• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 36
  • 36
  • 36
  • 18
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Détection des nutriments et contrôle central de la prise alimentaire / Nutrient sensing and central control of food intake

Delaere, Fabien 02 December 2009 (has links)
En relation avec sa position anatomique, la détection portale de nutriments se situe au coeur de l’impact de la composition nutritionnelle d’un repas sur la prise alimentaire et le métabolisme énergétique. Ainsi, la détection portale de glucose, produit par exemple en réponse aux protéines alimentaires, induit un signal nerveux à l’origine d’une induction de la satiété et d’une amélioration de l’homéostasie glucidique. Grâce à des travaux physiologiques et anatomiques chez le rat, nous proposons un modèle pour cette détection dans lequel deux modes interviennent, soit un transport et un catabolisme intracellulaire, soit une détection purement extracellulaire du glucose. La glycémie portale est détectée par l’un ou l’autre de ces mécanismes en fonction de sa différence avec la glycémie artérielle, reflet du statut nutritionnel et métabolique des individus. Un signal nerveux est ensuite initié dans les neurones périportaux, dont les axones aboutissent à proximité de la lumière veineuse. Les études immunohistochimiques réalisées ont permis de montrer que ce signal induit une activation cérébrale étendue en relation avec les effets multiples du glucose portal, dans le tronc cérébral, les systèmes sensoriels et cortico-limbiques, et l’hypothalamus. Dans ce dernier, la nature cellulaire de l’activation conforte notamment l’hypothèse de l’implication du signal glucose portal dans l’effet de satiété induit par les régimes riches en protéines. / Nutrient sensing in the portal vein occurs in a strategic location to relay the effects of the diet on food intake and energy metabolism. The portal sensing of glucose produced for instance in response to dietary proteins initiates a nervous signal that ultimately induces satiety and a better control of glucose metabolism. Our physiological and anatomical approaches enable us to propose a sensing model in which two different mechanisms can occur, involving either the intracellular transport and catabolism of glucose or a direct extracellular detection. Portal glycaemia is detected by one pathway or the other depending on its difference with arterial blood glucose, which reflects the nutritional and metabolic state of the subject. A nervous signal is then initiated in periportal neurons, whose axons terminate close to the venous lumen. Our immunohistochemical studies have shown that this signal induces a widespread activation in the brain that relates to the multiple effects of portal glucose appearance, in the brainstem, the sensory and cortico-limbic systems and the hypothalamus. In this latter area, the cellular nature of the activation supports the hypothesized central role of portal glucose appearance in the satiety effect of high-protein diets.
32

Détection portale des nutriments et contrôle de l'homéostasie énergétique par l'axe nerveux intestin-cerveau / Portal detection of nutrients and control of energy homeostasis by the gut-brain neural axis

De Vadder, Filipe 30 June 2014 (has links)
La production endogène de glucose est une fonction cruciale de l'organisme, permettant de maintenir l'homéostasie glycémique. Alors que la production accrue de glucose par le foie a des effets délétères, la néoglucogenèse intestinale (NGI) exerce des effets bénéfiques sur l'équilibre métabolique de l'organisme. Les régimes hyperprotéiques sont connus pour leurs effets de satiété. Grâce à des travaux physiologiques et moléculaires chez le rat et la souris, nous montrons dans une première partie que l'effet bénéfique des régimes hyperprotéiques passe par une induction de la NGI. Lors de la digestion des protéines alimentaires, des di- et tripeptides sont libérés dans la veine porte. Ces molécules agissent comme des antagonistes des récepteurs μ-opioïdes de la veine porte, initiant un arc réflexe intestin-cerveau induisant la NGI et la satiété. Dans un deuxième temps, nous proposons un modèle rendant compte des effets bénéfiques des régimes riches en fibres, tels que l'amélioration de la sensibilité à l'insuline et l'induction de la dépense énergétique. Les fibres solubles sont fermentées par le microbiote intestinal, produisant des acides gras à chaîne courte (AGCC), acétate, propionate et butyrate, à l'origine des effets métaboliques observés. Nous montrons que le butyrate active directement les gènes de la NGI dans les entérocytes, et que le propionate se lie aux récepteurs FFAR3 dans le système nerveux périportal, initiant un mécanisme de communication entre l'intestin et le cerveau induisant la NGI. De plus, nous montrons que la modification de la composition du microbiote par les fibres alimentaires n'est pas suffisante en soi pour induire les effets bénéfiques en absence de NGI / Endogenous glucose production is a crucial function for the organism, accounting for the maintenance of glucose homeostasis. While an increase in hepatic glucose production has deleterious effects, intestinal gluconeogenesis (IGN) has beneficial effects on the metabolic balance of the organism. Protein-rich diets are knows for their satiety effects. Thanks to physiological and molecular studies on rats and mice, we first show that the beneficial effects of protein-rich diets are dependent on activation of IGN. When dietary protein is digested, di- and tri-peptides are released into the portal vein. These molecules act as μ-opioid receptor antagonists in the portal vein, initiating a gut-brain neural reflex arc inducing IGN and satiety. In a second study, we propose a model accounting for the beneficial effects of fiber-enriched diets, such as increased insulin sensitivity and induction of energy expenditure. Soluble dietary fiber is fermented by the gut microbiota, producing short-chain fatty acids (SCFAs), acetate, propionate and butyrate, which are responsible for the observed metabolic effects. We show that butyrate directly activates IGN in the enterocytes, while propionate binds to FFAR3 receptors in the portal vein nervous system, initiating a gut-brain neural communication mechanism inducing IGN. Moreover, we show that modifications in the microbiota composition by dietary fiber are not sufficient to induce metabolic beneficial effects in the absence of IGN
33

Vliv mikrobiomu na aktivitu HPA osy / Effect of microbiota on the activity of HPA axis

Fajstová, Alena January 2017 (has links)
Recent research shows, that gut microbiome can influence various functions of the organism and is able to communicate with the brain. The data also show that changes in the composition of gut microbiome can influence behavior and stress reactions and vice versa, psychological state of the organism can cause changes in gut microbiome. The aim of this master's thesis was to examine changes of HPA activation and local metabolism of glucocorticoids caused by stress in the presence or absence of gut microbiome. We therefore used germ-free mice and studied the effect of stress in pituitary, adrenal gland, colon and spleen. We found that, stress has different impact on gene expression in adrenal gland, colon and spleen in the presence or absence of gut microbiome. In contrast, there wasn't any significant effect of stress on pituitary in germ free mice and their conventionaly colonized counterparts.
34

The Impact of Antibiotics on the Gut-Brain Axis

Odeh, Sufian 10 1900 (has links)
<p>The gut and brain are involved in a bi-directional communication system, referred to as the gut-brain axis. While it has been established that antimicrobials induce dysbiosis in the gut, which further disrupts immune and metabolic homeostasis, research on brain and behaviour development is becoming a topic of interest. We propose that alterations via antibiotics at the level of the gut microbiota impacts the gut-brain axis. The primary interest of this thesis is to understand the effects that antibiotics have on brain and behaviour development in conjunction with changes in the immune system and metabolism using the antibiotic mouse model. Mice treated with antibiotics revealed behavioural differences in the open field apparatus and three-chamber social behaviour apparatus, but not in the elevated plus maze and auditory fear conditionings enclosures. Evaluation of intestinal permeability revealed that female Balb/C mice administered a combination of bacitracin, neomycin and primaricin and another group administered a combination of ampicillin, neomycin and primaricin showed reduced intestinal permeability. Furthermore, the immune system condition was evaluated using flow cytometric analysis of spleens, which revealed no effect of treatment on immune cell profiles in CD1 mice treated with ampicillin. Evaluation of serum cytokine levels showed minimal differences in Balb/C and C57Bl/6 mice treated with antibiotics. Body weight and water and food consumption were evaluated in mice administered antibiotics. Weight loss differences were observed in two groups of female Balb/C mice, with the first group administered bacitracin, neomycin and primaricin and the second group administered ampicillin , neomycin and primaricin. Antibiotic treatment dependent differences in water and food consumption were observed. Serum insulin and leptin level investigation revealed that female Balb/C mice administered ampicillin, neomycin and primaricin had reduced serum insulin levels compared to strain matched controls. These findings indicate that antibiotic treatment impact metabolic function. This pilot study using antibiotic treated mouse models provides insight on the microbiota’s effects on the gut-brain axis, which can help to potentially identify methods of preventing gut microbiota mediated pathology in humans.</p> / Master of Science (MSc)
35

Investigation of the cross-talk between gut microbes and plasma metabolites in the development of post-traumatic epilepsy

Mäkinen, Nelly January 2024 (has links)
The aim of this project has been to investigate whether there are correlations to be found between gut microbes and serum metabolites, which could be involved in the development of epilepsy. To do so, metabolomics data containing metabolites and metagenomics data containing bacteria have been integrated and used in a pipeline utilizing the software package DIABLO in R Studio. DIABLO stands for Data Integration Analysis for Biomarker discovery using Latent cOmponents and utilizes multi-block pls-da to integrate multiple omics data sets to find potential biomarkers. The results in this project are mainly divided into two groups, the first group being from taking samples at an early time point, where subjects have not yet developed symptoms of epilepsy and the second group being from taking samples at a late time point, where the subjects have developed epilepsy. To find biomarkers in the data used for the integration, two subgroups are of highest interest, namely subgroup PTE, which is the group that develops epilepsy symptoms after an induced trauma to the brain, as well as subgroup TBI which do not develop epilepsy symptoms after an induced trauma to the brain. Results from the early time point suggests that bacteria such as those from Phelethenecus, Christenselellales, Ventrimonas, Ruminococcaceae and Acetatifactor, as well as metabolites such as LPC 17:0, Indole and Indole-3-carboxyaldehyde might be of interest in finding biomarkers previous to the development of epilepsy after induced brain trauma.  Results from the late time point suggests that bacteria such as those from Muribaculaceae and Avidehalobacter, as well as metabolites such as Dioctyl sulfosuccinate, Canrenone, LPC 18:0, Uric acid, Arjunolic acid and Pseudouridine might be of interest in finding underlying mechanisms behind the existing condition of epilepsy. The hope is that findings in this paper might aid in future development of knowledge behind this disease as well as its underlying mechanisms.
36

Influence of gut-to-brain neuroendocrine pathways and intestinal microbiota on energy homeostasis

Bullich Vilarrubias, Clara 19 July 2025 (has links)
Tesis por compendio / [ES] La obesidad es un gran reto de salud pública que ha alcanzado proporciones epidémicas. El entorno "occidentalizado" en el que vivimos, caracterizado por la accesibilidad a alimentos hipercalóricos, contribuye al desequilibrio crónico entre energía ingerida y gasto energético que causan la obesidad. Las intervenciones conductuales diseñadas para la pérdida de peso tienen limitada efectividad a largo plazo, por lo que existe una urgente necesidad de desarrollar estrategias más eficaces y seguras para prevenir y tratar la obesidad y sus comorbilidades. El desarrollo de estrategias terapéuticas dirigidas al intestino para mejorar la salud metabólica requiere un conocimiento en profundidad de las vías de señalización neuroendocrina intestinal que regulan el la ingesta y el equilibrio energético. El objetivo de esta tesis ha sido profundizar en las interacciones intestino-cerebro implicadas en el control de la homeostasis energética, incluyendo los componentes endocrinos, neurales y la microbiota intestinal, en el contexto del desarrollo de la obesidad inducida por una dieta hipercalórica. En los Capítulos 1 y 2 hemos explorado nuevas funciones de las neuronas sensoriales aferentes que expresan el canal de sodio Nav1.8 en el control de la homeostasis energética, considerando las diferencias entre sexos. Hemos generado un modelo de ratón carente de las neuronas Nav1.8+ mediante ablación con toxina diftérica. En el Capítulo 1 hemos demostrado que las neuronas Nav1.8+ son indispensables para regular específicamente según el sexo las vías neurales y endocrinas implicadas en la homeostasis energética. En hembras, la ablación de estas neuronas mejora la regulación de la glucosa postprandial potenciando la señalización enteroendocrina de GLP-1 y acelera el tránsito intestinal, mientras que en machos induce resistencia al aumento de peso inducido por una dieta obesogénica. En el Capítulo 2 hemos demostrado que, en machos, la ablación de las neuronas Nav1.8+ altera el control coordinado de la ingesta i las variaciones de peso diarias, además de alterar la señalización enteroendocrina y las oscilaciones diarias de la microbiota intestinal en respuesta al estado nutricional (ayuno/ingesta), y perturbar la homeostasis del sistema inmune intestinal. En el capítulo 3, hemos usado un modelo de ratón con obesidad inducida por dieta para explorar los mecanismos por los cuales Phascolarctobacterium faecium DSM 32890, una cepa bacteriana intestinal aislada de humanos metabólicamente sanos, previene la obesidad modulando la ingesta. La administración de P. faecium reduce la ingesta calórica gracias a la hipersecreción de la hormona gastrointestinal saciante el PYY. Independientemente de sus efectos anorexigénicos, la bacteria ejerce sus beneficios metabólicos estimulando el tránsito intestinal y reduciendo la absorción intestinal de lípidos, evitando la acumulación de grasa corporal. En conclusión, esta tesis doctoral proporciona evidencia preclínica que contribuye a una comprensión más precisa de las vías neuroendocrinas que comunican el intestino y el cerebro, y del papel que tiene la microbiota intestinal en la regulación de la ingesta y el gasto energético. Destacamos la importancia de las neuronas sensoriales aferentes Nav1.8+ en la detección de estímulos intestinales por quimiorreceptores para regular el balance energético en ambos sexos, lo cual abre una nueva línea de investigación para diseñar herramientas de neuromodulación de las neuronas Nav1.8+ con el fin de prevenir y tratar los trastornos metabólicos inducidos por la dieta, de forma específica para cada sexo. También destacamos que P. faecium es una bacteria candidata como probiótico de nueva generación, ya que modula el sistema enteroendocrino del hospedador y previene la obesidad en un modelo preclínico. En conjunto, estos hallazgos proporcionan una base para el desarrollo de estrategias terapéuticas basadas en el intestino dirigidas a combatir la obesidad y comorbilidades asociadas. / [CA] L'obesitat és un gran repte de salut pública que ha assolit proporcions epidèmiques. L'entorn "occidentalitzat" en el que vivim, caracteritzat per l'accessibilitat a aliments hipercalòrics, contribueix al desequilibri crònic entre energia ingerida i despesa energètica que causen l'obesitat. Les intervencions conductuals dissenyades per a la pèrdua de pes tenen una eficàcia limitada a llarg termini, per la qual cosa hi ha una necessitat urgent de desenvolupar estratègies més eficaces i segures per a prevenir i tractar l'obesitat i les seues comorbiditats. El desenvolupament d'estratègies terapèutiques dirigides a l'intestí per a millorar la salut metabòlica requereix un coneixement en profunditat de les vies de senyalització neuroendocrina intestinal que regulen la ingesta i l'equilibri energètic. L'objectiu d'aquesta tesi ha sigut aprofundir en les interaccions intestí-cervell implicades en el control de l'homeòstasi energètica, incloent els components endocrins, neurals i la microbiota intestinal, en el context del desenvolupament de l'obesitat induïda per una dieta hipercalòrica. En els Capítols 1 i 2 hem explorat noves funcions de les neurones sensorials aferents que expressen el canal de sodi Nav1.8 en el control de l'homeòstasi energètica, considerant les diferències entre sexes. Hem generat un model de ratolí mancat de les neurones Nav1.8+ mitjançant ablació amb toxina diftèrica. En el Capítol 1 hem demostrat que les neurones Nav1.8+ són indispensables per a regular, específicament segons el sexe, les vies neurals i endocrines implicades en l'homeòstasi energètica. En femelles, l'ablació d'aquestes neurones millora la regulació de la glucosa postprandial potenciant la senyalització enteroendocrina de GLP-1 i accelera el trànsit intestinal, mentre que en mascles indueix resistència a l'augment de pes induït per una dieta obesogènica. En el Capítol 2 hem demostrat que, en mascles, l'ablació de les neurones Nav1.8+ altera el control coordinat de la ingesta i les variacions de pes diàries, a més d'alterar la senyalització enteroendocrina i les oscil·lacions diàries de la microbiota intestinal en resposta a l'estat nutricional (dejuni/ingesta), i pertorbar l'homeòstasi del sistema immunitari intestinal. En el capítol 3, hem utilitzat un model de ratolí amb obesitat induïda per dieta per explorar els mecanismes pels quals Phascolarctobacterium faecium DSM 32890, una soca bacteriana intestinal aïllada d'humans metabòlicament sans, prevé l'obesitat modulant la ingesta. L'administració de P. faecium redueix la ingesta calòrica gràcies a la hipersecreció de l'hormona gastrointestinal saciant PYY. Independentment dels seus efectes anorexigènics, el bacteri exerceix els seus beneficis metabòlics estimulant el trànsit intestinal i reduint l'absorció intestinal de lípids, evitant l'acumulació de greix corporal. En conclusió, aquesta tesi doctoral proporciona evidència preclínica que contribueix a una comprensió més precisa de les vies neuroendocrines que comuniquen l'intestí i el cervell, i del paper que té la microbiota intestinal en la regulació de la ingesta i la despesa energètica. Destaquem la importància de les neurones sensorials aferents Nav1.8+ en la detecció d'estímuls intestinals per quimioreceptors per a regular l'equilibri energètic en ambdós sexes, que obri una nova línia d'investigació per a dissenyar ferramentes de neuromodulació de les neurones Nav1.8+ amb la finalitat de prevenir i tractar els trastorns metabòlics induïts per la dieta, de forma específica per a cada sexe. També destaquem que P. faecium és un bacteri candidat com a probiòtic de nova generació, ja que modula el sistema enteroendocrí de l'hoste i prevé l'obesitat en un model preclínic. En conjunt, aquests troballes proporcionen una base per al desenvolupament d'estratègies terapèutiques basades en l'intestí dirigides a combatre l'obesitat i comorbiditats associades. / [EN] Obesity is a major global public health challenge that has reached epidemic proportions. Besides its profound impact on health and well-being, this metabolic disorder represents a significant economic burden to society. Our westernized environment where high-calorie foods are readily available, represents a major driver of the chronic imbalance between energy intake and energy expenditure that cause obesity. The limited effectiveness of behavioral interventions to manage long-term weight loss highlights the urgent need to develop more effective and minimally invasive approaches to prevent and treat obesity and its comorbidities. The development of gut-targeted therapeutic strategies to improve metabolic health requires a comprehensive understanding of the gut neuroendocrine signaling pathways that, in interaction with the gut microbiota, control feeding behavior to ultimately maintain energy balance. The aim of this thesis has been to gain insight into gut-brain interactions, including those mediated by endocrine, neural and gut microbial components, involved in the control of energy homeostasis, with a focus on obesogenic diet-related dysfunctions that increase susceptibility to develop obesity. In Chapters 1 and 2, we have investigated novel functions of sensory afferent neurons expressing the sodium channel Nav1.8 in the control of energy homeostasis, considering sex-specificities, by generating a mouse model lacking Nav1.8+ neurons through a diphtheria toxin ablation strategy. In Chapter 1, we show that Nav1.8+ neurons are required to control neural and endocrine pathways involved in energy homeostasis in a sex-specific manner. Specifically, ablation of Nav1.8+ neurons in females improves postprandial glucose regulation by enhancing glucagon-like peptide-1 enteroendocrine signaling and accelerating intestinal transit, whereas in males it induces resistance to weight gain in response to an obesogenic diet. To further explore the role of Nav1.8+ neurons in controlling food intake and pre- and post-prandial daily rhythms that influence metabolic phenotype, in Chapter 2 we show in males that ablation of Nav1.8+ sensory neurons impairs the coordinated control of food intake and body weight fluctuations throughout the day. The loss of these neurons also alters the physiological enteroendocrine signaling and daily gut microbiota oscillations in response to the nutritional status (fasting/refeeding cycles) and disrupts intestinal immune homeostasis. In Chapter 3, we used a diet-induced obese mouse model to investigate the mechanisms by which Phascolarctobacterium faecium DSM 32890, a gut bacterial strain isolated from metabolically healthy humans, prevents obesity by modulating food intake. We show that administration of P. faecium reduces caloric intake by promoting hypersecretion of a satiating gastrointestinal hormone, the peptide YY (PYY). Independently of its anorexigenic effects, the bacterium exerts its metabolic benefits via complementary mechanisms, specifically by stimulating intestinal transit and reducing intestinal lipid absorption, thereby preventing body fat accumulation. In conclusion, this doctoral thesis provides preclinical evidence for a better understanding of gut-to-brain neuroendocrine pathways and the role of gut microbiota in the regulation of food intake and energy expenditure. We highlight the importance of Nav1.8+ sensory afferent neurons in gut chemosensing for maintaining energy balance in both sexes, which prompts novel research lines and opportunities to design of sex-specific neuromodulation tools targeting Nav1.8+ neurons for prevention and treatment of diet-induced metabolic disorders. We also highlight that P. faecium is a promising next-generation probiotic candidate, as it modulates the host enteroendocrine system and prevents obesity in a preclinical model. Overall, our findings contribute to the development of gut-based therapeutic strategies to combat obesity and associated comorbidities. / This study has been funded by the European Union 7th Framework Program through the MyNewGut project (Grant agreement No. 613979) and Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 797297 (MRP), the Spanish Ministry of Science and Innovation (Grant PID2020-119536RB-I00), the European Commission – NextGenerationEU, through the CSIC Interdisciplinary Thematic Platform (PTI+) NEURO- AGING+ (PTI-NEURO-AGING+)”. The grant of the Spanish Ministry of Science and Innovation (MCIN/AEI) to IATA-CSIC as Accredited Center of Excellence (CEX2021-001189-S/ MCIN/AEI / 10.13039/501100011033) is acknowledged. / Bullich Vilarrubias, C. (2024). Influence of gut-to-brain neuroendocrine pathways and intestinal microbiota on energy homeostasis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207342 / Compendio

Page generated in 0.041 seconds