• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Demographic Trends of Hepatitis C and Other Chronic Liver Diseases in National Ambulatory Care Visits between 2011 and 2016

Costa, Lucas Scharf da 29 October 2020 (has links)
No description available.
2

Inhibition of TRF2 Accelerates Telomere Attrition and DNA Damage in Naïve CD4 T Cells During HCV Infection

Nguyen, Lam Nhat, Zhao, Juan, Cao, Dechao, Dang, Xindi, Wang, Ling, Lian, Jianqi, Zhang, Ying, Jia, Zhansheng, Wu, Xiao Y., Morrison, Zheng, Xie, Qian, Ji, Yingjie, Zhang, Zheng, El Gazzar, Mohammed, Ning, Shunbin, Moorman, Jonathan P., Yao, Zhi Q. 05 September 2018 (has links) (PDF)
T cells play a crucial role in viral clearance and vaccine responses; however, the mechanisms that regulate their homeostasis during viral infections remain unclear. In this study, we investigated the machineries of T-cell homeostasis and telomeric DNA damage using a human model of hepatitis C virus (HCV) infection. We found that naïve CD4 T cells in chronically HCV-infected patients (HCV T cells) were significantly reduced due to apoptosis compared with age-matched healthy subjects (HSs). These HCV T cells were not only senescent, as demonstrated by overexpression of aging markers and particularly shortened telomeres; but also DNA damaged, as evidenced by increased dysfunctional telomere-induced foci (TIF). Mechanistically, the telomere shelterin protein, in particular telomeric repeat binding factor 2 (TRF2) that functions to protect telomeres from DNA damage, was significantly inhibited posttranscriptionally via the p53-dependent Siah-1a ubiquitination. Importantly, knockdown of TRF2 in healthy T cells resulted in increases in telomeric DNA damage and T-cell apoptosis, whereas overexpression of TRF2 in HCV T cells alleviated telomeric DNA damage and T-cell apoptosis. To the best of our knowledge, this is the first report revealing that inhibition of TRF2 promotes T-cell telomere attrition and telomeric DNA damage that accelerates T-cell senescent and apoptotic programs, which contribute to naïve T-cell loss during viral infection. Thus, restoring the impaired T-cell telomeric shelterin machinery may offer a new strategy to improve immunotherapy and vaccine response against human viral diseases.
3

CD8+ T Cell Hyperfunction In Advanced Liver Fibrosis Murine Model and Its Association with Tumor Growth

Madani, Jood 19 January 2022 (has links)
Advanced liver fibrosis in chronic hepatitis C infection (HCV) is associated with a generalized impaired immune system. Many immune cells are affected in chronic liver disease, including CD8+ T cells. The Crawley lab reported CD8+ T cell hyperfunction in cirrhotic HCV-infected individuals that persisted after effective antiviral therapy. To evaluate the link between CD8+ T cell dysfunction in advanced fibrosis, we adapted a hepatotoxic carbon tetrachloride (CCl4) murine model. We consistently observed severe fibrosis in CCl4-treated mice resembling fibrosis in chronic HCV infected individuals. After stimulation of PBMC, the proportion of granzyme B+, and IFN-γ+ CD8+ T cells in fibrotic mice was significantly higher than the controls, particularly naïve and central memory CD8+ T cells. This state of hyperfunction was sustained after liver insult removal and significant fibrosis regression to near normal tissue integrity. Sex differences were also studied in this model and were apparent after prolonged exposure to CCl4 and in the capacity to repair liver fibrosis. Following an ectopic challenge with cancer cells, tumor growth was significantly greater in fibrotic mice. Moreover, the response to immunotherapy was significantly delayed in CCl4-treated mice. In summary, we reported for the first time that circulating CD8+ T cells are hyperfunctional in a murine model of advanced liver fibrosis in response to a hepatotoxin. In this context, affected mice failed to control the growth of a tumor whose growth is known to be controlled by a robust CD8+ T cell response. In addition, the reduced responses to immunotherapeutic effects suggest deficiencies in antigen-specific CD8+ T cell responses. Therefore, this animal model might be useful to identify mechanistic targets with translational potential for immune restoring treatments in human chronic liver diseases with advanced liver fibrosis.
4

Úloha faktorů hostitele v odpovědi na protivirovou léčbu chronické hepatitidy C / Role of host-dependent factors in prediction of antiviral treatment response in chronic hepatitis C

Fraňková, Soňa January 2017 (has links)
Soňa Fraňková: Role of host-dependent factors in prediction of antiviral treatment response in chronic hepatitis C Abstract Hepatitis C virus infection represents a leading cause of liver disease in western countries. The primary goal of HCV therapy is elimination of the virus, i.e. sustained virological response (SVR) achievement. Genetic factors have long been suspected of playing a crucial role in determining response to IFN-α-based therapies, but pretreatment predictors of response were only poorly defined and did not allow personalization of therapy. The aim of the thesis is to describe the role of host-dependent factors in prediction of antiviral treatment response in chronic hepatitis C in specific groups of patients. First, we focused on the role of the IFNG -764G/C promoter variant in SVR achievement. We did not prove that this variant predicted SVR in Czech HCV-infected individuals. Next, we focused on the role of IL28B and IFNL4 in HCV-infected patients: we confirmed that the IL28B rs12979860 CC genotype slows down the progression of liver fibrosis in chronic HCV infection and that IFNL4 ss469415590 TT|ΔG genotyping does not bring a better prediction of treatment success than IL28B rs12979860 in the Czech population. Third, we assessed prediction of treatment response in HCV positive liver...
5

Níveis de expressão de miR-33a e miR-122 em pacientes cronicamente infectados pelo vírus da Hepatite C genótipos 1 e 3 / G.mir-33a and mir-122 levels in patients chronically infected with hcv genotype 1 and 3

Oliveira, Ketti Gleyzer de 10 November 2015 (has links)
Estima-se que 3% da população mundial esteja infectada pelo vírus da hepatite C (HCV). O HCV tem como alvo o tecido hepático e a maioria dos pacientes infectados desenvolvem infecção crônica. Nos últimos anos, estudos in vitro têm demonstrado interações entre o miRNA-122 (miR-122) da célula hospedeira e dois sítios localizados na região 5\' UTR do genoma do vírus da hepatite C (HCV), os quais são essenciais ao processo de replicação viral. O miR-122 é altamente expresso no fígado, onde atua na regulação do metabolismo de lipídios juntamente com outro miRNA, o miRNA-33a (miR-33a), porém, o mecanismo envolvido nesta regulação ainda é pouco conhecido. Sabe-se que a infecção pelo HCV altera a expressão de genes envolvidos na biossíntese e transporte de lipídios, resultando na estimulação do metabolismo de lipídios e criando um ambiente favorável para sua replicação. Neste contexto os objetivos deste trabalho foram avaliar a expressão de miR-33a e miR-122 em indivíduos cronicamente infectados pelo HCV-1 e HCV-3 em amostras obtidas antes do início da terapia. Os miRNAs foram isolados a partir de amostras de sangue periférico e de tecido hepático. A quantificação da expressão relativa de ambos miRNAs foi pela técnica de PCR em tempo real. Os níveis de miR-33a no sangue periférico foram mais elevados do que no tecido hepático em indivíduos infectados pelo HCV-1(p < 0,0001) e HCV-3 (p=0,0025). Observou-se uma correlação inversa entre os níveis de miR-33a no sangue periférico e tecido hepático dos indivíduos infectados pelo HCV-1 (r=-0,281, p=0,039) e correlação positiva para os indivíduos infectados pelo HCV-3 (r=0,9286, p < 0,0001). Correlação inversa entre os níveis hepáticos de miR-33a com o nível sérico de insulina (r=-0,371, p =0,005) nos indivíduos infectados pelo HCV-1 e correlação positiva entre os níveis no sangue periférico com os níveis séricos de GGT (r=0,553, p=0,049) foram observadas. Em relação ao miR-122, de maneira geral o nível hepático foi mais elevado do que o sérico (p < 0,0001). Entretanto, o nível hepático de miR-122 em indivíduos infectados pelo HCV-3 foi maior quando comparado aos infectados pelo HCV-1 (6,22 vezes, p < 0,001). Uma correlação inversa entre os níveis séricos de ApoA-II e os níveis de expressão de miR-122 no sangue (r=-0,330; p=0,014) e tecido hepático (r=-0,311; p=0,020) foi observada nos pacientes infectados pelo HCV-1. Os pacientes infectados pelo HCV- 3 mostraram correlação positiva entre os níveis hepáticos de miR-122 e os níveis de HDL (r=0,412, p=0,036) e insulina (r=0,478, p=0,044). O miR-33a e o miR-122 atuam regulando genes que controlam o metabolismo dos lipídios no fígado. Até o presente momento, não existem relatos que associem a expressão do miR-33a e do miR-122 com o perfil lipídico na infecção pelo HCV. Além disso, o acúmulo de lipídio (esteatose) intensamente descrito na infecção pelo HCV-3 pode sugerir interação diferenciada desse genótipo com os mecanismos envolvidos na regulação do metabolismo lipídico, envolvendo o miR-33a e miR-122 / The prevalence of infection by hepatitis C virus (HCV) is about 3% of the world population. HCV targets the liver tissue and the majority of infected patients develop chronic infection. In recent years, in vitro studies have demonstrated interactions between miRNA-122 (miR-122) the host cell to two places located in the 5\' untranslated region of the HCV genome which are essential for virus replication process. miR-122 is highly expressed in the liver, which has been implicated as a fatty acid metabolism regulator. Another mine has also been described as a key regulator of lipid metabolism, miRNA-33a (miR-33a), however, the mechanisms involved in this regulation are still little known. It is known that HCV infection changes the expression of genes involved in the biosynthesis and transport of lipids, resulting in stimulation of the lipid metabolism and creating a favorable environment for replication of the virus. To our knowledge, there are no reports linking the expression of miR-33a with lipid profile in HCV infection. In this context the objectives of this study were to evaluate the expression of miR-33a and miR-122 in chronically infected individuals with HCV-1 and HCV-3 in samples obtained prior to initiation of therapy. MiRNAs were isolated from peripheral blood samples and liver tissue. The quantification of relative expression of both miRNAs was by PCR in real time. MiR-33a levels in peripheral blood were higher than in liver tissue in patients infected with HCV-1 (p < 0.0001) and HCV-3 (p=0.0025). Levels in the peripheral blood of miR-33a were lower in patients infected with HCV-3 (p=0.0169). There was an inverse correlation between hepatic levels of miR-33a with serum insulin levels (p=0.005) in individuals infected with HCV-1 and a positive correlation between the levels in the peripheral blood serum levels of GGT (p=0.049). Hepatic levels of miR-122 were higher than the levels in the peripheral blood of individuals infected by HCV-1 and HCV-3 (p < 0.0001). Hepatic miR-122 levels were higher in patients infected with HCV-3 than those infected with HCV-1 (6.22 times, p < 0.001). There was a positive correlation between miR-122 levels in the blood and liver tissue of patients infected with HCV-1 (r=0.302, p=0.026). An inverse correlation between serum ApoA-II was observed in these patients the levels of expression of miR-122 in blood (r=-0.330; p =0.014) and liver tissue (r=-0.311; p=0.020). Patients infected with HCV-3 showed a positive correlation between hepatic miR-122 levels to HDL levels (r=0.412, p=0.036) and insulin levels (r=0.478, p=0.044). The miR-33a and miR-122 act by regulating genes that control lipid metabolism in the liver. The different interactions with lipid metabolism exerted by HCV-3 may explain why his relationship with the miR-33a and miR-122 was different when compared with HCV-1
6

Etude des facteurs cellulaires responsables de l'initiation et de la dissémination du virus de l'hépatite C / Study of cellular factors responsible for initiation and spread of hepatitis C virus

Turek, Marine 24 June 2013 (has links)
Le VHC est une cause majeure de cancer du foie. Le traitement actuel est caractérisé par à un cout élevé, la présence de toxicité et l’émergence de résistance virale. Dans la 1ère partie de ma thèse, je me suis intéressé à l’entrée virale. L’entrée est nécessaire pour l’initiation ; la dissémination et le maintien de l’infection et représente ainsi une cible intéressante dans le développement de thérapies antivirales : CD81 et SRBI sont les 1ers facteurs décrits comme importants pour l’entrée : Nous avons confirmé leur rôle clé dans l’entrée et les étapes suivant l’entrée. De plus, nous avons montré leur rôle crucial dans la transmission cellule/cellule. Le VHC infecte principalement les hépatocytes, nous avons étudié en seconde partie de ma thèse le tropisme restreint du VHC aux hépatocytes. En définissant les facteurs essentiels à l’infection de cellules non hépatiques et en développant un modèle cellulaire afin d’identifier de nouveaux facteurs d’assemblage et de réplication du VHC. / HCV infection is the leading cause of chronic liver disease. The current SOC is still limited by high costs, toxicity and emergence of viral resistance. In the first part of my thesis we focused our workon viral entry. Viral entry is required for initiation, spread, and maintenance of infection, and thus is a promising target for the development of new antiviral therapies. CD81 and SR-BI are the first entry factors identified as important for HCV entry. In our work we confirmed their crucial role in entry, especially at the post-binding step. In addition we proved their key role in viral dissemination through the cell-cell transmission. As HCV mainly infects hepatocytes, we studied in the second part of my thesis, the restricted cellular tropism of HCV to hepatocytes and we defined the minimal host factors rendering non hepatic cell lines susceptible to HCV infection by the establishment of a powerful tool to identify new assembly and replication factors.
7

Níveis de expressão de miR-33a e miR-122 em pacientes cronicamente infectados pelo vírus da Hepatite C genótipos 1 e 3 / G.mir-33a and mir-122 levels in patients chronically infected with hcv genotype 1 and 3

Ketti Gleyzer de Oliveira 10 November 2015 (has links)
Estima-se que 3% da população mundial esteja infectada pelo vírus da hepatite C (HCV). O HCV tem como alvo o tecido hepático e a maioria dos pacientes infectados desenvolvem infecção crônica. Nos últimos anos, estudos in vitro têm demonstrado interações entre o miRNA-122 (miR-122) da célula hospedeira e dois sítios localizados na região 5\' UTR do genoma do vírus da hepatite C (HCV), os quais são essenciais ao processo de replicação viral. O miR-122 é altamente expresso no fígado, onde atua na regulação do metabolismo de lipídios juntamente com outro miRNA, o miRNA-33a (miR-33a), porém, o mecanismo envolvido nesta regulação ainda é pouco conhecido. Sabe-se que a infecção pelo HCV altera a expressão de genes envolvidos na biossíntese e transporte de lipídios, resultando na estimulação do metabolismo de lipídios e criando um ambiente favorável para sua replicação. Neste contexto os objetivos deste trabalho foram avaliar a expressão de miR-33a e miR-122 em indivíduos cronicamente infectados pelo HCV-1 e HCV-3 em amostras obtidas antes do início da terapia. Os miRNAs foram isolados a partir de amostras de sangue periférico e de tecido hepático. A quantificação da expressão relativa de ambos miRNAs foi pela técnica de PCR em tempo real. Os níveis de miR-33a no sangue periférico foram mais elevados do que no tecido hepático em indivíduos infectados pelo HCV-1(p < 0,0001) e HCV-3 (p=0,0025). Observou-se uma correlação inversa entre os níveis de miR-33a no sangue periférico e tecido hepático dos indivíduos infectados pelo HCV-1 (r=-0,281, p=0,039) e correlação positiva para os indivíduos infectados pelo HCV-3 (r=0,9286, p < 0,0001). Correlação inversa entre os níveis hepáticos de miR-33a com o nível sérico de insulina (r=-0,371, p =0,005) nos indivíduos infectados pelo HCV-1 e correlação positiva entre os níveis no sangue periférico com os níveis séricos de GGT (r=0,553, p=0,049) foram observadas. Em relação ao miR-122, de maneira geral o nível hepático foi mais elevado do que o sérico (p < 0,0001). Entretanto, o nível hepático de miR-122 em indivíduos infectados pelo HCV-3 foi maior quando comparado aos infectados pelo HCV-1 (6,22 vezes, p < 0,001). Uma correlação inversa entre os níveis séricos de ApoA-II e os níveis de expressão de miR-122 no sangue (r=-0,330; p=0,014) e tecido hepático (r=-0,311; p=0,020) foi observada nos pacientes infectados pelo HCV-1. Os pacientes infectados pelo HCV- 3 mostraram correlação positiva entre os níveis hepáticos de miR-122 e os níveis de HDL (r=0,412, p=0,036) e insulina (r=0,478, p=0,044). O miR-33a e o miR-122 atuam regulando genes que controlam o metabolismo dos lipídios no fígado. Até o presente momento, não existem relatos que associem a expressão do miR-33a e do miR-122 com o perfil lipídico na infecção pelo HCV. Além disso, o acúmulo de lipídio (esteatose) intensamente descrito na infecção pelo HCV-3 pode sugerir interação diferenciada desse genótipo com os mecanismos envolvidos na regulação do metabolismo lipídico, envolvendo o miR-33a e miR-122 / The prevalence of infection by hepatitis C virus (HCV) is about 3% of the world population. HCV targets the liver tissue and the majority of infected patients develop chronic infection. In recent years, in vitro studies have demonstrated interactions between miRNA-122 (miR-122) the host cell to two places located in the 5\' untranslated region of the HCV genome which are essential for virus replication process. miR-122 is highly expressed in the liver, which has been implicated as a fatty acid metabolism regulator. Another mine has also been described as a key regulator of lipid metabolism, miRNA-33a (miR-33a), however, the mechanisms involved in this regulation are still little known. It is known that HCV infection changes the expression of genes involved in the biosynthesis and transport of lipids, resulting in stimulation of the lipid metabolism and creating a favorable environment for replication of the virus. To our knowledge, there are no reports linking the expression of miR-33a with lipid profile in HCV infection. In this context the objectives of this study were to evaluate the expression of miR-33a and miR-122 in chronically infected individuals with HCV-1 and HCV-3 in samples obtained prior to initiation of therapy. MiRNAs were isolated from peripheral blood samples and liver tissue. The quantification of relative expression of both miRNAs was by PCR in real time. MiR-33a levels in peripheral blood were higher than in liver tissue in patients infected with HCV-1 (p < 0.0001) and HCV-3 (p=0.0025). Levels in the peripheral blood of miR-33a were lower in patients infected with HCV-3 (p=0.0169). There was an inverse correlation between hepatic levels of miR-33a with serum insulin levels (p=0.005) in individuals infected with HCV-1 and a positive correlation between the levels in the peripheral blood serum levels of GGT (p=0.049). Hepatic levels of miR-122 were higher than the levels in the peripheral blood of individuals infected by HCV-1 and HCV-3 (p < 0.0001). Hepatic miR-122 levels were higher in patients infected with HCV-3 than those infected with HCV-1 (6.22 times, p < 0.001). There was a positive correlation between miR-122 levels in the blood and liver tissue of patients infected with HCV-1 (r=0.302, p=0.026). An inverse correlation between serum ApoA-II was observed in these patients the levels of expression of miR-122 in blood (r=-0.330; p =0.014) and liver tissue (r=-0.311; p=0.020). Patients infected with HCV-3 showed a positive correlation between hepatic miR-122 levels to HDL levels (r=0.412, p=0.036) and insulin levels (r=0.478, p=0.044). The miR-33a and miR-122 act by regulating genes that control lipid metabolism in the liver. The different interactions with lipid metabolism exerted by HCV-3 may explain why his relationship with the miR-33a and miR-122 was different when compared with HCV-1
8

Host-Pathogen Interactions in Hepatitis C Virus Infection : Deciphering the Role of Host Proteins and MicroRNAs

Shwetha, S January 2015 (has links) (PDF)
Host-pathogen interactions in Hepatitis C Virus infection: Deciphering the role of host proteins and microRNAs Hepatitis C virus (HCV) is a positive sense single stranded RNA virus belonging to the Hepacivirus genus of the Flaviviridae family. HCV genome consists of a single open reading frame flanked by highly structured 5‟ and 3‟ untranslated regions (UTRs) at both ends. Unlike cellular mRNAs, HCV RNA translation is independent of the cap structure and is mediated by an internal ribosomal entry site (IRES) present in the 5‟UTR. HCV replication begins with the synthesis of a complementary negative-strand RNA using the positive strand RNA genome as a template catalyzed by the NS5B RNA dependent RNA polymerase (RdRp). The de novo priming of HCV RNA synthesis by NS5B occurs at the very end of the 3‟UTR. The 3‟UTR is organized into highly structured regions namely the variable region, poly U/UC region and the 3‟X region. These regions contain cis-acting elements that determine the efficiency of viral replication. In addition, the interaction of trans-acting factors with the 3‟ UTR is also important for regulation of HCV replication. HCV 3‟UTR interacts with several cellular proteins such as the human La protein, polypyrimdine tract binding protein (PTB), poly (rC)-binding protein 2 (PCBP2) and Human antigen R (HuR). However, the molecular basis of regulation of viral replication by these proteins is not well understood. Many proteins that are hijacked by HCV as well as other cytoplasmic RNA viruses, such as La, PCBP2, HuR and PTB are RNA binding proteins (RBPs). They are involved in post transcriptional regulation of cellular gene expression. Thus the subversion of these proteins by the virus can affect their normal physiological functions. In addition to proteins, recent reports also describe the involvement of non-coding RNAs including microRNAs (miRNA) and long non coding RNAs (lncRNA) in HCV infection. miRNAs can either directly bind to the HCV genome and regulate its life cycle or indirectly modulate the expression of host proteins required by the virus. miRNAs that are differentially regulated in virus infected tissues or body fluids of infected patients can also serve as biomarkers for diagnosis of various stages of the disease. Hence, it was planned to study the role of host proteins and miRNAs in the HCV life cycle and pathogenesis to have novel insights into the biology of HCV infection. Riboproteomic studies have identified several host proteins that directly interact with the 5‟ and/or 3‟UTRs of the HCV RNA. One of the RNA binding proteins that predominantly interact with the 3‟UTR of HCV RNA was found to be HuR. In the present study, we have extensively characterized the interaction between HuR and HCV 3‟UTR and studied its functional implications in HCV life cycle along with other host factors. Characterizing the HCV 3’UTR–HuR interaction and its role in HCV replication HuR is a ubiquitously expressed member of the Hu family which shuttles between the nucleus and cytoplasm in response to stress. Whole genome siRNA knockdown and other studies have suggested that HuR is essential for HCV replication. However, the molecular mechanism of its involvement in this process was not clear. We observed that siRNA mediated knockdown of HuR reduces the HCV RNA and protein levels. Immunofluorescence studies indicated that HuR relocalizes from the nucleus to the cytoplasm in HCV infected cells. Through confocal microscopy and GST pulldown assays, we have demonstrated that HuR co localizes with the viral polymerase, NS5B and directly interacts with the NS5B protein. Membrane flotation assays showed that HuR is present in the detergent resistant membrane fractions which are the active sites of HCV replication. In addition to the interaction of HuR with the viral protein NS5B, we also characterized its interaction with the viral RNA. Direct UV cross linking assays and UV cross linking immunoprecipitation assays were performed to demonstrate the interaction of HuR with the HCV 3‟UTR. The RRM3, hinge region and RRM1 of HuR were found to be important for binding. Further, we observed that HuR competes with PTB for binding to the 3‟UTR when cytoplasmic S10 extracts or recombinant proteins were used in UV cross linking assays. In contrast, the addition of HuR facilitated the binding of La protein to the HCV 3‟UTR in the above assays. Competition UV cross linking assays indicated that both HuR and PTB bind to the poly U/UC region of the 3‟UTR while La binds to the variable region. HuR and La showed higher affinities for binding to the 3‟UTR as compared to PTB in filter binding assays. Since HuR and PTB interact with the same region on the 3‟UTR and HuR showed ~4 fold higher affinity for binding, it could displace PTB from the 3‟UTR. Next, we investigated the roles of HuR, PTB and La in HCV translation and replication in cell culture using three different assay systems, HCV sub genomic replicon, HCV bicistronic SGR-JFH1/Luc replicon as well as the infectious HCV full length RNA (JFH1). Results clearly indicated that HuR and La are positive modulators of HCV replication. Interestingly, PTB facilitated HCV IRES mediated translation but appeared to have a negative effect on HCV replication. The positive effectors, HuR and La showed significant co localization with one another in the cytoplasm in immunofluorescence studies. GST pulldown and coimmunoprecipitation experiments indicated protein-protein interactions between HuR and La but not between HuR and PTB. Through quantitative IP-RT assays, we demonstrated that the overexpression of HuR in HCV RNA transfected cells increases the association of La with the HCV RNA while HuR knockdown reduces the association of La with the HCV RNA. Previous studies in our laboratory have shown that La helps in HCV genome circularization. The addition of HuR significantly increased La mediated interactions between the 5‟UTR and the 3‟UTR of HCV RNA as monitored by 5‟-3‟ co precipitation assays, suggesting a possible mechanism by which cooperative binding of HuR and La could positively regulate HCV replication. Taken together, our results suggest a possible interplay between HuR, PTB and La in the regulation of HCV replication. Studying the role of HuR- associated cellular RNAs in HCV infection HuR belongs to the category of mRNA turnover and translation regulatory proteins (TTR-RBPs), which are capable of triggering rapid and robust changes in cellular gene expression. HuR plays a role in several post transcriptional events such as mRNA splicing, export, stability and translation. In the present study, we have investigated the possible consequences of relocalization of HuR on cellular processes in the context of HCV infection. We observed that 72h post transfection of infectious HCV-JFH1 RNA, there is an increase in the mRNA levels of some of the validated targets of HuR including the vascular endothelial growth factor A (VEGFA), dual specificity phosphatise 1 (MKP1) and metastasis - associated lung adenocarcinoma transcript (MALAT1). IP-RT assays demonstrated that the association of HuR with VEGFA and MKP1 was higher in HCV-JFH1 RNA transfected cells as compared to the mock transfected cells indicating that increase in HuR association could probably help in stabilization of these mRNAs. Interestingly, we observed that the association of HuR with the lncRNA MALAT1 decreases in the presence of HCV RNA, while its RNA levels increased. Earlier it has been reported that MALAT1 interacts with HuR and was predicted to interact with La. We confirmed the interaction of both HuR and La proteins with MALAT1 RNA in vitro and in the cell culture system. Results from our time course experiments suggest that relocalization of HuR and La upon HCV infection might decrease their association with the nuclear retained MALAT1 RNA leading to significant reduction in MALAT1 RNA levels at the initial time points. However at later time points, MALAT1 was found to be unregulated through activation of the Wnt/beta-catenin pathway as demonstrated using a chemical inhibitor against β-catenin. Since MALAT1 is a known regulator of epithelial mesenchymal transition (EMT) and metastasis, we further studied the physiological consequence of the observed increase in MALAT1 levels upon HCV infection. Cell migration and cell invasion studies suggested that the knockdown of MALAT1 led to the inhibition of HCV- triggered wound healing and matrigel invasion and also rescued the down regulation of E-Cadherin protein levels, an EMT marker. Our study highlights the importance of the lncRNA, MALAT1 in HCV infection and suggests its possible involvement in HCV induced HCC. Investigating the role of miRNAs in HCV pathogenesis and replication miRNAs can also regulate HCV infection and pathogenesis in multiple ways. It is known that under disease conditions, there is aberrant expression of intracellular as well as circulating miRNAs. We have investigated the expression profile of 940 human miRNAs in HCV infected patient serum samples to identify the differentially regulated miRNAs. miR-320c, miR-483-5p and the previously reported miR-125b were found to be upregulated in the serum of cirrhotic and non-cirrhotic HCV infected patient serum samples. All three miRNAs were also unregulated in the cell culture supernatant of HCV infected cells as well as within the HCV infected cells. miR-483-5p was specifically enriched in the exosomes isolated from patient serum samples. Knockdown of miR-320c and miR-483-5p did not have significant effect on HCV replication while knockdown of miR-125b affected HCV replication through regulation of one of its target genes, HuR. We observed that with time, miR-125b levels in HCV-JFH1 RNA transfected cells increase while the HuR protein levels decrease. Using luciferase reporter constructs, we demonstrated that the decrease in HuR protein levels is indeed mediated by miR-125b. Mutations in the target site of miR-125b in the HuR 3‟UTR prevented the down regulation of luciferase activity. Next we tested the effect of silencing miR-125b on HCV replication. Knockdown of miR-125b prevented the reduction in HuR protein levels but with no significant effect on HCV replication. It appeared that the HuR protein already present in the cytoplasm could be sufficient to support HCV replication. Hence similar experiments were carried out in cells depleted of HuR using either siRNA against HuR or a chemical inhibitor of nucleocytoplasmic transport of HuR, Leptomycin B. We observed that when the intracellular levels of HuR are reduced using either of the two approaches, there is a decrease in HCV replication. This is in accordance with the results obtained in the first part of the thesis. However when miR-125b was silenced in HuR depleted cells, we noticed an upregulation in the HuR protein levels by western blot analysis and a consequent increase in HCV RNA levels as quantified by qRT-PCR. From our findings, we can conclude that miR-125b mediated regulation of HuR plays an important role in HCV replication. We hypothesize that this could be a cellular response to HCV infection to which the virus responds by inducing protein relocalization. Altogether, these studies outline the importance of host factors including cellular proteins and non-coding RNAs in the regulation of HCV life cycle and pathogenesis. Results reveal the mechanistic insights into how HCV infection triggers host defense pathways, which are evaded by the virus by counter strategies.
9

Mechanistic Insights into Translation and Replication of Hepatitis C Virus RNA : Exploring Direct-Acting Antivirals

Kumar, Anuj January 2014 (has links) (PDF)
Hepatitis C virus (HCV), a blood-borne pathogen, is a small enveloped RNA virus belonging to the Hepacivirus genus of the Flaviviridae family. HCV infection represents one of the major health concerns affecting approximately 170 million people globally. Patients with chronic HCV infection are at risk of developing hepatic fibrosis, cirrhosis and hepatocellular carcinoma. No protective anti-HCV vaccine is available yet. Until recently, standard therapy based on pegylated interferon plus ribavirin, was inadequate in treating all the patients as it results in a sustained virological response in only 40 to 50 percent of patients infected with the most common genotype (gt 1). Advances in understanding host-HCV interactions have helped developing newer anti-HCV agents such as telaprevir and boceprevir. However, treatment success is still limited due to different factors including genotype specificity, high cost, potential drug-drug interactions, substantial side effects etc. The positive-sense single-stranded RNA genome of HCV is approximately 9.6kb long which is flanked by highly structured and conserved 5’ and 3’ untranslated regions (UTRs) at both ends. Unlike cap-dependent translation of host cell mRNAs, HCV translation is mediated by an internal ribosomal entry site (IRES) present majorly within the 5’UTR. Several reports have demonstrated the interaction of different cellular proteins with HCV-5’UTR and/or 3’UTR, which include human La protein, polypyrimidine tract binding protein (PTB), poly (rC)-binding protein 2 (PCBP2) etc. These interactions of trans-acting factors with the UTRs may be important for HCV translation and/or replication. Earlier study from our laboratory revealed the importance of interaction of human La protein, by its central RNA recognition motif (RRM), with the HCV IRES around a tetranucleotide sequence GCAC near initiator AUG in influencing HCV translation. However, the role of this interaction, if any, in HCV RNA replication was not known. In the first part of the thesis, we characterized the interaction between human La protein and the GCAC to understand its role in HCV replication. We incorporated mutation, which altered the binding of La, in the GCAC motif in HCV monocistronic replicon and checked HCV RNA replication by reverse transcriptase polymerase chain reaction (RT-PCR). The mutation drastically inhibited HCV replication. Interestingly, overexpression of La could reverse the effect of this mutation and significantly enhanced HCV RNA levels. Using a bicistronic replicon, we observed that decrease in replication was independent of translation inhibition. Furthermore, mutation at the GCAC motif reduced the association between La and viral polymerase, NS5B as seen in co-immunoprecipitation assays. Moreover, this mutation affected translation to replication switch regulated by the interplay between HCV-NS3 protease and human La protein. Our analyses of point mutations, based on RT-PCR and luciferase assays, revealed distinct roles of each nucleotide of the GCAC motif in HCV replication and translation. Finally, 5’-3’ crosslink assays revealed that specific interaction of the GCAC motif with human La protein is important for linking 5’ and 3’ends of HCV genome. Results clearly demonstrate the mechanism of regulation of HCV replication by interaction of cis-acting element GCAC within the HCV IRES with human La protein. HCV is highly species-specific. Under natural conditions, HCV infects only humans and chimpanzees. This restricted host-tropism has prevented the development of a small animal model to study HCV infection in vivo. Although several human-specific entry factors have been identified to be responsible for this species selectivity, full multiplication of the HCV in animals (other than humans and chimpanzees) is still not possible. In the second part of the thesis, we showed that a post-entry host factor –‘La protein’ may also contribute in determining HCV host tropism. We aligned La protein sequences from different species and interestingly we found that HCV RNA interacting beta-turn sequence (KYKETDL) in central RRM (residues 112-184) is conserved only in human and chimpanzee. Earlier, it was shown from our laboratory that a heptameric peptide comprising of this sequence (derived from human La) could inhibit HCV translation by competing with La interaction with the IRES element. However, in the current study, another peptide corresponding to the mouse La sequence (KYKDTNL) was unable to inhibit HCV RNA translation. Similarly, wild-type mouse La (mLa) failed to stimulate HCV IRES function, but addition of chimeric mouse La protein bearing human beta-turn sequence (mLahN7) significantly increased HCV IRES mediated translation in vitro. Also, exogenous supplementation of mLahN7 enhanced HCV translation in cell culture system. Moreover, quantitative as well as tagged RT-PCR analyses showed an enhanced HCV replication upon overexpression of mLahN7. The findings obtained in this part raise a possibility of creating HCV mouse model using human specific cellular entry factors and a humanized form of La protein. Hepatitis C has emerged as a major challenge to the medical community. Developing more potent and safe anti-HCV regimens is need of the hour. As described above, a linear hepatapeptide (KYKETDL) was synthesized and shown to reduce HCV translation. However, this linear peptide was stable only for a shorter time scale. Therefore, in the third part of the thesis, effect of a more stable cyclic form of this peptide has been described. NMR spectroscopy suggested that the beta turn conformation is preserved in cyclic peptide as well. Also, using in vitro bicistronic reporter assay, we demonstrated that cyclic peptide inhibits HCV translation in a dose dependent manner. In fact, due to its higher stability, cyclic peptide reduced HCV translation and replication more efficiently than the corresponding linear peptide at longer post-treatment time point. Additionally, we observed that cyclic peptide is non-toxic in cell culture system. Our results suggest that cyclic peptide might emerge as a promising lead compound against hepatitis C. Due to availability of only partially effective liver protective drugs in modem medicine, complementary and alternative medicine approach, based on plant derived compounds, is also being utilised against HCV. Plant derived compounds have advantages of having high chemical diversity, drug-likeliness properties and ability of being metabolized by the body with little or no toxicity than synthetic ones. Different studies have shown that phytochemicals may exert anti-HCV activities by acting as direct-acting antivirals and play a potential therapeutic role in treating HCV infection. Also, from our laboratory, it was shown that methanolic extract of Phyllanthus amarus (P. amarus) plant inhibited HCV replication. The fourth part of the thesis describes the study on the anti-HCV properties of several bioactive components from P. amarus extract. Using a fluorimetric assay, we demonstrated that two principal components of this extract, phyllanthin and corilagin reduced the HCV NS3 protease activity significantly in vitro. We also observed a sharp reduction in HCV negative sense RNA levels in cell culture system. Structural knowledge-based molecular docking studies showed interactions of phyllanthin and corilagin with the amino acid residues of the catalytic triad of NS3 protease. Further, these compounds were found to be non-toxic in cell culture. Also, phyllanthin and corilagin displayed antioxidant properties by blocking HCV induced oxidative stress generated by reactive oxygen species suggesting their hepatoprotective nature. More importantly, our in vivo toxicity analyses and pharmacokinetics studies proved their safety, tolerability, metabolic stability, and systemic oral bioavailability and support their potential as novel anti-HCV therapeutic candidates. Altogether, the study deciphers mechanistic details of translation and replication of HCV RNA and demonstrates novel antiviral agents targeting these important viral processes.
10

Modeling The Population Dynamics Of Erythrocytes To Identify Optimal Drug Dosages For The Treatment Of Hepatitis C Virus Infection

Krishnan, Sheeja M 07 1900 (has links) (PDF)
The current treatment for hepatitis C virus (HCV) infection – combination therapy with pegylated interferon and ribavirin – elicits sustained responses in only ~50% of the patients treated. Greater cumulative exposure to ribavirin increases response to interferon-ribavirin combination therapy. A key limitation, however, is the toxic sideeffect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan in patients and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones. A small fraction of the population (~30%) with polymorphisms in the ITPA gene shows protection from ribavirin-induced anemia. The optimum dosage of ribavirin that can be tolerated is then dependent on the ITPA polymorphisms. Coupled with a previous population pharmacokinetic study, our model yields a facile formula for estimating the optimum dosage given a patient’s weight, creatinine clearance, pretreatment hemoglobin levels, and ITPA polymorphism. The reduced lifespan we predict is in agreement with independent measurements from breath tests as well as estimates derived from in vitro studies of ATP depletion. The latter estimates also agree with the extent of ATP depletion due to ribavirin that we predict from a detailed analysis of the nucleoside metabolism in erythrocytes. Our model thus facilitates in conjunction with models of viral kinetics the rational identification of treatment protocols. Our formula for optimum dose presents an avenue for personalizing ribavirin dosage. By keeping anemia tolerable, the predicted optimal dosage may improve adherence, reduce the need for drug monitoring, and increase response rates.

Page generated in 0.4911 seconds