Spelling suggestions: "subject:"greenhouse cases."" "subject:"greenhouse bases.""
211 |
The development of a green energy sector model for the Southern African Development Community (SADC)Ramagoma, Mbavhalelo Justice January 2016 (has links)
The Southern African Development Community (SADC) region, like most parts of the African continent, faces significant modern energy services access challenges. It is estimated that less than 45% of the SADC region’s populace have access to reliable modern energy forms and the situation is worse in rural areas where access is approximately 30%. Poor energy security is exacerbated by electricity power cuts and load shedding in almost all of the member states in the region. With the advent of battery storage, all forms of green energy have the potential to contribute to the shortfall in the supply of peaking power required to meet the daily (morning and evenings) and seasonal (winter) peaks when most power is required on the grid network. The region is endowed with vast green (renewables/low carbon or clean) energy resources. The purpose of this study is to expand the empirical body of research and knowledge on factors that contribute to widespread access success to green energy in the SADC region. Investments into green energy resources require an understanding of the unique characteristics of the energy sector in the region. In order to achieve this, a conceptual theoretical model was developed and tested empirically. Factors that influence green energy access success were identified through literature reviews and discussions with energy practitioners. All identified factors were then operationalised by carefully defining them in the context of the study. In order to test the proposed theoretical model and the hypothesised relationships, a structured questionnaire was developed and sent to energy practitioners from various sections of the energy sector in the region. STATISTICA 12 was employed to analyse relationships between variables and responses between identified groups. Pearson Product Moment Correlation (Pearson r) was employed to determine correlations between variables. Conclusions about hypotheses six (6) to fifteen (15) were made based on correlations between variables. T-tests were employed to make inferences about the views of various categories of respondents with regard to the twelve (12) identified variables. Multivariate analysis of variance (MANOVA) and Analysis of variance (ANOVA) examined associations between the dependent and independent variables with the identified categories of respondents and conclusions about hypotheses one (1) to five (5) and sixteen (16) were also made. The study finds that policy and the regulatory environment are still the main driving force behind energy access in the region. Power generation is managed by authorities’ power utility companies. Unbundling of power utilities supported by new energy business and operating models to accommodate mini and off grid power plants is found to be a key to green energy access in the region. The energy market is transforming in favour of independent power producers (IPPs) and consumers will significantly influence energy access decisions in the future. Green energy power storage to overcome intermittency will feature prominently in the success of green energy access in the region. Widespread access success to green energy will be attained when green energy access is reliable, affordable, efficient, and socially acceptable, meet the demand and reduces environmental pollution. The study recommends that strategic green energy planning must incorporate green energy infrastructure development, projects finance and human capacity development as priorities amongst SADC region’s member countries. Regional energy access enabling institutions must be strengthened; energy policies implemented with vigour and private sector participation enhanced in an integrated energy market.
|
212 |
L'adoption de géothermique à des échelles multiples en Amérique du Nord / The adoption of ground source heat pumps at multiple scales in North AmericaJensen, Thor 11 December 2015 (has links)
En Amérique du Nord, le chauffage de l'espace, l'eau chaude, et l'utilisation de la climatisation énergie secondaire plus que toute autre activité au sein de bâtiments, émettant ainsi la majorité des gaz périmètres 1 et 2 serre (GES). La pompe à chaleur géothermique (PCG) utilise un tiers de l'énergie des technologies traditionnelles de fournir un espace de services d'eau chaude et de climatisation. Bien géothermique est une technologie bien établie, les économies d'énergie et les émissions de GES ne sont pas traduits dans leur adoption généralisée. Les mesures de politique publique et les incitations financières adoptées pour promouvoir PCG ont échoué à conduire à une large adoption ou de réduire les coûts. Cette thèse examine l'adoption de pompes à chaleur géothermiques en réponse aux politiques de soutien parmi les adopteurs résidentiels, institutionnels, et la ville-échelle. Données au niveau détaillé du site et des panneaux permettent expériences naturelles sur la réponse des adoptants résidentiels au Canada et aux États-Unis à l'évolution des incitations. À des échelles supérieures, les procédures réglementaires relatives à l'offre de services de l'énergie thermique (TES) a fourni une étude de cas pour l'analyse des modèles d'utilité pour financer géothermique pour les clients commerciaux et institutionnels. Au Canada et aux États-Unis, les incitations financières ont échoué à soutenir l'adoption de la pompe à chaleur géothermique à travers ou après la période de la subvention pour les ménages résidentiels. Pas plus que les incitations conduisent à une diminution des prix dans le temps. Problèmes de resquillage au Canada et une incapacité à faire des incursions dans les zones desservies par le gaz naturel ont brin technologie géothermique. En outre, le coût en capital de pompes à chaleur géothermiques en résulte un coût de cycle de vie plus élevé que la plupart des solutions de rechange. Les avantages de l'économie à l'échelle d'incitations financières pour les pompes à chaleur géothermiques sont limitées au Canada, où la plupart des pompes à chaleur sont importés. TES fournissent innovations convaincantes pour combler les obstacles à des échelles supérieures. TES surmonter équilibrer les contraintes de bilan sur la dette commune aux organisations du secteur public par le financement de biens d'équipement et de rénovation que les paiements de services publics. TES peut surmonter les contraintes de capitaux rencontrés par les développeurs en finançant des équipements à l'intérieur du bâtiment en réduisant les coûts de construction. Cependant, notre étude des marchés publics de cas révèle TES être une approche coûteuse dans le long terme. Les perspectives de cette recherche sont traduits dans les meilleures pratiques et des conseils stratégiques pour améliorer la passation des marchés, accroître la sensibilisation, et aligner les incitations pour une plus grande efficacité. / In North America, space heating, hot water, and air conditioning use more secondary energy thanany other activity within buildings, thus emitting the majority of scope 1 and scope 2 GreenhouseGases (GHG). The Ground Source Heat Pump (GSHP) uses one-third the energy of traditionaltechnologies to provide space conditioning and hot water services.While GSHP is a well-established technology, the energy savings and lower GHG emissionshave not translated into their widespread adoption. Public policy measures and financialincentives adopted to promote GSHP have failed to lead to broad adoption or lower costs. Thisthesis examines the adoption of GSHP in response to supportive policies among residential,institutional, and city-scale adopters.Detailed site-level and panel data permit natural experiments on the response of residentialadopters in Canada and the US to changing incentives. At higher scales, regulatory proceedingsconcerning the offering of Thermal Energy Services (TES) has provided a case study for analysisof utility models to finance GSHP for commercial and institutional clients.In Canada and the US, financial incentives failed to sustain the adoption of GSHP throughout orafter the period of subsidy among residential households. Neither did incentives lead to adecrease in price over time. Free-ridership problems in Canada and an inability to make inroadsto areas served by natural gas have stranded GSHP technology. Further, the capital cost ofGSHP results in a higher lifecycle cost than most alternatives. The economy-wide benefits offinancial incentives for GSHP are limited in Canada, where most heat pumps are imported.iiiTES provide compelling innovations to bridge barriers at higher scales. TES overcome balancesheet constraints on debt common to public sector organizations by financing capital equipmentand renovations as utility payments. TES can overcome capital constraints faced by developersby financing equipment inside the building lowering construction costs. However, our casestudy of public procurement reveals TES to be a costly approach in the long run. The insightsfrom this research are translated into best practices and policy advice to improve contracting,increase awareness, and align incentives for greater efficiency.
|
213 |
Optimering av stommen i ettflerbostadshus av betong & stål / Optimization of a Frame in an Apartment Building of Concrete and Steel.Rytterlund &, David, Maroki, Gabi January 2021 (has links)
Förhöjda halter av växthusgaser leder till negativa förändringar i klimatet. Bygg- ochfastighetssektorn svarar för cirka 19% av dessa i Sverige. Sedan år 1993 har branchensklimatpåverkan minskat avsevärt. Reduceringen härleds dock endast till en byggnationsuppvärmning och drift. För att reducera utsläppen under upplåtande av byggnader sesminskad materialåtgång, genom att dimensionera slankare konstruktioner, vara en möjligåtgärd. Studien har utförts på uppdrag av Sweco Structures i Örebro, med anledning attundersöka hur en optimering påverkar klimatavtrycket för flerbostadshuset Kv Cykeln iHagfors, i hopp om att i framtiden tillåta konstruktören mer dimensioneringstid. Detta harundersökts genom att de studerade byggnadsdelarna dimensionerats till mindre tvärsnittoch större utnyttjandegrader. Vidare har jämförelser gjorts hur materialkostnader påverkar iförhållande till mer nedlagd tid i projekt. Resultatet visar en möjlig minskning av CO2-ekvtill 41%, av de studerade delarna vid optimering. Slutsatsen är att det finns stor potential tillatt minimera utsläppen i framtida projekt av liknande stommar beroende av materialåtgång. / Elevated levels of greenhouse gases leads to negative changes in the climate, where theconstruction and real estate sector accounts for about 19% of these in Sweden. The totalemissions from the industry have decreased significantly since 1993, but can not be attributedto the actual construction of buildings but refers to processes after the building is built. Toreduce emissions from construction, sees reduced material consumption a possible solution.The study was carried out on behalf of Sweco Structures in Örebro, in order to investigatehow an optimization affects the climate footprint of the apartment building Kv Cykeln inHagfors, in the hope of allowing the construction designer more dimensioning time in thefuture. This has been investigated by dimensioning the studied building parts to smallercross-sections and larger utilization rates. Furthermore, comparisons have been made of howmaterial costs affect in relation to more time spent on projects. The result shows a possiblereduction of greenhouse gases to 41%, of the studied parts. The conclusion is that there isgreat potential for minimizing emissions in future projects of similar frameworks dependingon material consumption.
|
214 |
Accounting for Greenhouse Gas Emissions and Toxic Air Pollutants in Trucking Efficiency and ProductivityHeng, Yen January 2011 (has links)
Air pollution is a threat to the environment and human health. Freight trucking in particular is the main source of freight transportation emissions. Heavy-duty trucks emit large amounts of toxic air pollutants that cause serious diseases and harm public health. In addition, heavy-duty trucks emit great amounts of greenhouse gas (GHG), which is the leading cause of global warming. Despite increased environmental restrictions on air pollution and rising trucking greenhouse gas emissions in the past decades, no economic study has examined the potential GHG and air pollution reductions in the trucking sector and the associated private abatement costs to the industry. This study accounts for GHG emissions and toxic air pollutants in measuring and evaluating efficiency and productivity for the trucking industry in the 48 contiguous states. Moreover, the private costs of abatement to the industry were also estimated. When only GHG was incorporated in the production model, the results showed that each state could expand desirable output and reduce GHG by an average of 11 percent per year between 2000 and 2007. The Malmquist-Luenberger productivity indexes showed that omitting or ignoring GHG in trucking service production yielded biased estimates. On the other hand, due to increased environmental regulations, most of the toxic air pollutants decreased dramatically between 2002 and 2005. The analytical results showed that inefficiency decreased during this period. The private costs of abatement averaged $73 million per state in 2005. When GHG and six toxic air pollutants were incorporated in the production model, the estimated private abatement cost was $76 million per state, which was equivalent to 0.7 percent of the industry output in 2005.
|
215 |
Mountain Glacier Change Across Regions and TimescalesMaurer, Joshua January 2020 (has links)
Mountain glaciers have influenced the surface of our planet throughout geologic time. These large reservoirs of water ice sculpt alpine landscapes, regulate downstream river flows, perturb climate-tectonic feedbacks, contribute to sea level change, and guide human migration and settlement patterns. Glaciers are especially relevant in modern times, acting as buffers which supply seasonal meltwater to densely populated downstream communities and support economies via hydropower generation. Anthropogenic warming is accelerating ice loss in most glacierized regions of the world. This has sparked concerns regarding water resources and natural hazards, and placed glaciers at the forefront of climate research. Here we provide new observations of glacier change in key mountain regions to quantify rates of ice loss, better understand climate drivers, and help establish a more unified framework for studying glacier change across timescales.
In Chapter 1 we use seismic observations, numerical modeling, and geomorphic analysis to investigate a destructive glacial lake outburst flood (GLOF) which occurred in Bhutan. GLOFs are a substantial hazard for downstream communities in many vulnerable regions. Yet key aspects of GLOF dynamics remain difficult to quantify, as in situ measurements are scarce due to the unpredictability and remote source locations of these events. Here we apply cross-correlation based seismic analyses to track the evolution of the GLOF remotely (~100 km from the source region), use the seismic observations along with eyewitness reports and a downstream gauge station to constrain a numerical flood model, then assess geomorphic change and current state of the unstable lakes via satellite imagery. Coherent seismic energy is evident from 1 to 5 Hz beginning approximately 5 hours before the flood impacted Punakha village, which originated at the source lake and advanced down the valley during the GLOF duration. Our analysis highlights potential benefits of using real-time seismic monitoring to improve early warning systems.
The next two chapters in this work focus on quantifying multi-decadal glacier ice loss in the Himalayas. Himalayan glaciers supply meltwater to densely populated catchments in South Asia, and regional observations of glacier change are needed to understand climate drivers and assess impacts on glacier-fed rivers. Here we utilize a set of digital elevation models derived from cold war–era spy satellite film and modern stereo satellite imagery to evaluate glacier responses to changing climate over the last four decades. In Chapter 2 we focus on the eastern Himalayas, centered on the Bhutan–China border. The wide range of glacier types allows for the first mass balance comparison between clean, debris, and lake-terminating (calving) glaciers in the area. Measured glaciers show significant ice loss, with statistically similar mass balance values for both clean-ice and debris-covered glacier groups. Chapter 3 extends the same methodology to quantify glacier change across the entire Himalayan range during 1975–2000 and 2000–2016. We observe consistent ice loss along the entire 2000-km transect for both intervals and find a doubling of the average loss rate during 2000–2016 compared to 1975–2000. The similar magnitude and acceleration of ice loss across the Himalayas suggests a regionally coherent climate forcing, consistent with atmospheric warming and associated energy fluxes as the dominant drivers of glacier change.
Chapter 4 investigates millennial-scale glacier changes during the Late Glacial period (15-11 ka). Here we present a high-precision beryllium-10 chronology and geomorphic map from a sequence of well-preserved moraines in the Nendaz valley of the western European Alps, with the goal to shed light on the timing and magnitude of glacier responses during an interval of dramatic natural climate variability. Our chronology brackets a coherent glacier recession through the Younger Dryas stadial into the early Holocene, similar to glacier records from the southern hemisphere and a new chronology from Arctic Norway. These results highlight a general agreement between mountain glacier changes and atmospheric greenhouse gas records during the Late Glacial.
In Chapter 5 we use a numerical glacier model to simulate glacier change across a typical alpine region in the European Alps. Model results suggest that shorter observational timespans focused on modern periods (when glaciers are far from equilibrium and undergoing rapid change) exhibit greater spatial variability of mean annual ice thickness changes, compared to intervals which extend further back in time (to include decades when climate was more stable). The model agrees with multi-decadal satellite observations of glacier change, and clarifies the positive correlation between glacier disequilibrium and spatial variability of glacier mass balance. This relationship should be taken into account in regional glacier studies, particularly when analyzing recent spatial patterns of ice loss.
Advances made in this work are of practical value for societies vulnerable to glacier change. This includes potential improvements to GLOF early warning systems via seismic monitoring, better constraints on glacier-sourced water scenarios in South Asia, strengthened understanding of long-term glacier responses to baseline natural climate variability, and a clarified relationship between glacier disequilibrium and spatial variability of ice loss. When placed within a global context, our observations highlight the correlation between regional mountain glacier change and greenhouse gas forcing through time.
|
216 |
Energy audit in Ockelbo healthcare centerDe Wit, Pedro January 2020 (has links)
As the world is becoming aware of the impact of global warming reducing greenhouse gases emissions presents itself as a fundamental issue in order to avoid the environmental collapse and its negative consequences. One of the key points of this challenge it’s to make a responsable use of the energy. In European countries, buildings sector consumes around the 40% of the total energy use. Thus ensuring energy efficiency becomes a vital issue in order to reduce energy usage and its environmental impact. This master thesis reports on the energy audit made in Din Hälsocentral. The energy use of the health center is studied through a heat energy balance from September to May (the months when the local district heating network works) with the aim of suggesting cost-effective energy saving measures.The study combines information provided by Din Hälsocentral, data estimated based on the characteristics of the installations and literature review. The energy balance shows that Din Hälsocentral has a heat energy input 595 MWh. This heat is received by the health center through district heating, solar radiation and internal heat generation while it’s lost through transmission losses, mechanical ventilation losses, infiltration heat losses and tap water heating. To decrease the energy use five saving measures have been suggested: the substitution of the health center windows by more efficient ones, the reduction of the indoor temperature, the replacement of the heat exchangers from the mechanical ventilation system, the installation of an aerothermal heating system in order to replace the district heating supply and the improvement of the roof isolation. The implementantion of those different measures would report heat energy savings between the 4% and the 63%, having payback periods between 0 and 7 years. However, the viability of application of aerothermal heating system in the health center installations as well as its maintenance costs must be studied more deeply.
|
217 |
LIDAR DIAL multi espèces à base de sources paramétriques optiques pour la détection des gaz à effet de serre depuis l'espace. / Multispecies high energy DIAL LIDAR for greenhouse gases monitoring from space using a parametric oscillator source.Cadiou, Erwan 20 December 2017 (has links)
Pour estimer les puits et sources des gaz à effet de serre et améliorer les prévisions d’évolution du climat, il est nécessaire de disposer de mesures précises et continues de leurs concentrations atmosphériques à l’échelle globale. Pour consolider le réseau d’observation mondial, la mise en œuvre de systèmes lidar embarqués sur satellite pour les futures missions de sondage atmosphérique depuis l’espace est considérée comme un atout à la fois innovant et complémentaire pour les méthodes de mesure actuelles. Dans ce contexte, ces travaux de thèse ont porté sur le développement d’un lidar à absorption différentielle (DIAL) à partir d’une source paramétrique émettant dans la gamme spectrale 1,9 – 2,3 µm. Il s’est agi de démontrer l’aptitude de la source à être mise en œuvre pour des mesures longue portée des principaux gaz à effet de serre (CO2, H2O, CH4). Dans ce but, la source a été intégrée dans une architecture lidar dimensionnée préalablement à l’aide une modélisation numérique. L’optimisation de l’instrument s’est faite autour de deux points : le contrôle de la pureté spectrale de la source, et la maîtrise de la réponse de la chaine de détection et d’acquisition. Des mesures des trois gaz ont ensuite été réalisées depuis le laboratoire à partir du signal provenant de la rétrodiffusion des aérosols ou des nuages. Ces mesures ont servi de support pour une étude approfondie des erreurs et biais de mesure. À partir de ces travaux et en s’appuyant sur des simulations, la possibilité d’intégration de la source dans un système aéroporté a été étudiée comme étape préliminaire à la mesure spatiale. Enfin, une projection des performances d’un système satellite mettant en œuvre la source a été établie. / Sustained and accurate greenhouse gases measurements at a global scale are required to improve the knowledge on their sources and sinks and thus increase the accuracy of climate change projections. In order to consolidate the global observation networks, spaceborne lidar systems for future earth observation missions are regarded as innovative and complementary components to the present operational measurement methods. In this context, this research work has consisted in developing a differential absorption DIAL lidar based on an optical parametric source able to emit in the 1,9–2,3 µm spectral range. The purpose was to demonstrate its ability to be implemented in long range measurements of the main greenhouse gases (CO2, H2O, CH4). Then, the laser transmitter has been integrated in a lidar architecture which was previously designed using a numerical model. Improvements and optimization of the lidar system focused on two aspects: the monitoring of the spectral purity of the emitter and the control of the detection and acquisition. Concentration measurements on the three gases have been carried out from the laboratory based on atmospheric backscattered signals from clouds and aerosol. These measurements provided a basis for the investigation of the error and bias sources. On the basis of these measurements, instrument scaling for future airborne demonstrations is discussed. Projected performances of a spaceborne instrument are also presented.
|
218 |
A 30-Year Record of the Isotopic Composition of Atmospheric MethaneTeama, Doaa Galal Mohammed 19 March 2013 (has links)
Methane (CH4) is one of the most important greenhouse gases after water vapor and carbon dioxide due to its high concentration and global warming potential 25 times than that of CO2 (based on a 100 year time horizon). Its atmospheric concentration has more than doubled from the preindustrial era due to anthropogenic activities such as rice cultivation, biomass burning, and fossil fuel production. However, the rate of increase of atmospheric CH4 (or the growth rate) slowed from 1980 until present. The main reason for this trend is a slowdown in the trend of CH4 sources. Measuring stable isotopes of atmospheric CH4 can constrain changes of CH4 sources. The main goal of this work is to interpret the CH4 trend from 1978-2010 in terms of its sources using measurements of CH4 mixing ratio and its isotopes. The current work presents the measurements and analysis of CH4 and its isotopes (δ13C and δD) of four air archive sample sets collected by the Oregon Graduate Institute (OGI). CH4 isotope ratios (δ13C and δD) were measured by a continuous flow isotope ratio mass spectrometer technique developed at PSU. The first set is for Cape Meares, Oregon which is the oldest and longest set and spans 1977-1999. The integrity of this sample set was evaluated by comparing between our measured CH4 mixing ratio values with those measured values by OGI and was found to be stable. Resulting CH4 seasonal cycle was evaluated from the Cape Meares data. The CH4 seasonal cycle shows a broad maximum during October-April and a minimum between July and August. The seasonal cycles of δ13C and δD have maximum values in May for δ13C and in July for δD and minimum values between September-October for δ13C and in October for δD. These results indicate a CH4 source that is more enriched January-May (e.g. biomass burning) and a source that is more depleted August-October (e.g. microbial). In addition to Cape Meares, air archive sets were analyzed from: South Pole (SPO), Samoa (SMO), Mauna Loa (MLO) 1992-1996. The presented δD measurements are unique measured values during these time periods at these stations. To obtain the long-term in isotopic CH4 from 1978-2010, other datasets of Northern Hemisphere mid-latitude sites are included with Cape Meares. These sites are Olympic Peninsula, Washington; Montaña de Oro, California; and Niwot Ridge, Colorado. The seasonal cycles of CH4 and its isotopes from the composite dataset have the same phase and amplitudes as the Cape Meares site. CH4 growth rate shows a decrease over time 1978-2010 with three main spikes in 1992, 1998, and 2003 consistent with the literature from the global trend. CH4 lifetime is estimated to 9.7 yrs. The δ13C trend in the composite data shows a slow increase from 1978-1987, a more rapid rate of change 1987-2005, and a gradual depletion during 2005-2010. The δD trend in the composite data shows a gradual increase during 1978-2001 and decrease from 2001-2005. From these results, the global CH4 emissions are estimated and show a leveling off sources 1982-2010 with two large peak anomalies in 1998 and 2003. The global average δ13C and δD of CH4 sources are estimated from measured values. The results of these calculations indicate that there is more than one source which controls the decrease in the global CH4 trend. From 1982-2001, δ13C and δD of CH4 sources becomes more depleted due to a decrease in fossil and/or biomass burning sources relative to microbial sources. From 2005-2010, δ13C of CH4 sources returns to its 1981 value. There are two significant peaks in δ13C and δD of CH4 sources in 1998 and 2003 due to the wildfire emissions in boreal areas and in Europe.
|
219 |
Transport sector greenhouse gas inventory for South Africa for the base year 2009Tongwane, Mphethe Isaac 06 March 2014 (has links)
e transport sector is responsible for a quarter of global CO2 emissions and the emissions continue to grow rapidly. The overall objective of this study was to calculate the following greenhouse gas emissions (GHG); CO2, CH4 and N2O from the transport sector in South Africa in the base year 2009. However, in addition to the calculations of the emissions for this base year, emissions from road transport were recalculated since 2000. The available data allowed only Tier 1 method to calculate all the GHG emissions. Vehicles per type, province and distances they travelled were used to estimate the emissions, while fuel used at various airports in the country was used to determine aviation emissions. Emissions from other modes of the transport sector were calculated using the data from the national energy balances. It was estimated that 54,296 Giga grams (Gg) of CO2 equivalent (CO2-eq) emissions were emitted in 2009. Road, off- road, aviation and rail transports accounted for 80%, 13%, 6% and 1% of the emissions, respectively. Motorcars and trucks produced more than 70% of the road transport emissions. Road transport emissions increased at approximately 2.66% per year between 2000 and 2009. Gauteng province had the highest emissions. Minibus taxis were the most efficient transport mode on the basis of load carried.
|
220 |
A Petroleum Energy, Greenhouse Gas, and Economic Life Cycle Analysis of Several Automotive Fuel OptionsDoude, Matthew Carter 17 May 2014 (has links)
A vehicle fuel’s life does not begin when that fuel is pumped into the tank or the battery is charged. Each kilowatt-hour of fuel that is used has a history traceable back to its original feedstock, be it crude oil, corn, solar energy, or others. In this thesis, a life cycle analysis is performed on E10, E85, B20, hydrogen, and electricity, with the well-to-pump fossil fuel energy use and greenhouse gas emissions compared. Results are presented in the form of either energy or mass per kilowatt of fuel at the plug or at the pump. An analysis of the economic viability of each fuel to the consumer is also demonstrated. E85 is found to have the best well-to-pump fossil fuel energy use at 722 Wh/kWh, while hydrogen demonstrates the best well-to-wheel greenhouse gas emissions with 123 g/km (CO2 equivalent) and electricity produces the lowest vehicle lifetime operating cost of $0.241/mile.
|
Page generated in 0.0699 seconds