Spelling suggestions: "subject:"must"" "subject:"just""
21 |
Aerodynamic Testing of Variable Message SignsMeyer, Debbie 12 November 2014 (has links)
The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.
|
22 |
Surface Mean Flow and Turbulence Structure in Tropical Cyclone WindsYu, Bo 14 November 2007 (has links)
Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably.
|
23 |
CFD simulace poryvu bočního větru / CFD simulation of a crosswind gustKroupa, Michal January 2017 (has links)
This thesis deals with the investigation of unsteady effects on vehicle that has been exposed to a crosswind gust. First crosswind velocity function was created, which is a function of both time and space. A comparison of continual and trapeze gust model was carried out. Next step was to compare unsteady and quasi-steady evolution of the aerodynamic loads using accumulated forces, surface pressures and flow field around the car. The penultimate part deals with investigation of unsteady behaviour of drag and in the last part the influence of rear geometry of the car on unsteady phenomena was investigated.
|
24 |
Výpočet aerodynamických charakteristik vozidla s vybočením / Calculation of vehicle aerodynamic characteristics under yaw conditionsFojtů, Kevin January 2020 (has links)
The diploma thesis focuses on CFD simulation of a vehicle with various geometric modifications and non-zero angle flow. The goal of the work is to evaluate the effect of crosswinds for individual vehicle modifications together with the validation of these data sets with measured data from the wind tunnel. The last part of the thesis contains analysis of the flow field.
|
25 |
Modeling and Control of an Active Dihedral Fixed-Wing Unmanned AircraftFisher, Ryan Douglas 21 June 2022 (has links)
Unmanned aircraft systems (UAS) often encounter turbulent fields that perturb the aircraft from its desired target trajectory, or in a manner that increases the load factor. The aircraft's fixed dihedral angle, providing passive roll-stiffness, is often selected based on lateral-directional stability requirements for the vehicle. A study to predict the effect of an active dihedral system on lateral-directional stability and vertical gust rejection capability was conducted to assess the performance and feasibility of the system. Traditionally, the dihedral location begins at the root to maintain wing structural requirements, however, the active dihedral system was also evaluated for dynamic stability and gust rejection performance at alternative dihedral breakpoint locations. Simulations were completed using linear parameter-varying (LPV) models, derived from traditional Newtonian aircraft dynamics and associated kinematic equations, to improve the modeling of the nonlinear active dihedral system. The stability of the LPV system was evaluated using Lyapunov stability theory applied to switched linear systems, assessing bounds of operation for the dihedral angle and flapping rate. An ideal feedback controller was developed using a linear–quadratic regulator (LQR) for both a discrete gust model and a continuous gust model, and a gain scheduled LQR controller was implemented to show the benefits of gain scheduling with a parameter varying state and input model. Finally, a cost analysis was conducted to investigate the real-world benefit of altering the dihedral breakpoint location. The effects of the active dihedral system on battery capacity and consumption efficiency were observed and compared with the gust rejection authority. / Master of Science / Unmanned aircraft systems (UAS) often encounter wind disturbances that perturb the aircraft from its desired target trajectory, or in a manner that increases the force encountered on the vehicle. The aircraft's fixed dihedral angle, providing stiffness to roll rotations, is often selected based on stability and control requirements for the vehicle. A study to predict the effect of a flapping wing (active dihedral) system on the stability, control, and wind gust rejection capability is completed to assess the performance and feasibility of such a system. Traditionally, the dihedral location begins at the root to maintain wing structural requirements, however, the active dihedral system was also evaluated for stability and wind gust rejection performance at alternative locations along the wing where the dihedral could begin, with intention of finding the best location. Simulations were completed using a varying set of simplified models, obtained from traditional aircraft mechanics, to improve the modeling of the true complex active dihedral system. The stability of the system was evaluated using various theories applied to the linear systems in attempt to define a bounded operating region for the dihedral angle and flapping motion. An ideal controller for the system was developed using ideas from well documented linear control theory for both a single wind gust and a continuous wind gust model. A controller that varies with vehicle flapping motion was implemented to show the benefits of scheduling the controller with a parameter varying state and input model. Finally, a cost analysis was conducted to investigate the real-world benefit of altering the dihedral starting location. The effects of the active dihedral system on battery capacity and consumption efficiency were observed and compared with the total gust rejection capability.
|
26 |
Simultaneous Energy Harvesting and Vibration Control via Piezoelectric MaterialsWang, Ya 20 March 2012 (has links)
This work examines a novel concept and design of simultaneous energy harvesting and vibration control on the same host structure. The motivating application is a multifunctional composite sandwich wing spar for a small Unmanned Aerial Vehicle (UAV) with the goal of providing self-contained gust alleviation. The basic idea is that the wing itself is able to harvest energy from the ambient vibrations along with available sunlight during normal flight. If the wing experiences any strong wind gust, it will sense the increased vibration levels and provide vibration control to maintain its stability. This work holds promise for improving performance of small UAVs in wind gusts.
The proposed multifunctional wing spar integrates a flexible solar cell array, flexible piezoelectric wafers, a thin film battery and an electronic module into a composite sandwich structure. The basic design factors are discussed for a beam-like multifunctional wing spar with load-bearing energy harvesting, strain sensing and self-controlling functions. Three-point bending tests are performed on the composite sandwich structure for bending strength analysis and bending stiffness prediction under a given safety factor. Additional design factors such as the configuration, location and actuation type of each piezoelectric transducer are investigated for optimal power generation. The equivalent electromechanical representations of a multifunctional wing spar is derived theoretically, simulated numerically and validated experimentally.
Special attention is given to the development of a reduced energy control (REC) law, aiming to minimize the actuation energy and the dissipated heat. The REC law integrates a nonlinear switching algorithm with a positive strain feedback controller, and is represented by a positive feedback operation amplifier (op-amp) and a voltage buffer op-amp for each mode. Experimental results exhibit that the use of nonlinear REC law requires 67.3 % less power than a conventional nonlinear controller to have the same settling time under free vibrations.
Nonlinearity in the electromechanical coupling coefficient of the piezoelectric transducer is also observed, arising from the piezoelectric hysteresis in the constitutive equations coupling the strain field and the electric field. If a constant and voltage-independent electromechanical coupling coefficient is assumed, this nonlinearity results in considerable discrepancies between experimental measurements and simulation results. The voltage-dependent coupling coefficient function is identified experimentally, and a real time adaptive control algorithm is developed to account for the nonlinear coupling behavior, allowing for more accurate numerical simulations.
Experimental validations build upon recent advances in harvester, sensor and actuator technology that have resulted in thin, light-weight multilayered composite sandwich wing spars. These multifunctional wing spars are designed and validated to able to alleviate wind gust of small UAVs using the harvested energy. Experimental results are presented for cantilever wing spars with micro-fiber composite transducers controlled by reduced energy controllers with a focus on two vibration modes. A reduction of 11dB and 7dB is obtained for the first and the second mode using the harvested ambient energy. This work demonstrates the use of reduced energy control laws for solving gust alleviation problems in small UAVs, provides the experimental verification details, and focuses on applications to autonomous light-weight aerospace systems. / Ph. D.
|
27 |
Physics-Based Lidar Simulation and Wind Gust Detection and Impact Prediction for Wind TurbinesJanuary 2019 (has links)
abstract: Lidar has demonstrated its utility in meteorological studies, wind resource assessment, and wind farm control. More recently, lidar has gained widespread attention for autonomous vehicles.
The first part of the dissertation begins with an application of a coherent Doppler lidar to wind gust characterization for wind farm control. This application focuses on wind gusts on a scale from 100 m to 1000 m. A detecting and tracking algorithm is proposed to extract gusts from a wind field and track their movement. The algorithm was implemented for a three-hour, two-dimensional wind field retrieved from the measurements of a coherent Doppler lidar. The Gaussian distribution of the gust spanwise deviation from the streamline was demonstrated. Size dependency of gust deviations is discussed. A prediction model estimating the impact of gusts with respect to arrival time and the probability of arrival locations is introduced. The prediction model was applied to a virtual wind turbine array, and estimates are given for which wind turbines would be impacted.
The second part of this dissertation describes a Time-of-Flight lidar simulation. The lidar simulation includes a laser source module, a propagation module, a receiver module, and a timing module. A two-dimensional pulse model is introduced in the laser source module. The sampling rate for the pulse model is explored. The propagation module takes accounts of beam divergence, target characteristics, atmosphere, and optics. The receiver module contains models of noise and analog filters in a lidar receiver. The effect of analog filters on the signal behavior was investigated. The timing module includes a Time-to-Digital Converter (TDC) module and an Analog-to-Digital converter (ADC) module. In the TDC module, several walk-error compensation methods for leading-edge detection and multiple timing algorithms were modeled and tested on simulated signals. In the ADC module, a benchmark (BM) timing algorithm is proposed. A Neyman-Pearson (NP) detector was implemented in the time domain and frequency domain (fast Fourier transform (FFT) approach). The FFT approach with frequency-domain zero-paddings improves the timing resolution. The BM algorithm was tested on simulated signals, and the NP detector was evaluated on both simulated signals and measurements from a prototype lidar (Bhaskaran, 2018). / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2019
|
28 |
UNSTEADY BUFFETING FORCES AND GUST RESPONSE OF BRIDGES WITH PROPER ORTHOGONAL DECOMPOSITION APPLICATIONS / POD解析を用いた橋梁の変動空気力及びガスト応答に関する研究 / POD カイセキ オ モチイタ キョウリョウ ノ ヘンドウ クウキリョク オヨビ ガスト オウトウ ニ カンスル ケンキュウLe, Thai Hoa 25 September 2007 (has links)
学位授与大学:京都大学 ; 取得学位: 博士(工学) ; 学位授与年月日: 2007-09-25 ; 学位の種類: 新制・課程博士 ; 学位記番号: 工博第2843号 ; 請求記号: 新制/工/1418 ; 整理番号: 25528 / The unsteady buffeting forces and the gust response prediction of bridges in the atmospheric turbulent flows is recently attracted more attention due to uncertainties in both experiment and analytical theory. The correction functions such as the aerodynamic admittance function and the spatial coherence function have been supplemented to cope with limitations of the quasi-steady theory and strip one so far. Concretely, so-called single-variate quasi-steady aerodynamic admittance functions as the transfer functions between the wind turbulence and induced buffeting forces, as well as coherence of wind turbulence has been widely applied for the gust response prediction. Recent literatures, however, pointed out that the coherence of force exhibits higher than that of turbulence. These correction functions, in the other words, contain their uncertainties which are required to be more understanding. Proper orthogonal decomposition (POD), known as the Karhunen-Loeve decomposition has been applied popularly in many engineering fields. Main advantage of the POD is that the multi-variate correlated random fields/processes can be decomposed and described in such simplified way as a combination of limited number of orthogonally low-order dominant eigenvectors (or turbulent modes) which is convenient and applicable for order-reduced representation, simulation of the random fields/processes such as the turbulent fields, turbulent-induced force fields and stochastic response prediction as well. The POD and its proper transformations based on either zero-time-lag covariance matrix or cross spectral one of random fields/processes have been branched by either the covariance proper transformation (CPT) in the time domain or the spectral proper transformation (SPT) in the frequency domain. So far, the covariance matrix-based POD and its covariance proper transformation in the time domain has been used almost in the wind engineering topics due to its simplification in computation and interpretation. In this research, the unsteady buffeting forces and the gust response prediction of bridges with emphasis on the POD applications have been discussed. Investigations on the admittance function of turbulent-induced buffeting forces and the coherence one of the surface pressure as well as the spatial distribution and correlation of the unsteady pressure fields around some typically rectangular cylinders in the different unsteady flows have been carried out thanks to physical measurements in the wind tunnel. This research indicated effect of the bluff body flow and the wind-structure interaction on the higher coherence of buffeting forces than the coherence of turbulence, thus this effect should be accounted and undated for recent empirical formulae of the coherence function of the unsteady buffeting forces. Especially, the multi-variate nonlinear aerodynamic admittance function has been proposed in this research, as well as the temporo-spectral structure of the coherence functions of the wind turbulence and the buffeting forces has been firstly here using the wavelet transform-based coherence in order to detect intermittent characteristics and temporal correspondence of these coherence functions. In POD applications, three potential topics in the wind engineering field have been discussed in the research: (i) analysis and identification, modeling of unsteady pressure fields around model sections; (ii) representation and simulation of multi-variate correlated turbulent fields and (iii) stochastic response prediction of structures and bridges. Especially, both POD branches and their proper transformations in the time domain and the frequency one have been used in these applications. It found from these studies that only few low-order orthogonal dominant modes are enough accuracy for representing, modeling, simulating the correlated random fields (turbulence and unsteady surface pressure, unsteady buffeting forces), as well as predicting stochastic response of bridges in the time and frequency domains. The gust response prediction of bridges has been formulated in the time domain at the first time in this research using the covariance matrix-based POD and its covariance proper transformation which is very promising to solve the problems of the nonlinear and unsteady aerodynamics. Furthermore, the physical linkage between these low-order modes and physical causes occurring on physical models has been interpreted in some investigated cases. / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第13372号 / 工博第2843号 / 新制||工||1418(附属図書館) / 25528 / UT51-2007-Q773 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 松本 勝, 教授 河井 宏允, 准教授 白土 博通 / 学位規則第4条第1項該当
|
29 |
Výpočet zatížení kluzáku HPH 2 Twin Shark / HPH 2 Twin Shark glider loading calculationPělucha, Jiří January 2010 (has links)
The object of diploma thesis is a loading determination for strength calculation of HPH 2 Twin Shark glider matching the requirements of Certification Specification for Sailplanes (CS-22). Loading of the wing, tail section, fuselage and undercarriage is determined in this work.
|
30 |
Simulações numéricas de tempestades severas na RMSP / Numerical simulations of severe thunderstorms in the MASPHallak, Ricardo 29 June 2007 (has links)
Tempestades severas ocorrem na Região Metropolitana de São Paulo (RMSP) principalmente nos meses quentes e úmidos do ano. Nesta tese, os mecanismos de disparo da convecção profunda são estudados por meio de análises observacionais e simulações numéricas com o Advanced Regional Prediction System (ARPS). A metodologia proposta compreende o uso da parametrização microfísica fria na simulação dos processos físicos que levam à formação de nuvens cumulonimbus, sem o uso da parametrização de cúmulos nas grades de altíssima resolução espacial. Nos eventos estudados, as primeiras células de precipitação observadas e simuladas surgiram em razão da interação entre o escoamento atmosférico na camada limite planetária e a topografia local. As células secundárias foram geralmente mais intensas, uma vez que elas surgiram após o aquecimento diabático adicional. O mecanismo de disparo das células secundárias foi a corrente ascendente induzida pela propagação horizontal das frentes de rajada em baixos níveis da atmosfera das correntes descendentes das células primárias. As frentes de rajada tiveram velocidade de propagação horizontal típica de 6 m s-1. No evento de 02 de fevereiro de 2004, células convectivas profundas foram simuladas com alto grau de realismo no domínio da grade de 3 km de resolução espacial. Observou-se que, neste caso, a frente de brisa marítima pôde atuar como guia de ondas para a colisão entre duas frentes de rajada. A propagação da frente de brisa marítima para o interior do continente ocorreu em conjunção a um forte gradiente de vapor dágua nos níveis mais baixos da troposfera. As células convectivas profundas secundárias surgiram e se desenvolveram exatamente nesta zona de interface, a qual representa o contraste entre as diferentes massas de ar marítima e continental. No evento de 04 de fevereiro de 2004, na grade de 1 km de resolução, a análise objetiva com as medidas das estações de superfície na RMSP correspondente às 1800 UTC indicou a presença de uma ilha de calor urbana com até 4 oC de aquecimento diferencial entre a Capital e vizinhanças. O principal efeito da assimilação destas medidas foi a redução do NCL em até 80 hPa, o que favoreceu o disparo da convecção naquela área. / Severe thunderstorms occur in the Metropolitan Area of São Paulo (MASP) mainly in the warm and wet months of the year. In this work, the triggering mechanisms of deep convection are studied through observed data and numerical simulations with the Advanced Regional Prediction System (ARPS). The proposed methodology focuses in the use of microphysics parameterization of cold clouds to simulate physical process linked to the life cycle of thunderstorms. The cumulus cloud parameterization isnt used in high resolution numerical grids. In the real case studies, both observed and simulated, early convective cells developed as a consequence of the interaction between the planetary boundary layer atmospheric flow and the local topography. The secondary convective cells were generally strongest, once they developed after additional surface diabatic heating. The triggering mechanism of these secondary cells was the updraft induced by gust fronts generated by downdrafts of primary cells. The gust fronts had a typical horizontal propagation velocity of 6 m s-1. In the February 02 2004 event, deep convective cells were simulated with high degree of realism with a 3 km resolution grid. It was observed that, in this case, the sea-breeze front could act as a wave guide to the collision between two different gust fronts. In addition, the sea breeze front propagated to the continental area together with a strong low level water vapor gradient. The secondary deep convective cells arose and developed exactly on this interface zone, which represents the contrast between the oceanic and continental air masses. The interface zone was marked by a water vapor mixing rate of 14 g kg-1. In the February 04 2004 event, the objective analysis, made with some MASP´s surface stations measurements at 1800 UTC in the 1 km resolution grid, indicates the presence of an urban heat island with up to 4 oC of differential heating between São Paulo city and its neighboring area. The main effect in assimilating these surface measurements was the lowering of the lift condensation level up to 80 hPa, which favored the triggering of convection in that area.
|
Page generated in 0.0405 seconds