• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 63
  • 11
  • Tagged with
  • 165
  • 165
  • 151
  • 94
  • 91
  • 81
  • 50
  • 48
  • 44
  • 39
  • 35
  • 35
  • 33
  • 28
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Simulations aux grandes échelles des écoulements instationnaires turbulents autour des trains d'atterrissage pour la prédiction du bruit aérodynamique / Large-eddy simulation of unsteady turbulent flows around landing gears for aerodynamic noise prediction

Giret, Jean-Christophe 26 May 2014 (has links)
L'augmentation globale du trafic aérien mondial est susceptible de fortement augmenter les nuisances sonores induites autour des aéroports. De fait, des initiatives à diverses échelles sont prises afin de réduire le bruit des aéronefs. Le "bruit de cellule" de l'avion (airframe noise) est un contributeur majeur du bruit total en phase d'approche, dont environ un tiers est émis par le train d'atterrissage. La simulation aux grandes échelles (LES) des équations de Navier-Stokes compressibles a été identifiée comme une candidate pour la prédiction du bruit de train d'atterrissage. Elle permet de résoudre l'écoulement intrinsèquement instationnaire autour du train, et de capturer les différentes échelles des structures turbulentes mise en jeu dans le sillage. En outre, une approche non-structurée est retenue afin de traiter des géométries réalistes et complexes de trains d'atterrissage. Répondant à ces critères, le logiciel AVBP est choisi pour de telles simulations. Une analogie de Ffowcs-Williams et Hawkings est ensuite utilisée pour propager les sources acoustiques en champ lointain. La détermination des paramètres de simulation optimaux ainsi qu'une validation du code sont effectuées sur le cas académique du "barreau-profil" réalisé à l'Ecole Centrale de Lyon. Un bon accord des résultats aérodynamiques et acoustiques est observé avec la base de donnée expérimentale ainsi qu'avec d'autres résultats numériques. Une analyse des sources acoustiques a également été mise en oeuvre, mettant en évidence une contribution significative du cylindre aux angles rasants ainsi que des phénomènes interférentiels entre les émissions du cylindre et du profil, constructifs ou destructifs selon l'angle d'observation. Le code AVBP est ensuite utilisé pour la simulation des écoulements autour des trois trains simplifiés de la base de donnée LAGOON, supportée par Airbus. Un bon accord est globalement obtenu pour les résultats aérodynamiques et acoustiques pour les trois géométries de train, et les tendances des résultats expérimentaux lors de le complexification de la géométrie sont retrouvés à l'aide de la LES. Une étude des sources acoustique est ensuite réalisée. Les contributions respectives de chaque élément des trains sont identifiées, et une attention particulière est portée sur les tons de cavité. La structure de ces derniers est clairement mise en évidence à l'aide d'un solveur des équations d'Helmholtz (AVSP), expliquant également l'absence de tons pour les micros en survol. Les effets de l'ajout d'éléments supplémentaires pour les deux dernières configurations de train sont également étudiés, et il est montré en particulier qu'un bruit d'interaction, similaire à celui observé dans le cas "barreau-profil", entre le sillage de la barre de traction et l'essieu du train explique la prédominance d'un ton supplémentaire dans les spectres en champ lointain sur les tons de cavité. / Global air traffic growth is most likely to increase the community noise around airports. Consequently, several initiatives have been taken to reduce aircraft noise. Airframe noise has been identified as a major contributor to aircraft noise at approach, and one third is emitted by the landing gear. Compressible Large Eddy Simulation (LES) is a promising candidate for landing gear noise prediction. It is able to solve the unsteady flow around the landing gear, and also to capture the broad range of turbulent structures in the wake. Unstructured meshing approach has been selected to handle industrial-like and complex landing gear geometries. The AVBP software fulfills these criteria, and thus has been chosen to conduct the simulations. A Ffowcs-Williams and Hawkings analogy is also used to propagate the noise sources to the far-field. The best practices determination and the code validation are carried out on the academic "rodairfoil" configuration, which has been experimentally studied at Ecole Centrale de Lyon. A good agreement is observed between the numerical aerodynamic and acoustic results and the experimental database, as well with the other numerical simulations from the literature. A noise source analysis is also carried out, showing a significant contribution of the rod at grazing angles, as well as interferences between the rod and airfoil contributions, either being constructives or destructives depending on the observation angle. Then, the AVBP code is used to simulate unsteady flows around the three landing gear configurations of the LAGOON database, supported by Airbus. A good agreement is found for the aerodynamic and acoustic results for the three geometries, and experimental results tendencies are retrieved with LES while increasing the landing gear complexity. A noise source analysis leads to the identification of the noise source contributions of each landing gear element. A special attention is also paid on the cavity modes. Their structure, exhibited with a Helmholtz equation solver (AVSP), explains the absence of tone in the flyover direction. For the second and third geometries, it is also shown that interactions between the tow bar wake and the axle, similarly to the ones observed in the rod-airfoil benchmark, lead to an additional tone in the far-field spectra, which prevails on the initial cavity modes.
92

Schémas cinétiques réduits et couplage thermique pour les simulations aux grandes échelles du cliquetis dans les moteurs à piston / Reduced kinetic schemes and thermal coupling for Large eddy simulation of knocking in piston engines

Misdariis, Antony 04 March 2015 (has links)
Pour améliorer le rendement des moteurs essence, une méthode efficace est le downsizing qui consiste en la diminution de la cylindrée moteur compensée par l’ajout d’un compresseur pour maintenir la puissance. Lorsque le niveau de downsizing est trop important les fortes pression et températures rencontrées favorisent l’apparition de phénomènes d’auto-allumage de type cliquetis ou rumble néfastes pour l’intégrité du moteur. Ce type de phénomène, aujourd’hui encore mal compris, constitue une limite à l’utilisation du downsizing. Dans cette thèse la Simulation aux Grandes Echelles est utilisée pour étudier ce type de combustion dite anormale. L’objectif est de proposer une méthodologie numérique capable de reproduire leurs apparitions pour en étudier les mécanismes. L’auto-allumage est un mode de combustion sensible aux variations des conditions thermodynamiques locales. Des méthodes numériques précises et des modèles appropriés, en particulier pour la thermique paroi doivent donc être utilisés. La première partie de ce manuscrit présente la méthodologie numérique proposée et en particulier deux aspects développés lors de cette thèse: un modèle d’auto-allumage qui permet de reproduire le délai d’auto-allumage des gaz frais avec un schéma cinétique réduit et une méthodologie de couplage entre la chambre de combustion et la culasse permettant de définir des champs de températures paroi réalistes. La seconde partie de ce manuscrit présente les résultats de deux études numériques reproduisant certains points de fonctionnement d’un moteur expérimental. La première étude est réalisée à l’aide de modèles de combustion de la littérature et vise à reproduire le comportement expérimental pour diverses variations paramétriques influant sur la combustion. La seconde étude est réalisée à l’aide des modèles développés dans cette thèse afin d’étudier l’impact de la thermique paroi dans les mécanismes d’apparition des combustions anormales. / In order to improve the efficiency of gasoline engines, one efficient solution resides in engine downsizing which consists in the diminution of the engine size with the adjunction of a compressor to keep the power output. When the downsizing level is important, the high pressure and temperature levels promote auto-ignition phenomena such as knocking or rumble that can damage the engine. This kind of combustion, still misunderstood, is a limit to further use downsizing. In this thesis, Large Eddy Simulation is used to study this kind of abnormal combustions. The objective is to propose a numerical methodology able to reproduce its apparition and to understand its mechanisms. Auto-ignition is a combustion regime very sensitive to the variations of local thermodynamic conditions. Precise numerical methods and appropriate models, especially for thermal boundary conditions must be used. The first part of this manuscript presents the proposed numerical methodology and in particular two aspects implemented during this thesis: an auto-ignition model that permits to reproduce auto-ignition delays with reduced kinetic schemes and a coupling methodology between combustion chamber and cylinder head in order to obtain realistic temperature fields for the boundary conditions. The second part of this manuscript presents the results of two numerical studies that reproduce some operating points from an experimental engine database. The first study is performed using combustion models from the literature and aims at reproducing experimental behavior for various parametric variations impacting the combustion. The second study is performed thanks to the numerical models implanted in this thesis in order to evaluate the impact of the thermal boundary conditions on the mechanisms leading to abnormal combustions.
93

Simulation aux Grandes Échelles des combustions anormales dans les moteurs downsizés à allumage commandé / Large-Eddy Simulation of abnormal combustions in spark ignition engines

Robert, Anthony 27 June 2014 (has links)
Le moteur à allumage commandé fortement downsizé est une des solutions les plus prometteuses utilisée par les constructeurs automobiles pour augmenter le rendement et réduire les émissions de CO2. Cependant, les conditions thermodynamiques plus sévères rencontrées dans ces moteurs favorisent l’apparition de combustions anormales (cliquetis et rumble) qui sont difficiles à analyser expérimentalement vu les risques encourus par le moteur. La méthode Reynolds Averaged Navier-Stokes (RANS) s’est imposée depuis plusieurs années pour l’étude des moteurs à piston dans l’industrie, mais elle n’est pas la plus appropriée pour étudier des phénomènes locaux et sporadiques comme les combustions anormales qui n’affectent pas le cycle moyen simulé en RANS. Grâce à l’utilisation d’un code compressible LES et au développement d’une version améliorée des modèles ECFM-LES (Extended Coherent Flame Model) et TKI (Tabulated Kinetics of Ignition) qui permet un découplage total entre les taux de réaction liés à la propagation de la flamme et à l’auto-inflammation, ces travaux mettent en évidence pour la première fois la capacité de la LES à décrire le phénomène de cliquetis dans une configuration réaliste d’un moteur à allumage commandé. Contrairement aux études précédentes [S. Fontanesi and S. Paltrinieri and A. D’Adamo and G. Cantore and C. Rutland, SAE Int. J. Fuels Lubr., 2013-01-1082, pp. 98-118][G. Lecocq, S. Richard, J.-B. Michel, L. Vervisch, Proc. Combust. Inst. 33 (2011) 3105-3114], une étude quantitative du cliquetis est réalisée grâce à des post-traitements spécifiques et similaires pour les résultats expérimentaux et numériques. La LES est capable de prédire la variabilité de la pression cylindre, la fréquence mais également l’angle moyen d’apparition de l’auto-inflammation sur un balayage d’avance à l’allumage. Une analyse 3D démontre également que le cliquetis se déclenche à différents endroits, mais principalement dans la moitié de la chambre sous les soupapes d’échappement. De plus, l’intensité du cliquetis est proportionnelle à la masse de gaz frais brûlée en auto-inflammation pour les faibles intensités, alors qu’une croissance beaucoup plus forte est observée pour les intensités les plus élevées. Ceci suggère que des facteurs supplémentaires interviennent comme la localisation du cliquetis ou les interactions entre l’acoustique interne et l’auto-inflammation. L’utilisation d’un code LES compressible permet une visualisation directe de ces interactions mettant en évidence que les faibles intensités sont liées à des auto-inflammations locales sans couplage alors qu’une transition de la déflagration vers la détonation est possible en moteur automobile et correspond aux intensités les plus fortes. / Highly boosted spark ignition engines are more and more attractive for car manufacturers in terms of efficiency and CO2 emissions reduction. However, thermodynamic conditions encountered in these engines promote the occurrence of abnormal combustions like knock or super-knock, which are experimentally difficult to analyze due to the risks of engine damages. The Reynolds Averaged Navier-Stokes (RANS) method mainly used in industry for piston engines is not the most appropriate as knock does not always affect the mean cycle captured by RANS. Using an accurate LES compressible code and improved versions of ECFM-LES (Extended Coherent Flame Model) and TKI (Tabulated Kinetics of Ignition) models allowing a full uncoupling of flame propagation and auto-ignition reaction rates, this work demonstrates for the first time that LES is able to describe quantitatively knocking combustion in a realistic downsized SI engine configuration. Contrary to previous studies [S. Fontanesi and S. Paltrinieri and A. D’Adamo and G. Cantore and C. Rutland, SAE Int. J. Fuels Lubr., 2013-01-1082, pp. 98-118][G. Lecocq, S. Richard, J.-B. Michel, L. Vervisch, Proc. Combust. Inst. 33 (2011) 3105-3114], a quantified knock analysis is conducted based on a specific post-processing of both numerical and experimental data. LES is able to predict the in-cylinder pressure variability, the knock occurrence frequency and the mean knock onset crank angle for several spark timings. A 3D analysis also demonstrates that knock occurs at random locations, mainly at the exhaust valves side. Knock intensity is found proportional to the fresh gases mass burned by auto-ignition at low knock intensities, while an exponential increase at the highest intensities suggests the influence of additional factors like the knock location in the cylinder or complex behavior of knocking combustion. A direct LES study of acoustic and autoignition interactions is then achieved. The LES visualizations allows showing that low knock intensities are only linked to local autoignition, but a deflagration to detonation transition occurs in such engine operating conditions and is responsible for the highest knock intensities.
94

Influence de l'évaporation de gouttes multicomposant sur la combustion et des effets diphasiques sur l'allumage d'un foyer aéronautique / Influence of multicomponent droplets vaporization on combustion and multiphase flow effects on the ignition of a aircraft engine

Bruyat, Anne 17 December 2012 (has links)
La conception de nouveaux moteurs impose de respecter des normes de sécurité concernant les performances d'allumage et de ré-allumage en conditions critiques. Des campagnes d'essais étant onéreuses, les industriels cherchent donc à disposer d'outils numériques fiables. Afin d'améliorer la simulation des écoulements, le caractère multicomposant du carburant doit être pris en compte. L'objectif de cette thèse est d'étudier l'influence de l'évaporation d'un brouillard de gouttes sur un écoulement réactif. Pour cela, une étude de la propagation d'une flamme laminaire 1D est réalisée à l'aide d'un code de calcul multiphysique (CEDRE). Un train continu de gouttes monodisperse est injecté, les gouttes étant mono ou bicomposant. L'influence de la dynamique d'évaporation sur la combustion est étudiée. Deux cinétiques chimiques réduites multicomposant sont comparées. La composition, le diamètre et la richesse initiale des gouttes ont un impact sur la structure de flamme, la vitesse de flamme et la composition des gaz brûlés. Ensuite, l'effet de l'évaporation est étudié en phase d'allumage pour un brouillard de gouttes polydisperses monocomposant avec un modèle de noyau d'allumage local. L’écoulement instationnaire non-réactif dans un secteur de chambre industriel (MERCATO) est calculé avec une approche LES. Le caractère instationnaire, voire périodique, de la phase dispersée est mis en évidence en certains points de l'écoulement. Les résultats, associés au modèle d'allumage et à des critères, sont utilisées pour réaliser une carte de probabilité d'allumage. Des essais de calcul d'allumage complet de la chambre sont réalisés. Les résultats indiquent une surestimation des termes sources liés à l'évaporation de la phase dispersée et à la combustion. / The design of new aircraft engines needs in particular to comply with safety standards for the performance of stabilized combustion and ignition or re-ignition under critical conditions. Experimental campaigns are expensive, so numerical tools are needed. To improve the accuracy of the models used to simulate flow, the multicomponent nature of the fuel must be taken into account, whether it is kerosene or alternative fuel. The objective of this thesis is to study the influence of a droplet mist vaporization on a reactive flow. For this, an academic study of the propagation of a 1D laminar flame is performed using a CFD code {CEDRE). A continuous stream of monodisperse droplets is injected, the droplets being mono or bicomponent. The influence of the dynamics of evaporation on combustion is particularly studied. Two reduced multicomponent chemical kinetics are compared. The composition, the diameter and the initial equivalent ratio of droplets have an impact on the structure of the flame, the flame speed and composition of the burnt gases. A local ignition kernel model is applied to study the influence ofvaporization on ignition in the case of monocomponent, polydisperse droplets. Experimental data are available for a monosector combustion chamber (MERCATO) so the non-reactive unsteady flow is simulated with a LES approach. The unsteady, sometimes periodic, nature of the dispersed phase is highlighted in some points of the flow. A ignition model is applied to instantaneous flow fields and criteria are analysed to realise an ignition probability map which validates the approach. Finally, ignition of a combustion chamber is tested. The results point out an overestimation of source terms related to the evaporation of the dispersed phase and combustion.
95

Development of Analytically Reduced Chemistries (ARC) and applications in Large Eddy Simulations (LES) of turbulent combustion / Développement de Chimies Analytiquement Réduites (CAR) et applications à la Simulation aux Grandes Échelles (SGE) de la combustion turbulente

Felden, Anne 30 June 2017 (has links)
L'impact environnemental du trafic aérien fait maintenant l'objet d'une réglementation qui tend à se sévériser. Dans ce contexte, les industriels misent sur l'amélioration des technologies afin de réduire la consommation de carburant et l'émission de polluants. Ces phénomènes dépendent en grande partie des chemins réactionnels sous-jacents, qui peuvent s'avérer très complexes. La Simulation aux Grandes Échelles (SGE) est un outil intéressant afin d'étudier ces phénomènes pour un coût de calcul qui reste raisonnable. Cependant, les processus chimiques, s'ils sont considérés sans simplification, font intervenir des centaines d'espèces aux temps caractéristiques très différents au sein de processus non-linéaires qui induisent une forte raideur dans le système d'équations, et un coût de calcul prohibitif. Permettant de s'absoudre de ces problèmes tout en conservant une bonne capacité de prédiction des polluants, les Chimies Analytiquement Réduites (CAR) font l'objet d'une attention grandissante au sein de la communauté. Les CAR permettent de conserver la physique du problème considéré, en conservant les espèces et voies réactionnelles les plus importantes. Grâce à l'évolution toujours croissante des moyens de calculs, les CAR sont appliqués dans des configurations de plus en plus complexes. Les travaux de thèse ont principalement portés sur deux sujets. Premièrement, une étude poussée des techniques et outils permettant une réduction efficace et systématique de chimies détaillées. L'outil de réduction multiétapes YARC est retenu et exhaustivement employé dans la dérivation et la validation d'une série de CAR préservant la description de la structure de flamme. Ensuite, une investigation de la faisabilité et des bénéfices qu'apportent l'utilisation de CAR en LES, comparé a des approches plus classiques, sur des cas tests de complexité croissante. La première configuration étudiée est une chambre de combustion partiellement pré-mélangée brûlant de l'éthylène, étudiée expérimentalement au DLR. Différentes modélisations de la chimie sont considérées, dont un CAR développé spécifiquement pour ce cas test, et les résultats démontrent qu'une prise en compte des interactions flamme-écoulement est cruciale pour une prédiction juste de la structure de la flamme et des niveaux de suies. La seconde configuration est un brûleur diphasique, avec une injection directe pauvre, brûlant du Jet-A2. Dans cette étude, une approche novatrice pour la prise en compte de la complexité du fuel réel (HyChem) est considérée, permettant la dérivation d’un CAR. Les résultats sont excellents et valident la méthodologie tout en fournissant une analyse précieuse des interactions flamme-spray et de la formation de polluants (NOx) dans des flammes à la structure complexe. / Recent implementation of emission control regulations has resulted in a considerable demand from industry to improve the efficiency while minimizing the consumption and pollutant emissions of the next generation of aero-engine combustors. Those phenomena are shown to strongly depend upon the underlying complex chemical pathways and their interaction with turbulence. Large Eddy Simulation (LES) is an attractive tool to address those issues with high accuracy at a reasonable computing cost. However, the computation of accurate combustion chemistry remains a challenge. Indeed, combustion proceeds through complex and highly non-linear processes that involve up to hundreds of different chemical compounds, which significantly increases the computational time and often induces stiffness in the resolved equations. As a mean to circumvent these drawbacks while retaining the necessary kinetics for the prediction of pollutants, Analytically Reduced Chemistry (ARC) has recently received high interest in the Computational Fluid Dynamics (CFD) community. ARC is a strategy for the description of combustion chemistry where only the most important species and reactions are retained, in a "physically-oriented way". ARC is on the verge of becoming affordable at a design stage, thanks to the continuously increasing available computational resources. The goal of the present work is twofold. A first objective is to test and validate efficient techniques and tools by which detailed chemistries are reduced to an LES-compliant format. To do so, the multi-step reduction tool YARC is selected and employed to derive and validate a series of ARC specifically designed to retrieve correct flame structures. A second objective is to investigate the overall feasibility and benefits of using ARC, combined to the Thickened Flame model (DTFLES), in performing LES of configurations of increasing complexity. The first configuration is a sooting swirl-stabilized non-premixed aero-engine combustor experimentally studied at DLR, burning ethylene. LES of this configuration is performed with the AVBP solver, in which ARC has been implemented. By comparison with global chemistry and tabulated chemistry, results highlight the importance of accurately capturing the flow-flame interactions for a good prediction of pollutants and soot. The second configuration is a swirled twophase flow burner featuring a lean direct injection system and burning Jet-A2. A novel methodology to real fuel modeling (HyChem approach) is employed, which allows subsequent ARC derivation. The excellent results in comparison with measurements constitute an additional validation of the methodology, and provide valuable qualitative and quantitative insights on the flame-spray interactions and on the pollutant formation (NOx) mechanisms in complex flame configurations.
96

Étude des pertes de charge dans un aspirateur de turbine bulbe par simulations numériques instationnaires / Analysis of head losses in a bulb turbine draft tube by means of unsteady numerical simulations

Wilhelm, Sylvia 13 January 2017 (has links)
L’aspirateur d’une centrale hydroélectrique est l’organe hydraulique se situant en aval de la roue. Il a une forme divergente afin de récupérer l’énergie cinétique résiduelle en sortie de roue sous forme de pression statique et augmenter ainsi la chute nette de la centrale. Dans le cas des turbines de basse chute de type bulbe, les pertes de charge dans l’aspirateur influencent fortement le rendement global de la centrale. La prédiction correcte de ces pertes de charge au cours du dimensionnement de la turbine représente donc un enjeu majeur. La prédiction numérique des pertes de charge dans l’aspirateur est un réel challenge car l’écoulement dans l’aspirateur est dynamiquement complexe avec des nombres de Reynolds élevés, la présence de swirl et d’un gradient adverse de pression. Ces caractéristiques font que les approches de modélisation classiquement utilisées dans l’industrie sont mises en défaut. L’objectif de ce travail est double : (i) améliorer la prédiction de l’écoulement turbulent dans l’aspirateur en utilisant des approches instationnaires URANS et LES et en portant une attention particulière à la description des conditions d’entrée de l’aspirateur et (ii) réaliser une analyse fine des échanges énergétiques dans l’aspirateur pour mieux comprendre l’origine des pertes de charge. Une condition d’entrée instationnaire représentative de l’écoulement en sortie de roue est élaborée pour ces calculs. Les résultats de simulation sont comparés avec des mesures expérimentales afin d’évaluer la capacité prédictive de chaque approche de modélisation de la turbulence (URANS et LES). Cette étape de validation met en évidence l’importance d’une définition correcte des trois composantes de la vitesse en entrée d’aspirateur. L’influence des conditions aux limites du domaine de calcul, à savoir la rugosité de la paroi et la condition de sortie de l’aspirateur, sur les résultats de simulation est évaluée, notamment dans le cas d’une résolution LES. Grâce à une analyse détaillée du bilan d’énergie cinétique moyenne dans l’aspirateur, les phénomènes hydrodynamiques responsables des pertes de charge sont identifiés. Ceci permet d'analyser en détail les différences de prédiction de pertes de charge entre les calculs URANS et LES et d’identifier les pistes d’amélioration de la prédiction numérique de ces pertes. Enfin, cette analyse permet de comprendre l’évolution des pertes de charge observée entre plusieurs points de fonctionnement de la turbine. / The draft tube of a hydraulic turbine is the turbine element located downstream of the runner. It has a divergent shape in order to convert the residual kinetic energy leaving the runner into pressure and thus increase the effective head of the turbine. The performances of low head bulb turbines are highly influenced by the head losses in the draft tube. The prediction of these head losses in a design process is thereby a major issue. The numerical prediction of the head losses in the draft tube is a real challenge because the flow in the draft tube is dynamically complex with high Reynolds numbers, a swirl and an adverse pressure gradient. These characteristics render conventional industrial approaches not appropriate. The objective of this work is twofold: (i) to improve the numerical prediction of the turbulent flow in the draft tube by using URANS and LES unsteady approaches and paying special attention to the description of the inlet boundary conditions of the draft tube and (ii) to conduct a detailed analysis of the energy transfers in the draft tube in order to better understand the origin of the head losses. An unsteady inlet boundary condition for the simulations reproducing the flow field at the runner outlet is developed. Numerical results are compared to experimental measurements in order to evaluate the predictive capacity of each turbulence modelling approach (URANS and LES). This validation step highlights the importance of defining properly the three velocity components at the draft tube inlet. The influence on the numerical results of boundary conditions of the calculation domain, such as wall roughness and the outlet boundary condition, is evaluated, in particular in case of LES. Thanks to a detailed analysis of the mean kinetic energy balance in the draft tube, the hydrodynamic phenomena responsible for head losses are identified. The head losses prediction differences between URANS and LES are thus analyzed in detail and possible improvements for the head losses prediction are identified. Finally, this analysis enables to understand the head losses evolution observed between several operating points of the turbine.
97

Simulations numériques d'écoulements anisothermes turbulents : application à la cavité ventilée / Turbulent anisothermal flows : application to the ventilated cavity

Binous, Mohamed Sabeur 28 October 2017 (has links)
Ce travail concerne une étude numérique d’écoulements incompressiblesanisothermes dans une cavité. Dans un premier temps, nous procédons à une modélisation destransferts de chaleur dans une paroi dont l’une de ses faces est recouverte d’une couche dematériau à changement de phase (MCP) de faible épaisseur. Cette modélisation est basée surune condition aux limites de type Signorini. Les équations de transfert sont résolues par uneprocédure itérative spécifique. Cette procédure est ensuite appliquée aux transferts dans unecavité différentiellement chauffée dont l’une des parois est recouverte d’une couche de MCPde faible épaisseur. Les équations qui régissent les transferts d’air sont résolues par uneméthode semi-implicite aux différences finies de second ordre et l’algorithme de projection.Nous validons la procédure en l’appliquant à la cavité entrainée, la marche descendante,l’écoulement autour d’un barreau de section carrée et la convection naturelle dans une cavitédifférentiellement chauffée. Dans un deuxième temps, une étude d’écoulements turbulentsincompressibles dans une cavité ventilée a été effectuée en utilisant un solveur de hauteprécision parallèle développée au LAMPS. Les équations de transfert sont résolues par unschéma compact aux différences finies et l’algorithme de projection. Il est montré notammentque le flux de chaleur appliqué à la paroi inférieure de la cavité influence considérablement lastructure de l’écoulement et les transferts de chaleur ainsi que les champs moyens etfluctuants de la vitesse et de la température. / The aim of this work is about a numerical study of anisothermal incompressible flowsconfined in a cavity. We perform a modeling of heat transfer in a wall where one of its faces iscovered with a thin layer of phase change material (PCM). This modeling is based on aSignorini boundary condition. The transfer equations are solved by a specific iterativeprocedure. This procedure is then applied to a differentially heated cavity, one of the walls ofwhich is covered with a thin layer of PCM. The transfer equations are solved by a semi-implicit method with finite second order differences and the projection algorithm. We validatethe procedure by applying it to the lid-driven cavity, downward motion, flow around a squaresection bar and natural convection in a differentially heated cavity. In a second step, the studyof incompressible turbulent flows in a ventilated cavity was carried out using a parallel highprecision solver developed at LAMPS. The transfer equations are solved by a finite differencecompact scheme and the projection algorithm. It is shown in particular that the heat flowapplied to the lower wall of the cavity greatly influences the structure of the flow and the heattransfers, as well as the mean and fluctuating fields of velocity and temperature.
98

Développement et évaluation de la méthode de Galerkin discontinue pour la simulation des grandes échelles des écoulements turbulents / Development of the Discontinuous Galerkin method for the large-eddy simulation of turbulent flows

Chapelier, Jean-Baptiste 05 December 2013 (has links)
Cette thèse vise à développer et évaluer la méthode de Galerkin discontinue (DG) pour la simulationdes grandes échelles (LES) des écoulements turbulents. L’approche DG présente un nombre d’avantages intéressants pour la LES : ordre élevé, stencil compact, prise en compte des maillages non structurés et expression de la solution numérique dans une base de polynômes permettant l’utilisation de modèles de turbulence multi-échelle. Parmi ce type de modèles, nous nous sommes intéressés ici à la méthode Variational Multiscale (VMS) qui consiste à séparer les échelles résolues dans la base de polynômes pour restreindre l’influence du modèle à une gamme réduite d’échelles. Les modèles considérés ont été paramétrés en prenant en compte les fonctions de transfert spécifiques aux discrétisations DG. La précision de la méthode pour la représentation de phénomènes turbulents variés a été évaluée à travers la réalisation de DNS de configurations académiques. Enfin, l’approche VMS/DGa été éprouvée sur des configurations simples à haut nombre de Reynolds. Il apparaît que cette méthodologie permet la représentation précise des phénomènes turbulents pour un coût réduit en terme de degrés de liberté. / This work focuses on the development of the Discontinuous Galerkin (DG) method for the large-eddy simulation (LES) of turbulents flows. The DG method shows some interesting properties for LES : high-order of accuracy, compact stencil, unstructured meshes and amodal polynomial basis which can be used to implement multiscale turbulence models. We consider in this work the Variational Multiscale approach (VMS), which consists in splitting the resolved scales into two components using the modal basis in order to restrict the action of the model to a given range of small scales. The models have been tuned using the transfer functions of the DG hp-discretizations. The accuracy of the DG method for the representation of turbulent phenomena has been assessed through DNS of free and wall-bounded canonical flows. Finally, the VMS/DG approach has been assessed for simple configurations at high Reynolds numbers. We have shown that this particular approach allows for an accurate representation of turbulent flows for coarse discretizations.
99

Simulation des Grandes Echelles de la combustion turbulente à pression supercritique / Large Eddy Simulation of supercritical-pressure turbulent combustion

Schmitt, Thomas 19 June 2009 (has links)
Dans les chambres de combustion des moteurs fusées cryotechniques, la pression excède la pression critique des réactifs. Les interactions moléculaires ne sont plus négligeables et le comportement du fluide n’est plus celui d’un gaz parfait. Le but de cette thèse est de développer un outil de Simulation des Grandes Echelles (SGE) pour étudier la combustion et la dynamique dans des géométries réalistes de moteur fusées. L’utilisation de l’équation d’état de Peng-Robinson, associée à une formulation thermodynamique généralisée, et des coefficients de transports appropriés permettent au code de SGE AVBP du CERFACS de simuler des systèmes réactifs à pression supercritique. Les changements thermodynamiques au sein d’AVBP nécessitent également l’adaptation des conditions limites et des schémas numériques. L’outil est validé sur une configuration mono-espèce à pression supercritique, puis sur un cas représentatif d’un injecteur coaxial de moteur-fusée. Les résultats obtenus sont en bon accord avec l’expérience et offrent des perspectives encourageantes pour des études futures, telles que des configurations multi-injecteurs ou l’analyse des instabilités de combustion haute fréquence. / In cryogenic engines combustion chambers, pressure exceeds the propellants critical pressure. Molecular interactions are generally no longer negligible and fluid behavior deviates from that of a perfect gas. The objective of this thesis is to develop a Large-Eddy Simulation (LES) tool to study combustion and dynamics in realistic geometries of rocket engines. The use of the Peng-Robinson equation of state, in conjunction with a generalized treatment of thermodynamics and appropriate transport coefficients, allows the CERFACS’ LES code AVBP to handle reactive systems at supercritical pressure. Change of the thermodynamics in AVBP necessarily leads to an adaptation of boundary conditions treatment and numerical schemes. The tool is validated on a mono-species configuration at supercritical pressure, and a reactive single coaxial injector, representative of a rocket injector. Results are in good agreement with experiments and provide encouraging perspectives for future studies, such as multi-injector configurations and high-frequency combustion instabilities.
100

Tabulation de la cinétique chimique pour la modélisation et la simulation de la combustion turbulente / Tabulated chemistry for turbulent combustion modeling and simulation

Vicquelin, Ronan 17 June 2010 (has links)
Cette thèse se situe dans le cadre de la simulation numérique de la combustion turbulente à l’aide de méthodes de tabulation de la cinétique chimique. En approximant la structure fine des flammes turbulentes, ces méthodes prennent en compte des effets fins de cinétique chimique pour un faible coup dans les calculs numériques. Ceci permet de prédire les champs de température et d’espèces chimiques incluant les polluants. Le champ d’application de la chimie tabulée a d’abord été réservé à la simulation des écoulements moyens (RANS) dans une hypothèse de faible nombre de Mach pour une combustion dite "conventionnelle". Cependant, le développement actuel de nouvelles technologies de combustion ainsi que celui de modèles numériques plus avancés que les approches RANS nécessite d’étendre ce champ d’application. Les travaux de cette thèse ont mené au développement de nouveaux modèles de chimie tabulée afin de répondre à ces nouvelles exigences. L’émergence de nouvelles technologies comme la combustion sans flamme nécessite le développement de modèles dédiés. Ce mode de combustion présente en effet des structures de flamme mixtes. C’est pourquoi un modèle de tabulation de la cinétique chimique nommé UTaC (Unsteady flamelets Tabulated Chemistry) est proposé pour prédire la combustion diluée à haute température qui caractérise la combustion sans flamme. Le modèle est basé sur la tabulation de solutions instationnaires de flammelettes non-prémelangées qui s’auto-allument. Les pertes thermiques et la dilution variable des gaz brûlés sont négligés dans le cadre de cette thèse par soucis de simplification et de clarté de la validation du modèle. Le modèle est appliqué au cas d’un jet de combustible dilué dans un environnement de gaz vicié qui favorise l’auto-allumage comme moyen de stabilisation d’une flamme liftée. Plusieurs simulations RANS sont réalisées en faisant varier le combustible utilisé. Enfin, une simulation aux grandes échelles (LES) est aussi conduite pour le mélange méthane/air. Plusieurs codes numériques dédiés à la LES sont basés sur une formulation compressible des équations de Navier-Stokes. Cependant les méthodes de tabulation ne permettent pas directement de prendre en compte les effets acoustiques. Un modèle appelé TTC (Tabulated Thermo-chemistry for Compressible flows) a été créé afin d’introduire les méthodes de chimie tabulée dans les codes numériques compressibles. Pour cela, le calcul de la température est reformulé ainsi que le traitement des conditions aux limites à l’aide d’ondes caractéristiques. Enfin, l’application de modèle RANS de tabulation de la cinétique chimique à la LES est souvent faite sans tenir compte des spécificités de la simulation aux grandes échelles. Ainsi, les fonctions de densité de probabilités de type ß qui traduisent l’interaction de la combustion avec la turbulence en RANS sont utilisées telles quelles en LES. Nous montrerons que cette hypothèse est mauvaise car elle ne conserve pas l’intégrale du terme source dans une flamme prémélangée. Un nouveau modèle de chimie tabulée nommé F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation) est alors développé spécifiquement pour la simulation aux grandes échelles de la combustion parfaitement prémélangée. Le modèle est basé sur le filtrage de flammes laminaires de prémélange mono-dimensionelles. / The thesis subject is located in the domain of numerical simulation of turbulent combustion through tabulated chemistry methods. These methods allow to include detailed chemistry effects at low cost in numerical simulation by approximating the fine scales structure of turbulent flames. Prediction of temperature and chemical species including pollutants becomes then possible. Tabulated chemistry models were first dedicated to low Mach-number RANS approaches for "conventional" combustion applications. However, the current uprising of new combustion configurations and of more precise numerical modeling than RANS approach requires to widen these range of applications. For that purpose, this thesis led to the development of new tabulated chemistry models. Flameless combustion is one of these new combustion technology that requires dedicated models. Indeed, complex flame structures are encountered in this combustion mode. That is why a tabulated chemistry model called UTaC (Unsteady flamelets Tabulated Chemistry) is derived to simulate high temperature diluted combustion which characterizes flameless combustion. The model lies on the tabulation of laminar unsteady non-premixed flamelets that auto-ignite. Heat losses and variation of dilution with burnt gases are neglected in the topic of this thesis for brevity and simplification of the model validation. The investigated configuration is a fuel jet diluted in a vitiated coflow. The hot coflow promotes auto-ignition in the lifted flame stabilization mechanism. Several RANS computations are performed by changing the fuel composition. Finally, a Large Eddy Simulation (LES) is also realized using a methane/air mixture as the impinging fuel stream. Several numerical codes for LES use a fully compressible formulation of Navier-Stokes equations. However, tabulated chemistry techniques do not take into account acoustic perturbations. A model called TTC (Tabulated Thermo-chemistry for Compressible flows) formalism is therefore developed in order to include tabulated chemistry in compressible CFD codes. TTC formalism consists in reformulating both temperature computation inside the numerical code and the characteristic boundary treatment. Finally, application of tabulated chemistry model to LES is usually done by a straightforward derivation from its RANS version without taking into account LES requirements. Indeed, ß-probability density functions which accounts for turbulence-chemistry interaction in RANS are used in LES although this technique does not conserve the source terms integral in premixed flames. A new model, F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation), is then derived specifically for LES of perfectly premixed combustion. This model is based on filtering of 1D laminar premixed flamelets.

Page generated in 0.099 seconds