61 |
CARACTERISATION DU RESEAU DE SIGNALISATION IMPLIQUE DANS LA MAINTENANCE ET LA PROLIFERATION DES CELLULES SOUCHES DE LA RETINE DU XENOPE / CHARACTERIZATION OF THE SIGNALING NETWORK INVOLVED IN THE MAINTENANCE AND PROLIFERATION OF XENOPUS RETINAL STEM CELLSCabochette, Pauline 15 December 2014 (has links)
Contrairement aux mammifères adultes, la rétine des amphibiens possède la particularité de croître durant toute la vie de l'animal grâce à l'activité continue d'une population de cellules souches localisée au sein d'une niche bien délimitée, la zone marginale ciliaire (ZMC). Ce modèle offre ainsi la possibilité d'étudier in vivo les mécanismes moléculaires à l'origine du maintien et de la prolifération des cellules souches neurales à des stades post-embryonnaires. Dans ce but, l'identification et la caractérisation des différentes voies de signalisation présentes au sein de la niche biologique des cellules souches rétiniennes est une première étape indispensable. Mon projet de thèse a été divisé en deux objectifs principaux: l'étude des interactions entre les voies Wnt et Hedgehog au sein de la ZMC chez le xénope et la réalisation de l'étude fonctionnelle de Yap, l'effecteur principal de la voie de signalisation Hippo dans ce modèle. Par des approches génétiques et pharmacologiques, la première partie de ce projet a permis de mettre en évidence un antagonisme inattendu entre les signaux Wnt et Hedgehog au sein de la ZMC qui régule l'activité proliférative des cellules souches et des progéniteurs rétiniens. Ce travail nous a conduit à proposer un modèle dans lequel ces deux voies réguleraient la balance prolifération/différenciation dans la rétine post-embryonnaire. Dans un deuxième temps, les expériences de gain et de perte de fonction du gène Yap ont montré que ce dernier joue un rôle essentiel dans la régulation du programme temporel de la phase de réplication de l'ADN des cellules souches rétiniennes. En effet, l'inhibition de Yap entraîne une importante réduction de la durée de la phase S du cycle cellulaire associée à une instabilité génomique. Une surexpression de c-Myc et de la voie p53-p21 semble impliquée dans ce phénotype. Nos travaux nous ont également permis d'identifier un nouveau partenaire de YAP, le facteur de transcription PKNOX1. L'ensemble de ces données nous a ainsi conduit à proposer un modèle selon lequel le complexe YAP/PKNOX1 pourrait être nécessaire au bon déroulement de la phase de réplication des cellules souches, indispensable à la maintenance de l'intégrité du génome de ces cellules et de leur descendance. / In contrast to the adult mammals, the retina of amphibians shows continuous growth during adulthood through active neural stem cells localized in the defined niche called ciliary marginal zone (CMZ). This model offers an exceptional tool to study in vivo the molecular mechanisms involved in the maintenance and proliferation of neural stem cells during post-embryonic stages. In this order, the identification and the characterization of the signaling pathways acting in biological retinal stem cell niche is an essential step.My PhD research was divided in two main parts: the study of the interaction between the Wnt and Hedgehog pathways within the CMZ and the functional study of Yap, the downstream effector of the Hippo pathway in this model. By using genetic and pharmacological tools, the first part of this project demonstrated an unexpected antagonism between the Wnt and the Hedgehog signaling in the CMZ that regulates proliferative activity of retinal stem and progenitor cells. In this article, we propose a model in which an antagonistic interplay of Wnt and Hedgehog pathways may regulate the balance proliferation/differentiation in the post-embryonic retina. Second, gain and loss of function experiments of Yap have shown that this factor plays a key role in the regulation of temporal replication of DNA retinal stem cells. Indeed, inhibition of Yap leads to strong reduction of the S-phase length during the cell cycle associated with genomic instability. c-Myc and p53-p21 overactivation seems to be involved in this phenotype. This work also allowed us to identify a novel YAP partner, the transcriptional factor PKNOX1. We indeed propose a model in which the YAP/PKNOX1 complex may be required for the successful convening of the replication phase on stem cells, essential for the maintenance of genome integrity on the cells and their progeny.
|
62 |
Control of the genome expression by the non-coding 7SK snRNA-HEXIM complex in Drosophila melanogaster / Contrôle de l’expression du génome par le complexe snARN 7SK-HEXIM chez Drosophila melanogasterNguyen, Duy 08 November 2012 (has links)
Alors que le complexe snRNP est bien décrit chez les vertébrés, il nécessite plus d’études chez les invertébrés. Le snARN 7SK sert de maintient structural pour la fixation d’HEXIM à P-TEFb. En retour, HEXIM inhibe l’activité kinase de CDK9 via une fixation directe avec la Cycline T. En conséquence, les interactions entre le snARN 7SK et HEXIM va piéger le complexe P-TEFb sous une forme inactive qui conduit à inhiber l’élongation transcriptionnelle. Dans notre étude, nous montrons qu’un contrôle de l’activité P-TEFb existe aussi chez la Drosophile. Et la dynamique d’équilibre entre les deux formes de P-TEFb dépend également du snARN 7SK. Ce modèle est donc utilisé pour étudier le rôle biologique de la snRNP, et plus spécialement d’HEXIM, dans un contexte intégré. Nous avons donc analysé le profile d’expression d’HEXM durant le cycle de vie de la Drosophile et plus particulièrement pendant l’embryogenèse et l’organogenèse. L’expression permanente et ubiquitaire d’HEXIM suggère qu’elle est nécessaire au développement. Le fait que la perte de fonction d’HEXIM mène à de nombreux et sévères défauts confirme cette hypothèse. En utilisant le modèle des disques imaginaux de l’aile et de l’œil, nous avons étudié plus en profondeur le rôle d’HEXIM et nous avons montré qu’elle est essentielle pour la viabilité cellulaire. De plus, la perte de fonction d’HEXIM conduit à des changements du destin cellulaire et à des modifications des profiles d’expression de plusieurs gènes sélecteurs ou de morphogènes. De façon surprenante, la diminution d’HEXIM induit l’accumulation de Ci155 qui est requise pour activer l’expression de Ptc, ainsi que l’activation ectopique de la voie Hh. Cette accumulation notable de Ci155 est également détectée dans les cellules “immortelles” et dans les tissus en cours de régénération à la suite d’une ablation par voie génétique. Sur la base de ces données, nous proposons un rôle possible de l’accumulation de Ci155 dans le phénomène de prolifération compensatrice. Finalement, nous avons caractérisé un nouvel analogue du snARN 7SK chez la Drosophile, qui a été nommé dm7SK-like snARN. Ce dernier a une structure secondaire très similaire à celle de ces homologues vertébrés, alors que la séquence primaire est assez différente. De plus, presque tous les domaines structuraux importants pour les interactions avec HEXIM et les autres partenaires sont conservés chez cet ARN. Des interactions directes ont été démontrées entre HEXIM et cet ARN suggérant qu’il est un analogue structural du snARN 7SK. Ainsi, la présence de deux analogues du snARN 7SK suggère un autre niveau de régulation de l’expression des gènes, au moins chez la Drosophile. / Whereas 7SK snRNP complex has been well characterized in vertebrates, its activities still remain to be further elucidated in invertebrates. 7SK snRNA serves as a structural scaffold for the efficient binding of HEXIM to P-TEFb. HEXIM in turn inhibits the kinase activity of CDK9 via its direct binding to CyclinT. Consequently, the interaction between 7SK snRNA and HEXIM sequesters the active P-TEFb complex into the inactive form, thereby suppressing the transcription elongation. In this study, we first show that a similar P-TEFb control system exists in Drosophila. In addition, the dynamic equilibrium of the two complexes of P-TEFb in Drosophila also depends on 7SK snRNA. Thank to this similarity, we are able to examine the biological role of 7SK snRNP complex, especially HEXIM protein, in an integrative organism as Drosophila model. We next document the expression profile of HEXIM throughout the life cycle of Drosophila, especially during embryogenesis and organogenesis. The continuous and ubiquitous expression of HEXIM suggests its necessity during development. We demonstrate that HEXIM is indeed essential for the proper development of Drosophila, since its down-regulation results in numerous severe defects. By using wing and eye imaginal discs as study models, we further examine biological roles of HEXIM, and reveal that it is required for cell viability. Moreover, HEXIM knockdown leads to changes in cell fate commitments, and modifications in expression patterns of several selector genes and morphogens. Strikingly, down-regulation of HEXIM significantly induces the accumulation of Ci155, which is required for Ptc expression, and the ectopic activation of Hh signaling. This remarkable accumulation of Ci155 is also detected in “undead cells” and regenerated tissue upon genetic ablation. Given these findings, we thus propose a putative role of Ci155 accumulation in compensatory proliferation. Finally, we characterize a novel analog of 7SK snRNA in Drosophila, which is named dm7SK-like snRNA. This snRNA displays a very similar secondary structure with its vertebrate homologs, although the primary sequence is relatively different. More importantly, almost all of the structural elements crucial for the interaction with HEXIM and other partners are found conserved in this novel dm7SK-like snRNA. A direct interaction between dHEXIM and this snRNA also suggests that it is a functional analog of 7SK snRNA in Drosophila. Thus, the intriguing finding of the two analogs of 7SK snRNA would propose another regulation level of gene expression, at least in Drosophila.
|
63 |
Discovery of novel downstream target genes regulated by the hedgehog pathwayIngram, Wendy Jill Unknown Date (has links)
Sonic hedgehog (Shh) is a secreted morphogen involved in patterning a wide range of structures in the developing embryo. When cells receive the Shh signal a cascade of effects begin which in turn regulate downstream target genes. The genes controlled by Sonic hedgehog provide messages instructing cells how to differentiate or when to divide. Disruption of the hedgehog signalling cascade leads to a number of developmental disorders and plays a key role in the formation of a range of human cancers. Patched, the receptor for Shh, acts as a tumour suppressor and is mutated in naevoid basal cell carcinoma syndrome (NBCCS). NBCCS patients display a susceptibility to tumour formation, particularly for basal cell carcinoma (BCC). The discovery of Patched mutations in sporadic BCCs and other tumour types further highlights the importance of this pathway to human cancer. The identification of genes regulated by hedgehog is crucial for understanding how disruption of this pathway leads to neoplastic transformation. It is assumed that the abnormal expression of such genes plays a large role in directing cells to divide at inappropriate times. Only a small number of genes controlled by Shh have been described in vertebrate tissues. In the work presented in this thesis a Sonic hedgehog responsive embryonic mouse cell line, C3H/10T1/2, was used as a model system for hedgehog target gene discovery. Known downstream target genes were profiled to determine their induction kinetics, building up a body of knowledge on the response to Shh for this cell type. During this work, it was discovered that C3H/10T1/2 cells do not become fully competent to respond to Shh stimulation until the cells reach a critical density, a factor that had to be taken into account when determining timepoints of interest for further investigation. Several techniques were employed to identify genes that show expression changes between Shh stimulated and control cells. In one of these techniques, RNA from cell cultures activated with Shh was used to interrogate cDNA microarrays, and this provided many insights into the downstream transcriptional consequences of hedgehog stimulation. Microarrays consist of thousands of spots of DNA of known sequence gridded onto glass slides. Experiments using this technology allow the expression level of thousands of genes to be measured simultaneously. Independent stimulation methods combined with northern blotting were used to investigate individual genes of interest, allowing genuine targets to be confirmed and false positives eliminated. This resulted in the identification of eleven target genes. Seven of these are induced by Sonic hedgehog (Thrombomodulin (Thbd), Glucocorticoid induced leucine zipper (Gilz), Brain factor 2 (Bf2), Nuclear receptor subfamily 4, group A, member 1 (Nr4a1), Insulin-like growth factor 2 (Igf2), Peripheral myelin protein 22 (Pmp22), Lim and SH3 Protein 1 (Lasp1)), and four are repressed (Secreted frizzled related proteins 1 and 2 (Sfrp1 and Sfrp2), Macrophage inflammatory protein-1 gamma (Mip-1?), and Anti-mullerian hormone (Amh)). The majority of these represent novel downstream genes not previously reported as targets of Shh. The new target genes have a diverse range of functions, and include transcriptional regulators and molecules known to be involved in regulating cell growth or apoptosis. The corroboration of genes previously implicated in hedgehog signalling, along with the finding of novel targets, demonstrates both the validity and power of the C3H/10T1/2 system for Shh target gene discovery. The identification of novel Sonic hedgehog responsive genes provides candidates whose abnormal expression may be decisive in initiating tumour formation and future studies will investigate their role in development and disease. It is expected that such findings will provide vital clues to the aetiology of various human cancers, and that an understanding of their roles may ultimately provide greater opportunities in the future design of anti-tumour therapies.
|
64 |
Patched-mediated regulation of Smoothened trafficking and activity by Lipophorin-derived lipidsKhaliullina-Skultety, Helena 17 February 2011 (has links) (PDF)
Hedgehog is a lipid-linked morphogen that is carried on lipoprotein particles and that regulates both patterning and proliferation in a wide variety of vertebrate and invertebrate tissues. Hyperactivity of Hedgehog signaling causes numerous forms of cancer. Hedgehog acts by binding to its receptor Patched, relieving the suppression of Smoothened and initiating Smoothened signaling. The mechanism by which Patched represses Smoothened has been unclear, but correlates with reduced Smoothened levels on the basolateral membrane. The structural homology of Patched with the Niemann-Pick-Type C1 protein and bacterial transmembrane transporters suggests that Patched might regulate lipid trafficking to repress Smoothened. However, no endogenous lipid regulators of Smoothened have yet been identified, nor has it ever been shown that Patched actually controls lipid trafficking.
This work shows that, in Drosophila melanogaster, the Sterol-Sensing Domain of Patched regulates Smoothened trafficking from Patched-positive endosomes. Furthermore, it demonstrates that Patched recruits internalized lipoproteins to Patched-positive endosomes. Thereby, Patched regulates the efflux of specific lipoprotein-derived lipids from this compartment via its Sterol-Sensing Domain and utilizes these lipids to destabilize Smoothened on the basolateral membrane.
We propose that Patched normally promotes Smoothened degradation and subsequently downregulates its activity by changing the lipid composition of endosomes through which Smoothened passes. For this purpose, Patched utilizes a specific lipid – possibly a modified sterol or sphingolipid – derived from lipoproteins. Further, we suggest that the presence of Hedgehog on lipoprotein particles inhibits utilization of their lipids by Patched.
|
65 |
Cholesterol homeostasis in Development / Molecular cloning and functional characterisation of the Xenopus 7-dehydrocholesterol reductase (Xdhcr7) / Cholesterol-Homöostase in der Entwicklung / Isolation und Characterisierung desTadjuidje, Emmanuel 26 January 2005 (has links)
No description available.
|
66 |
La perte de Sonic Hedgehog altère la maturation des cellules caliciformes et de Paneth dans l'intestin murin adulteGagné Sansfaçon, Jessica January 2012 (has links)
Les Hedgehogs (Hhs) sont des morphogènes indispensables au développement et à l'homéostasie de l'organisme, notamment dans la formation de l'intestin. La littérature y révèle l'importance d'Indian Hh dans le contrôle de la prolifération, de la différenciation des entérocytes et dans l'attraction des cellules immunitaires. Par contre, sa délétion ne récapitule pas l'inhibition de la voie Hh, soulevant ainsi l'hypothèse que Sonic Hh aurait des rôles complémentaires dans l'intestin. Nous avons donc voulu identifier les implications de Shh dans l'histologie, la prolifération et la différenciation de l'épithélium intestinal chez la souris adulte. Pour ce faire, nous avons utilisé le système de délétion conditionnelle Cre/loxP afin d'abolir l'expression de Shh au niveau de l'épithélium de l'intestin et du côlon, à l'aide du promoteur de la Villine . Des traitements au DSS sur 7 jours ont permis de simuler une colite ulcéreuse (CU) chez les animaux afin d'étudier les maladies inflammatoires intestinales (MII). Aucune anomalie histologique n'a été observée par coloration H&E, mais l'axe crypte-villosité était réduit de 16%. Une immunofluorescence dirigée contre PCNA relie ce résultat avec une réduction de 24% du nombre de cellules prolifératives dans l'iléon. Ensuite, Shh ne serait pas impliqué dans la différenciation des entérocytes et des cellules entéroendocrines, contrairement à Ihh. Par contre, les observations montrent une diminution de l'expression de Klf4 en qPCR et un défaut dans l'ultrastructure des vésicules de sécrétion des cellules caliciformes en microscopie électronique. La production des mucines acides et leur fucosylation sont aussi affectées par coloration. Il en résulte un défaut dans la sécrétion de la bicouche de mucus procurant une défense physique. Ensuite, une diminution de l'expression de Sox9 et de la taille des granules dans les cellules de Paneth est observée en absence de Shh. Une diminution de l'autophagie, associée à un réticulum endoplasmique relâché, semble être à la base de ce phénotype en immunobuvardage. Il en résulte un défaut dans la production des agents antimicrobiens, tels que le lysozyme et les a-défensines, en qPCR, suggérant un possible défaut dans la défense antimicrobienne. Bien que les altérations de la barrière intestinale laissent supposer un rôle dans l'inflammation, les souris expérimentales soumises au traitement DSS suggèrent que Shh ne module pas le développement de la CU mais pourrait avoir un rôle dans les étapes de restitution. Finalement, le niveau d'expression des effecteurs Hhs en qPCR lors des Mn et de la CU chez les souris de type sauvage révèle qu'Ihh et Glil sont fortement réduits dans ces pathologies. Les résultats obtenus démontrent que Shh et Ihh ont des rôles distincts dans l'intestin. Shh semble influencer positivement la prolifération et participe à la différenciation terminale des cellules caliciformes et de Paneth ainsi que dans le processus d'autophagie. Ensemble, les Hhs sont essentiels à l'homéostasie et sont impliqués dans la pathologie des MII.
|
67 |
Transkriptionelle Interaktionen morphogener Signalwege in der adulten Leber und im Hepatozellulären KarzinomAleithe, Susanne 17 July 2015 (has links) (PDF)
Die evolutionär konservierten morphogenen Signalwege Wnt/β-Catenin und Hedgehog (Hh) spielen vor allem in der Embryogenese, Zelldifferenzierung und Kanzerogenese eine große Rolle. Es ist bekannt, dass es zwischen Komponenten der beiden Signalkaskaden zu verschiedensten Wechselwirkungen und Hintergrundreaktionen in unterschiedlichsten Organismen und Geweben kommt. Ziel dieser Arbeit war die Aufklärung einzelner mole- kularer, transkriptioneller Prozesse hinter diesen Kreuzreaktionen in primären Hepatozyten und dem Hepatozellulären Karzinom. Dafür sind die beiden Signalwege durch verschiedenste Einflüsse, wie dem Einsatz von siRNAs, transgenen Mausmodellen und rekombinanten Proteinen gegen einzelne Faktoren der Hedgehog, aber auch der Wnt/β-Catenin Kaskade in ihrer Genexpression verändert und die Reaktionen der Signalwegskomponenten mittels der quantitativen Real-Time-PCR untersucht worden. Neben dem Organismus Maus haben einzelne vergleichende Experimente auch auf der humanen Ebene zum Erkenntnisgewinn beigetragen.
Durch die Einflussnahme auf den Hedgehog Signalweg in murinen Hepatozyten wird deutlich, dass die Antworten auf die einzelnen Veränderungen in den Signalkaskaden sehr vielschichtig und umfangreich sind. Abhängig vom induzierten bzw. reprimierten Gen, aber auch vom gelenkten Signalweg variieren die Genexpressionen auf unterschiedlichste, und zum Teil gegenläufige Weise. Ferner wird deutlich, dass es zu Unterschieden in der Genantwort bezüglich der verschiedenen Organismen Maus und Mensch, aber auch zu Variationen der Interaktionen in den diversen Gewebe bzw. Zelltypen kommt.
|
68 |
Hedgehog signaling regulates mechanical tension along the anteroposterior compartment boundary in the developing Drosophila wingRudolf, Katrin 11 August 2014 (has links) (PDF)
The interplay between biochemical signals and mechanical processes during animal development is key for the formation of tissues and organs with distinct shapes and functions. An important step during the formation of many tissues is the formation of compartment boundaries which separate cells of different fates and functions. Compartment boundaries are lineage restrictions that are characterized by a straight morphology. Biochemical signaling across compartment boundaries induce the expression of morphogens in the cells along the boundaries. These morphogens then act at long-range to direct growth and patterning of the whole tissue. Compartment boundaries stabilize the position of morphogens and thereby contribute to proper tissue development.
The straight morphology of compartment boundaries is challenged by cell rearrangements caused by cell division and tissue reshaping. Physical mechanisms are therefore required to maintain the straight morphology of compartment boundaries. The anteroposterior (A/P) compartment boundary in the developing Drosophila melanogaster wing is established by biochemical signals. Furthermore, mechanical processes are required to maintain the straight shape of the A/P boundary. Recent studies show that mechanical tension mediated by actomyosin motor proteins is increased along the A/P boundary.
However, it was not understood how biochemical signals interact with mechanical processes to maintain the A/P boundary. Here I provide the first evidence that Hedgehog signaling regulates mechanical tension along the A/P boundary. I was able to show that differences in Hedgehog (Hh) signal transduction activity between the anterior and posterior compartments are necessary and sufficient to maintain the straight shape of the A/P boundary, which is crucial for patterning and growth of the adult wing. Moreover, differences in Hh signal transduction activity are necessary and sufficient for the increase in mechanical tension along the A/P boundary.
In addition, differences in Hh signal transduction activity are sufficient to generate smooth borders and to increase mechanical tension along ectopic interfaces. Furthermore, the differential expression of the transmembrane protein Capricious is sufficient to increase mechanical tension along ectopic interfaces. It was previously suggested that mechanical tension is generated by an actomyosin-cable through which the increase in mechanical tension is transmitted between the junctions along the A/P boundary. Here I show that mechanical tension is generated locally at each cell bond and not transmitted between junctions by an actomyosin cable. My results provide new insights for our understanding of the interplay between biochemical signals and mechanical processes during animal development.
|
69 |
Die pharmakologische Beeinflussung des Hedgehog Signaltransduktionsweges in Kopf-Hals-Tumoren ex vivoStöhr, Matthäus 05 February 2015 (has links) (PDF)
Der Hedgehog Signaltransduktionsweg (HhP) ist in der Embryologie und für die Tumor-entstehung bedeutsam und kann durch den spezifischen Antagonisten Cyclopamin (Cyc) inhibiert werden. Simvastatin (Sim) kann die für den HhP essentielle Cholesterolsynthese blockieren. Die therapeutische Unterdrückung des HhP in Kopf-Hals-Plattenepithel-karzinomen (HNSCC) zu untersuchen erschien nach verschiedenen Literaturhinweisen lohnend. In den Experimenten, deren Ergebnisse bereits in Artikeln publiziert wurden, konnten antineoplastische Effekte von Cyc bzw. Sim allein und in Kombination mit den Leitlinientherapeutika Cisplatin (Cis) oder Docetaxel (DTX) an der epithelialen Zelllinie KB, den Kopf-Hals-Zelllinien FaDu und HN-5, sowie an primären HNSCC ex vivo nachgewiesen werden. Biopsien von 49 HNSCC wurden im FLAVINO-Assay mit Cyc bzw. Sim in steigenden Konzentrationen allein und kombiniert mit Cis oder DTX untersucht. In die Auswertung konnten gemäß den Einschlusskriterien (histopathologisch bestätigtes HNSCC und suffiziente Koloniebildung im FLAVINO-Assay) 18 HNSCC einbezogen werden. Bei den Voruntersuchungen führten sowohl Cyc als auch Sim zu einer signifikanten Zeit- und Dosis-abhängigen Reduktion der Lebensfähigkeit von KB, FaDu und HN-5. Ebenso unterdrückten sowohl Cyc als auch Sim die Koloniebildung epithelialer Zellen im FLAVINO-Assay hochsignifikant. Auch tolerierbare Cis- und DTX-Konzentrationen zeigten eine signifikante Wachstumshemmung. In der Analyse des Interaktionsmodus wurde in den untersuchten Kombinationen (Sim+Cis, Sim+DTX, Cyc+Cis und Cyc+DTX) in allen Fällen Additivität als prädominanter Interaktionstyp ermittelt. Die Ergebnisse dieser Arbeit weisen den HhP als potentielles Target in HNSCC aus. Potentere und human besser verträgliche HhP-Blocker sollten unsere Ergebnisse bestätigen und in klinischen Studien getestet werden. Auch die Wirksamkeit von Sim auf HNSCC sollte in prospektiven klinischen Studien weiter analysiert und bestätigt werden. Möglicherweise vermag Sim bzw. die HhP-Blockade zukünftig einen Beitrag zur Therapie von HNSCC im Rahmen multimodaler Therapiekonzepte zu leisten.
|
70 |
Discovery of novel downstream target genes regulated by the hedgehog pathwayIngram, Wendy Jill Unknown Date (has links)
Sonic hedgehog (Shh) is a secreted morphogen involved in patterning a wide range of structures in the developing embryo. When cells receive the Shh signal a cascade of effects begin which in turn regulate downstream target genes. The genes controlled by Sonic hedgehog provide messages instructing cells how to differentiate or when to divide. Disruption of the hedgehog signalling cascade leads to a number of developmental disorders and plays a key role in the formation of a range of human cancers. Patched, the receptor for Shh, acts as a tumour suppressor and is mutated in naevoid basal cell carcinoma syndrome (NBCCS). NBCCS patients display a susceptibility to tumour formation, particularly for basal cell carcinoma (BCC). The discovery of Patched mutations in sporadic BCCs and other tumour types further highlights the importance of this pathway to human cancer. The identification of genes regulated by hedgehog is crucial for understanding how disruption of this pathway leads to neoplastic transformation. It is assumed that the abnormal expression of such genes plays a large role in directing cells to divide at inappropriate times. Only a small number of genes controlled by Shh have been described in vertebrate tissues. In the work presented in this thesis a Sonic hedgehog responsive embryonic mouse cell line, C3H/10T1/2, was used as a model system for hedgehog target gene discovery. Known downstream target genes were profiled to determine their induction kinetics, building up a body of knowledge on the response to Shh for this cell type. During this work, it was discovered that C3H/10T1/2 cells do not become fully competent to respond to Shh stimulation until the cells reach a critical density, a factor that had to be taken into account when determining timepoints of interest for further investigation. Several techniques were employed to identify genes that show expression changes between Shh stimulated and control cells. In one of these techniques, RNA from cell cultures activated with Shh was used to interrogate cDNA microarrays, and this provided many insights into the downstream transcriptional consequences of hedgehog stimulation. Microarrays consist of thousands of spots of DNA of known sequence gridded onto glass slides. Experiments using this technology allow the expression level of thousands of genes to be measured simultaneously. Independent stimulation methods combined with northern blotting were used to investigate individual genes of interest, allowing genuine targets to be confirmed and false positives eliminated. This resulted in the identification of eleven target genes. Seven of these are induced by Sonic hedgehog (Thrombomodulin (Thbd), Glucocorticoid induced leucine zipper (Gilz), Brain factor 2 (Bf2), Nuclear receptor subfamily 4, group A, member 1 (Nr4a1), Insulin-like growth factor 2 (Igf2), Peripheral myelin protein 22 (Pmp22), Lim and SH3 Protein 1 (Lasp1)), and four are repressed (Secreted frizzled related proteins 1 and 2 (Sfrp1 and Sfrp2), Macrophage inflammatory protein-1 gamma (Mip-1?), and Anti-mullerian hormone (Amh)). The majority of these represent novel downstream genes not previously reported as targets of Shh. The new target genes have a diverse range of functions, and include transcriptional regulators and molecules known to be involved in regulating cell growth or apoptosis. The corroboration of genes previously implicated in hedgehog signalling, along with the finding of novel targets, demonstrates both the validity and power of the C3H/10T1/2 system for Shh target gene discovery. The identification of novel Sonic hedgehog responsive genes provides candidates whose abnormal expression may be decisive in initiating tumour formation and future studies will investigate their role in development and disease. It is expected that such findings will provide vital clues to the aetiology of various human cancers, and that an understanding of their roles may ultimately provide greater opportunities in the future design of anti-tumour therapies.
|
Page generated in 0.0417 seconds