie étend l’analyse de l’écoulement à un cas de canal avec promoteurs de turbulence en rotation utilisant une méthode de résolution numérique dans un repère absolu. Les investigations des résultats de la SGE fournissent des prédictions moyennes et instationnaires en bon accord avec les expériences disponibles et les travaux précédents aussi bien pour la dynamique de l’écoulement que les transferts de chaleur. Enfin, une troisième partie présente une application de la méthode sur un cas de pale réelle avec couplage thermique entre le circuit de refroidissement et le solide de la pale. Cette dernière partie classée confidentielle n’est pas présente dans le manuscrit disponible publiquement. Les résultats de l’approche résolue en paroi et de la rotation dans le repère absolu comparés aux résultats RANS disponibles pour le cas applicatif montrent d’importante différences locales et ainsi le potentiel de la méthode proposée. / This PhD dissertation, conducted as part of a CIFRE research project between TURBOMECA and CERFACS in partnership with the VKI, deals with improving performance of axial turbines from helicopter engines. One of the most critical design points of such engines is the control of the high pressure turbine blade lifetime which face the high temperatures from the combustor. Today, industrial numerical aerothermal predictions of the flows around the blade (in the vein and in its cooling system) are performed with the Reynolds Averaged Navier-Stokes (RANS). Thanks to the increasing computational power, Large Eddy Simulation (LES) becomes affordable to offer further flow predictions. Therefore, this thesis focuses on the capabilities of the LES to estimate the flow in turbine blade internal cooling channels. To simplify this analysis where several physical phenomenon are present, the problem is described in three parts with increasing complexity. The first part addresses simplified typical geometries of cooling channel (U-bend and ribbed channel) in a static configuration. Considering the flow regime, a wall-resolved approach using a hybrid unstructured mesh is proposed in view of the application on an industrial case. The second part extends the study of the ribbed channel in rotation using an inertial reference frame. LES provides mean and unsteady results in good agreement with the available experimental data and previous works, for the flow dynamic and the heat transfer. Finally, the third part presents the application of the method to an industrial case with conjugate heat transfer between a complex cooling channel and the blade. This last section is not present in the public manuscrit for confidential reasons. Results of the use of the wall-resolved approach in rotation in an inertial frame of reference are compared to RANS predictions and show the potential of the method with high local differences.
|
128 |
Modélisation de paroi et injection de turbulence pariétale pour la Simulation des Grandes Echelles des écoulements aérothermiques / Wall modeling and turbulent inflow generation for the Large Eddy Simulation of aerothermal flows.Bocquet, Sébastien 02 October 2013 (has links)
Lors du développement d’un nouvel avion, l’estimation des échanges d’énergie entre l’air ambiant et les parois est une donnée cruciale pour la conception aérothermique. Cette conception repose de plus en plus sur des simulations numériques mais certains phénomènes d’aérothermique externe, comme le jet débouchant du système de dégivrage des nacelles moteur, montrent les limites des modèles RANS classiques. La simulation des grandes échelles (LES) se révèle bien adaptée à ce type de phénomène mais se heurte à un coût de calcul extrêmement élevé pour ces écoulements pariétaux à très grand nombre de Reynolds. Pour lever cette limitation, cette thèse propose l’étude de deux briques fondamentales : la LES avec loi de paroi (WMLES) conjuguée à l’injection d’une couche limite turbulente à l’entrée du domaine. Pour une meilleure compréhension et une utilisation fiable de l’approche loi de paroi, on se concentre tout d’abord sur les sources d’erreur qui lui sont associées. Après les avoir identifiées, on propose une correction de l’erreur de sous-maille ainsi qu’une loi de paroi adaptée aux écoulements compressibles. Grâce à ces deux éléments, on obtient une estimation correcte du flux de chaleur pariétal sur des simulations WMLES de canal plan supersonique sur parois froides. Puis, pour préparer la transition vers des applications plus industrielles, on introduit un schéma numérique plus dissipatif ce qui nous permet d’étudier l’influence de la méthode numérique sur l’approche loi de paroi. Dans une seconde partie dédiée à l’injection de couche limite pour la WMLES, on sélectionne une méthode basée sur l’injection de perturbations combinée à un terme de contrôle volumique. On montre que des simulations WMLES utilisant cette méthode d’injection permettent d’établir une couche limite turbulente réaliste à une courte distance en aval du plan d’entrée, à la fois sur une plaque plane mais également sur un écoulement de jet débouchant à la géométrie plus complexe, représentative d’un cas avion. / During the design of a new aircraft, the prediction of energy exchanged between the ambient air and the aircraft walls is crucial regarding aerothermal design. Numerical simulations plays a role of increasing importance in this design. However classical RANS models reach their limits on some external aerothermal flows, like the jet-in-cross-flow from the anti-icing system oh the engine nacelles. The large eddy simulation (LES) is well suited to this kind of flow but faces an extremely large computational cost for such high Reynolds number wall-bounded flows. To remove this limitation, we propose two building blocks: the Wall Modeled LES (WMLES) combined with a turbulent inflow generation. For a better understanding and a reliable use of the WMLES, we first focus on the sources of error related to this approach. We propose a correction to the subgrid-scale error as well as a wall model suitable for compressible and anisothermal flows. Thanks to these two elements, we correctly predict the wall heat flux in WMLES computations of a supersonic isothermal-wall channel flow. Then, to allow the computation of more industrial flows, we introduce some numerical dissipation and study its effect on the wall modeling approach. The last part is dedicated to turbulent inflow generation for WMLES. We select a method based on synthetic perturbation combined with a dynamic control term. We validate this method on WMLES computations of a flat plate turbulent boundary layer and a hot jet-in-cross-flow representative of an industrial configuration. In both cases, we show that a realistic turbulent boundary layer is generated at a small distance downstream from the inlet plane.
|
129 |
Large eddy simulation of thermal cracking in petroleum industry / Simulation aux grandes échelles du craquage thermique dans l'industrie pétrochimiqueZhu, Manqi 05 May 2015 (has links)
Pour améliorer l'efficacité des procédés thermiques de craquages et réduire les phénomènes de cokage liés à la température de paroi trop élevée, l'utilisation de tubes nervurés est une technique potentiellement car elle permet d'améliorer le mélange et d'augmenter les transferts de chaleur. Cependant, la perte de charge est significativement augmentée. En raison de la complexité de l'écoulement turbulent, du système chimique et du couplage turbulencechimie, il est difficile d'estimer a priori la perte réelle en termes de sélectivité des tubes nervurés. Les expériences représentatives de laboratoire combinant turbulence, transferts de chaleur et chimie sont très rares et trop coûteuses à l'échelle industrielle. Dans ce travail, l'approche simulation aux grandes échelles résolue à la paroi (WRLES) est utilisée pour étudier écoulement non-réactif puis réactif dans des tubes à la fois lisses et nervurés, pour quantifier leur impact sur la turbulence et sur la chimie. Le code AVBP, qui résout les équations de Navier-Stokes compressibles pour les écoulements turbulents, est utilisé avec des schémas chimique réduites du craquage de l'éthane puis du butane. L'écoulement à la paroi est analysé en détail et comparé pour les deux géométries, fournissant des informations utiles pour le développement ultérieur de modèles de parois pour ce type de rugosité. L'impact de la résolution du maillage et du schéma numérique est également discuté, pour trouver le meilleur compromis entre coût et précision de calcul pour une application industrielle. L'impact des structures d'écoulement turbulent ainsi que leurs effets sur le transfert thermique et le mélange sur les réactions chimique sont étudiés à la fois pour les tubes lisses et les tubes nervurés. Perte de pression, transfert de chaleur et conversion chimique sont finalement comparés. / To improve the efficiency of thermal-cracking processes, and to reduce the coking phenomena due to high wall temperature, the use of ribbed tubes is an interesting technique as it allows better mixing and heat transfer. However it also induces significant increase in pressure loss. The complexity of the turbulent flow, the chemical system, and the chemistry-turbulence interaction makes it difficult to estimate a priori the real loss of ribbed tubes in terms of selectivity. Experiments combining turbulence, heat transfer and chemistry are very rare in laboratories and too costly at the industrial scale. In this work, Wall-Resolved Large Eddy Simulation (WRLES) is used to study non-reacting and reacting flows in both smooth and ribbed tubes, to show the impact of the ribs on turbulence and chemistry. Simulations were performed with the code AVBP, which solves the compressible Navier-Stokes equations for turbulent flows, using reduced chemistry scheme of ethane and butane cracking for reacting cases. Special effort was devoted to the wall flow, which is analyzed in detail and compared for both geometries, providing useful information for further development of roughness-type wall models. The impact of grid resolution and numerical scheme is also discussed, to find the best trade-off between computational cost and accuracy for industrial application. Results investigate and analyze the turbulent flow structures, as well as the effect of heat transfer efficiency and mixing on the chemical process in both smooth and ribbed tubes. Pressure loss, heat transfer and chemical conversion are finally compared.
|
130 |
Large eddy simulations of a dual-stream jet with shockcells and noise emission analysis / Simulations numériques des grandes échelles d'un jet double flux en présence de cellules de choc et analyse des émissions acoustiquesPérez Arroyo, Carlos 02 November 2016 (has links)
Cette thèse fait référence au bruit de choc généré par des jets sousdétendus simple ou en configuration co-axial. Le bruit de choc est généré par l'interaction entre les structures turbulentes de la couche de cisaillement et le réseaux de cellules de choc développé dans le cône potentiel du jet. Afin d'étudier le bruit choc, simulations à grandes échelles adaptés pour l'aéro-acoustique sont effectué avec des schémas d'ordre élevé qui permet une approche nondissipative et non-dispersive. Les résultats sont analysés et comparés avec des résultats expérimentaux. Notamment, une filtrage hydrodynamique et acoustique est réalisé dans le champ proche pour analyser les modes azimutaux acoustiques et hydrodynamiques. En outre, un analyse basé sur la transformé en ondelettes est mis en oeuvre pour identifier les caractéristiques acoustiques et hydrodynamiques importants des jets supersoniques. / This thesis deals with the shock-cell noise generated by under-expanded supersonic jets in single- and dualstream configurations. Shock-cell noise is generated by the interaction between the turbulent structures of the shear-layer and the shock-cell system developed in the potential core of the jet. In order to study shock-cell noise, large eddy simulations adapted to aeroacoustics are carried out using high-order compact schemes that allow for a non-dissipative nondispersive approach. The results are analyzed and compared to experimental results. In particular, an acoustic-hydrodynamic filtering is carried out in the near field in order to analyze the acoustic and hydrodynamic azimuthal modes. Moreover, a wavelet-based analysis is implemented in order to identify the relevant acoustic and hydrodynamic features of the supersonic jets.
|
Page generated in 0.0905 seconds