• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 822
  • 202
  • 133
  • 102
  • 42
  • 12
  • 12
  • 8
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 1718
  • 295
  • 288
  • 278
  • 224
  • 208
  • 202
  • 186
  • 173
  • 143
  • 140
  • 126
  • 120
  • 114
  • 112
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Density functional study of graphene on insulating substrates

Jadaun, Priyamvada 2009 August 1900 (has links)
This is a study of the structural and electronic behavior and properties of graphene on α-quartz and α-sapphire using Density Functional Theory. We construct initial structures using the above 2 substrates, place a layer of graphene on them and subsequently allow the atoms to relax. After relaxation we study any structural changes, band structures, density of states, charge density to determine the electronic properties of the entire structure. Eventually this study will help in the search for good substrates for graphene based transistors. / text
202

Scanning Probe Microscopy of Graphene and Carbon Nanotubes

Xue, Jiamin January 2012 (has links)
This dissertation presents research on scanning probe microscopy and spectroscopy of graphene and carbon nanotubes. In total three experiments will be discussed. The first experiment uses a scanning tunneling microscope (STM) to study the topographic and spectroscopic properties of graphene on hexagonal boron nitride (hBN). Graphene was first isolated and identified on SiO₂ substrates, which was later found to be the source of graphene quality degradation, e.g. large surface roughness, increased resistivity and random doping etc. Researchers have been trying to replace SiO₂ with other materials and hBN is by far the most successful one. Our STM study shows an order of magnitude reduction in surface roughness and electrostatic potential variation compared with graphene on SiO₂.The second experiment shows a novel quantum interference effect of electron waves in graphene, loosely referred to as "Friedel oscillations." These arise when incident electron waves interfere with waves scattered from defects in the sample. This interference pattern shows up as a spatial variation in the local density of states, which can be probed by the STM. We measured such Friedel oscillations in graphene near step edges of hBN. Due to its peculiar band structure, the oscillations in graphene have a faster decay rate and their wavelength is an order of magnitude longer than similar oscillations previously observed on noble metal surfaces. By measuring the dependence of the Friedel oscillations on electron energy, we map out the band structure of graphene. The last experiment studies a different system: carbon nanotube quantum dots. By combining scanning probe microscopy and transport measurements, we obtain spatial information about quantum dots formed in a carbon nanotube field effect transistor. We also demonstrate the ability to tune the coupling strength between two quantum dots in series.
203

Interference and interaction of charge carriers in graphene

Kozikov, Aleksey January 2011 (has links)
Electron transport at low temperatures in two-dimensional electron systems is governed by two quantum corrections to the conductivity: weak localisation and electron-electron interaction in the presence of disorder. We present the first experimental observation of these quantum corrections in graphene, a single layer of carbon atoms, over a temperature range 0.02 - 200 K. Due to the peculiar properties of graphene, weak localisation is sensitive not only to inelastic, phase-breaking scattering events, but also to elastic scattering mechanisms. The latter includes scattering within and between the two valleys (intra- and inter-valley scattering, respectively). These specifics make it possible, for example, to observe a transition from weak localisation to antilocalisation. Our work reveals a number of surprising features. First of all the transition occurs not only as the carrier density is varied, but also as the temperature is tuned. The latter has never been observed in any other system studied before. Second, due to weak electron-phonon interaction in graphene, quantum interference of electrons survives at very high temperatures, up to 200 K. For comparison, in other two-dimensional (2D) systems the weak localisation effect is only seen below 50 K. The electron-electron interaction correction is also affected by elastic scattering. In a two-valley system, there are two temperature regimes of the interaction correction that depend on the strength of inter-valley scattering. In both regimes the correction has its own expression. We show that because of the intra-valley scattering, a third regime is possible in graphene, where the expression for the correction takes a new form. The study of weak localisation demonstrates that the third regime is realised in our experiments. We use the new expression to determine the Fermiliquid parameter, which turns out to be smaller than in other 2D systems due to the chirality of charge carriers. At very low temperatures (below 100 mK) we observe a saturation of the electron dephasing length. We study different mechanisms that could be responsible for the saturation and discuss in detail one of them – spin-orbit interaction. We determine the spin coherence length from studies of weak localisation and the temperature dependence of the conductivity and found good agreement between the two types of experiments. We also show the way to tune the spin coherence length by an order of magnitude by controlling the level of disorder. However, experiment shows contradictions with theory both in values of the spin coherence length and the type of spin relaxation. We speculate about another spin-related mechanism, spin flip by vacancies, which to some extent could also explain our observations. We also present electron transport in graphene irradiated by gallium ions. Depending on the dosage of irradiation the behavior of electrons changes. Namely, electron localisation can be tuned from weak to strong. At low dosages we observe the weak localisation regime, where the mentioned quantum corrections to the conductivity dominate at low temperatures. We found the electron scattering between the valleys to be enhanced, attributing it to atomically sharp defects (kicked out carbon atoms) produced by ion irradiation. We also speculate that gallium ions can be embedded in the substrate or trapped between silica and graphene. We draw this conclusion after investigation of the spin-orbit interaction in irradiated samples. At high dosages electrons become strongly localised and their transport occurs via variable-range hopping.
204

Defects and dopants in carbon related materials

Pinto, Hugo Manuel January 2012 (has links)
This thesis presents theoretical studies of the optical and electronic properties of defects in diamond and of the mechanisms of doping graphene. The birefringence of the four petalled defect commonly observed in CVD diamond is explained by four linear arrays of dislocations along ⟨110⟩ directions with ⟨110⟩ Burgers vectors. Such an arrangement of dislocations reproduces the extension and the features of the birefringence patterns observed experimentally. Density functional theory via the AIMPRO code was used to study the electronic and optical properties of different nitrogen-related point defects in diamond. It was found that the zero-phonon luminescence line of the NV− defects can split in the presence of a surface or other NV− defects. Since VNH and VN2 are expected to have similar optical properties, the optical transi- tions for VN2 were used to correct the transitions for VNH calculated by local density approximation. The absorption band at 2.38 eV (520 nm) observed in CVD diamond is then attributed to an internal transition of VNH. The weak zero-phonon line and broad vibronic sidebands for VN− and VN−2 and its absence for VNH− is explained by the large structural change when the defect is excited. Finally, different mechanisms for doping graphene were considered. The calculations predict the electropositive metals, such as Ti and Cr, act as donors, while molecules with strong electron affinity, such as F4-TCNQ, act as acceptors in graphene. An unexpected mechanism of doping graphene was shown by Au which dopes bilayer graphene but not single layer. In the presence of water, electrochemical reactions on the graphene can also lead to p or n-type doping.
205

Graphene and functionalised graphene for flexible and optoelectric applications

Bointon, Thomas H. January 2015 (has links)
The landscape of consumer electronics has drastically changed over the last decade. Technological advances have led to the development of portable media devices, such as the iPod, smart phones and laptops. This has been achieved primarily through miniaturisation and using materials such as Lithium and Indium Tin Oxide (ITO) to increase energy density in batteries and as transparent electrodes for light emitting displays respectively. However, ten years on there are now new consumer demands, which are dictating the direction of research and new products are under constant development. Graphene is a promising next-generation material that was discovered in 2004. It is composed of a two-dimensional lattice made only from carbon. The atoms are arranged in a two atom basis hexagonal crystal structure which forms a fundamental building block of all sp2 hybrid forms of carbon. The production of large area graphene has a high cost, due to the long growth times and the high temperatures required. This is relevant as graphene is not viable compared to other transparent conductors which are produced on industrial scales for a fraction of the cost of graphene growth. Furthermore, graphene has a high intrinsic resistivity (2KW/_) which is three orders of magnitude greater than the current industry standard ITO. This limits the size of the electrodes as there is dissipation of energy across the electrode leading to inefficiency. Furthermore a potential drop occurs across the electrode leading to a non-uniform light emission when the electrode is used in a light emitting display. I investigate alternative methods of large area graphene growth with the aim of reducing the manufacturing costs, while maintaining the quality required for graphene human interface devices. Building on this I develop new fabrication methods for the production of large-area graphene devices which are flexible and transparent and show the first all graphene touch sensor. Focusing on the reducing the high resistivity of graphene using FeCl3 intercalation, while maintaining high optical transmission, I show low resistivity achieved using this process for microscopic graphene flakes, large-area graphene grown on silicon carbide and large-area graphene grown by CVD. Furthermore, I explore the stability of FeCl3 intercalated graphene and a process to transfer a material to arbitrary flexible substrates.
206

Antenna designs and channel modeling for terahertz wireless communications

Xu, Zheng 09 November 2016 (has links)
In this dissertation, channel modeling for Terahertz (THz) channels and designs of nano devices for THz communications are studied. THz communication becomes more and more important for future wireless communication systems that require an ultra high data rate, which motivates us to propose new nano device designs based on graphene and new system models for the THz channel. Besides, the multiple-input multiple-output (MIMO) antenna technique is well known to increase the spectral efficiency of a wireless communications system. Considering THz channels' particular characteristics, MIMO systems with reconfigurable antennas and distributed antennas are proposed. We compare the differences between MIMO systems in the GHz and THz bands, and highlight the benefits of using multi antennas in the THz band. The work on nano device designs provides two antenna designs with single walled carbon nanotubes (SWCNTs) and graphene nano ribbon (GNR). First, we analyse the spectral efficiency of an SWCNT bundled dipole antenna based MIMO system in the Terahertz band. Two scenarios are considered: the large scale MIMO and the conventional scale MIMO. It is found that, in order to get the maximum spectral efficiency, the CNT bundle size should be optimized to obtain a tradeoff between the antenna efficiency and the number of antennas for a given area. We also discuss the random fluctuation in the bundle size during the CNT bundled antenna fabrication which reduces the system spectral efficiency. Then, we propose reconfigurable directional antennas for THz communications. The beamwidth and direction can be controlled by the states of each graphene patch in the antenna, and the states can be easily configured by changing the electrostatic bias voltage on each element. The work on reconfigurable MIMO system proposes a new antenna array design for MIMO in the THz band. First, the path loss and reflection models of the THz channel are discussed. Then, we combine the graphene-based antenna and the THz channel model and propose a new MIMO antenna design. The radiation directions of the transmit antennas can be programmed dynamically, leading to different channel state matrices. Finally, the path loss and the channel capacity are numerically calculated and compared with those of the GHz channel. The results show that for short range communications, the proposed MIMO antenna design can enlarge the channel capacity by both increasing the number of antennas and choosing the best channel state matrices. The work on MIMO channels proposes a statistical model for the MIMO channel with rough reflection surfaces in the THz Band. First, our analysis of scattering from a rough surface indicates that the reflection from a single surface can be a cluster of rays. Secondly, a new MIMO model for THz communications is proposed. In this model, the number of multipaths is highly dependent on the roughness of the reflecting surfaces. When the surface is ideally smooth, the MIMO channel is sparse and as a result, the capacity is sub-linear with the MIMO scale. On the other hand, when the surface is rough, more degrees of freedom are provided by the scattered rays. Finally, channel capacities with different surface roughness are numerically calculated and compared between different MIMO scales. The results show that in contrast to the GHz range, large scale THz multiple antennas may not provide as much multiplexing gain. Therefore, it is necessary to determine the antenna scale according to the actual propagation environment. The work on distributed antenna systems (DAS) proposes a new DAS model in the THz band. First, the model of DAS in the THz frequency is discussed, which has fewer multipaths than that in the GHz band. Then, we analyze the characteristics of the DAS model and point out that the channel is very sparse if the number of antennas on the base station (BS) is very large. Besides, we provide reasons for the fact that DAS can have a large number of degrees of freedom. We compare the capacities of MIMO systems with DAS and without DAS. The results show that for THz channels, increasing the number of antenna units (AUs) is much more important than increasing the number of antennas in one AU. Finally, we propose an antenna selection and precoding scheme which has very low complexity. / Graduate
207

Mechanical Behavior of Atomically Thin Graphene Sheets Using Atomic Force Microscopy Nanoindentation

Malina, Evan 19 July 2011 (has links)
Graphene, an atomically-thin layer of hexagonally bonded carbon atoms, is the strongest material ever tested. The unusual electrical and mechanical properties of graphene are particularly useful for next-generation transparent touch screens, flexible electronic displays, and photovoltaics. As such applications arise, it is critically important to characterize the resistance of this material under impact and deformation by nanoscale contact. The objective of this thesis is to study the physics of deformation in graphene sheets on a flat substrate under nanoindentation, as a function of number of graphene layers and applied force. In this work, the nanoindentation behavior of single and few layer graphene sheets was investigated by using atomic force microscopy (AFM). Graphene was created by mechanical exfoliation and deposited on a flat SiO2 substrate. The system of graphene on SiO2 simulates many of graphene’s applications, but its characterization by nanoindentation is not fully understood. Here, it was found that the deformation of the atomically-thin film remains purely elastic during nanoindentation, while the amorphous substrate deforms plastically. Also, both modulus of elasticity and contact stiffness were found to increase by 18% when few layer graphene sheets were added to a SiO2 substrate. However, no pronounced change in nanohardness was observed in the substrate with and without the addition of graphene. Furthermore, three modes of deformation were observed including purely elastic deformation, plastic deformation and an abnormal force-depth step mechanism. Each of these mechanisms was analyzed in detail using force-displacement curves and AFM images, and a deformation mechanism map, as a function of number of graphene layers and contact force, was developed. In addition to nanomechanical experiments, computer simulations by finite element analysis (FEA) were conducted in order to better understand the nanonindentation process and underlying deformation mechanisms in this system.
208

Graphene-Supported Metal Nanoparticles For Applications in Heterogeneous Catalysis

ELAZAB, HANY 01 January 2013 (has links)
Due to its unique properties and high surface area, Graphene has become a good candidate as an effective solid support for metal catalysts. The Nobel Prize in Physics for 2010 was awarded to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene". Microwave-assisted synthesis of various metallic nanostructured materials was investigated for CO oxidation applications. These metallic nanostructured materials were used to convert CO to CO2 as an effective approach for carbon monoxide elimination due to its harmful effect on health and environment. In particular, this dissertation is focusing on palladium as a transition metal that has a unique ability to activate various organic compounds to form new bonds. The prepared graphene-supported metallic nanostructured materials were successfully used to investigate Suzuki cross-coupling reaction as an important reaction in the field of pharmaceutical applications. In this research, nanostructured materials were used as solid support catalysts which showed remarkable improvements in the aspects of size, surface structure, catalytic selectivity, shape and recyclability. The nano porous structure and superparamagnetic behavior of (Fe3O4) nano particles that were used as an effective ingredient in graphene-supported palladium catalyst improved the catalytic activity and the catalyst recyclability simply by using an external magnetic field. This research has been divided into two main categories; the first category is to investigate other metal oxides as a solid support for palladium to be used in CO oxidation catalysis. The second category will focus on improving of solid support systems of palladium – magnetite catalyst to increase recyclability. The final stage of this investigation will study the use of these solid supported metal catalysts in continuous heterogeneous processes under flow reaction conditions. The structural, morphological and physical properties of graphene-based nanocomposites described herein were studied using standard characterization tools such as TEM, SEM, X-ray diffraction, XPS and Raman spectroscopy.
209

Graphene Hot-electron Transistors

Vaziri, Sam January 2016 (has links)
Graphene base transistors (GBTs) have been, recently, proposed to overcome the intrinsic limitations of the graphene field effect transistors (GFETs) and exploit the graphene unique properties in high frequency (HF) applications. These devices utilize single layer graphene as the base material in the vertical hot-electron transistors. In an optimized GBT, the ultimate thinness of the graphene-base and its high conductivity, potentially, enable HF performance up to the THz region.  This thesis presents an experimental investigation on the GBTs as well as integration process developments for the fabrication of graphene-based devices. In this work, a full device fabrication and graphene integration process were designed with high CMOS compatibility considerations. To this aim, basic process modules, such as graphene transfer, deposition of materials on graphene, and formation of tunnel barriers, were developed and optimized. A PDMS-supporting graphene transfer process were introduced to facilitate the wet/dry wafer-scale transfer from metal substrate onto an arbitrarily substrate. In addition, dielectric deposition on graphene using atomic layer deposition (ALD) was investigated. These dielectric layers, mainly, served as the base-collector insulators in the fabricated GBTs. Moreover, the integration of silicon (Si) on the graphene surface was studied. Using the developed fabrication process, the first proof of concept devices were demonstrated. These devices utilized 5 nm-thick silicon oxide (SiO2) and about 20 nm-thick aluminum oxide (Al2O3) as the emitter-base insulator (EBI) and base-collector insulator (BCI). The direct current (DC) functionality of these devices exhibited &gt;104 on/off current ratios and a current transfer ratio of about 6%. The performance of these devices was limited by the non-optimized barrier parameters and device manufacturing technology. The possibility to improve and optimize the GBT performance was demonstrated by applying different barrier optimization approaches. Comparing to the proof of concept devices, several orders of magnitude higher injection current density was achieved using a bilayer dielectric tunnel barrier. Utilizing the novel TmSiO/TiO2 (1 nm/6 nm) dielectric stack, this tunnel barrier prevents defect mediated tunneling and, simultaneously, promotes the Fowler-Nordheim tunneling (FNT) and step tunneling (ST). Furthermore, it was shown that Si/graphene Schottky junction can significantly improve the current gain by reducing the electron backscattering at the base-collector barrier. In this thesis, a maximum current transfer ratio of about 35% has been achieved. / <p>QC 20160503</p>
210

Spectroelectrochemical graphene-silver/zinc oxide nanoparticulate phenotype biosensors for ethambutol and pyrazinamide

Tshoko, Siphokazi January 2019 (has links)
>Magister Scientiae - MSc / Tuberculosis (TB), a deadly disease second to HIV/AIDS, is a global health problem. Diagnosis of active tuberculosis is tedious and requires expensive procedures since there is no recognizable method for sole detection of active TB. Although this is a deadly disease, treatment drug toxicity is also an issue that also causes fatalities in diagnosed patients. Therefore, a rapid sensitive and specific diagnostic method is imperative for TB drug management. In this study spectroscopic and/or electrochemical biosensors were developed for the detection and quantification of TB treatment drugs. The biosensors were constructed with electroactive layers of graphene oxide coupled to silver nanoparticles and/or zinc oxide nanoparticles. These nanoparticles coupled with graphene oxide sheets were covalently attached onto the enzymes such as Cytochrome P450-2D6 to achieve the electrochemical detection of the TB treatment drugs and obtain the required electron transfer between the electrode surface and enzyme. The surface morphology of graphene oxide, nanoparticles as well as the green synthesized nanocomposites were achieved using High-Resolution Transmission Electron Microscopy (HRTEM), Atomic Force Microscopy (AFM), and High- Resolution Scanning Electron Microscopy (HRSEM) while the elemental analysis were obtained using Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-Ray (EDX), Raman spectroscopy and X-Ray diffraction (XRD). Additionally, the optical properties of the developed nanocomposites where further characterised using Small Angle X-ray Scattering (SAXS), Photoluminescence Spectroscopy (PL) and Ultraviolet Spectroscopy (UV-vis). The electrochemical studies were obtained using cyclic voltammetry (CV) and showed an increase in electron conductivity for the green synthesized zinc oxide nanoparticles coupled with graphene oxide (ZnONPs/GO) and silver nanoparticles coupled with graphene oxide (AgNPs/GO) nanocomposite which was an indication that they were suitable as platforms towards biosensor development. Furthermore, amperometric technique was also used for biotransformation of the TB treatment drugs (Ethambutol and Pyrazinamide) in standard solutions of 0.1 M phosphate buffer (pH 7.0). Furthermore, the sensitivity value of 0.0748 μA/μM was determined for the ethambutol biosensor while a value of 0.1715 μA/μM was determined for the pyrazinamide biosensors. Very good detection limits were obtained for the standard solutions of ethambutol and pyrazinamide where a value of 0.02057 nM was determined for ethambutol at concentration linear range of 50 μM – 400 μM. Additionally, a value of 0.8975 x 10-2 nM was determined for pyrazinamide at the concentration linear range of 100 μM – 300 μM. The determined limit of detections have provided a clear indication that these biosensors have potential of being used in human samples since these values are below the peak serum concentrations of these drugs in TB diagnosed patients as reported in literature. This was further confirmed by the limit of quantification values determined for each biosensor where a value of 0.8975 x 10-2 nM was determined for pyrazinamide and a value of 0.02057 nM was determined for ethambutol.

Page generated in 0.0473 seconds