11 |
Opérateurs d’inf-convolution et inégalités de transport sur les graphes / Infimum-convolution operators and transport inequalities on discrete spacesShu, Yan 07 July 2016 (has links)
Dans cette thèse, nous nous intéressons à différents opérateurs d'inf-convolutions et à leurs applications à une classe d'inégalités de transport générales, plus spécifiquement sur les graphes. Notre objet de recherche s'inscrit donc dans les théories du transport de mesure et de l'analyse fonctionnelle. En introduisant une notion de gradient adapté au cadre discret (et plus généralement à tout espace métrique dont les boules sont compactes), nous prouvons que certains opérateurs d'inf-convolution sont solutions d'une inéquation d'Hamilton Jacobi sur les graphes. Ce résultat nous permet d'étendre au cadre discret un théorème classique de Bobkov, Gentil et Ledoux. Plus précisément nous montrons que des inégalités de transport faible (adaptées au cadre discret) sont équivalentes, sur un graphe, à l'hypercontractivité des opérateurs d'inf-convolutions. On en déduit plusieurs résultats concernant différentes inégalités fonctionnelles, dont celle de Sobolev logarithmique et de transport faible. Nous étudions par ailleurs les propriétés générales de différents opérateurs d'inf-convolutions, incluant le précédent, mais aussi un opérateur relié à un modèle issu de la physique (et au phénomène de grande déviation), toujours sur les graphes (dérivabilités, convexité, points extremum etc.). Dans un deuxième temps, nous nous intéressons aux liens entre différentes notions de courbure de Ricci sur les graphes -- proposées récemment par plusieurs auteurs -- et les inégalités fonctionnelles de type transport-entropie, ou transport-information associées à une chaîne de Markov. Nous obtenons également une borne supérieure sur le diamètre d'un graphe dont la courbure, en un certain sens, est minorée, un résultat à la Bonnet-Myers. Enfin, en nous restreignant au cas de la dimension 1, sur la droite réelle, nous obtenons une caractérisation d'une inégalité de transport faible et de l'inégalité de Sobolev logarithmique restreinte aux fonctions convexes. Ces résultats utilisent des propriétés géométriques liés à l'ordre convexe. / In this thesis, we interest in different inf-convolution operators and their applications to a class of general transportation inequalities, more specifically in the graphs. Therefore, our research topic fits in the theories of transportation and functional analysis. By introducing a gradient notion adapting to a discrete space (more generally to all space in which all closed balls are compact), we prove that some inf-convolution operators are solutions of a Hamilton-Jacobi's inequation. This result allows us to extend a classical theorem from Bobkov, Gentil and Ledoux. More precisely, we prove that, in a graph, some weak transport inequalities are equivalent to the hypercontractivity of inf-convolution operators. Thanks to this result, we deduce some properties concerning different functional inequalities, including Log-Sobolev inequalities and weak-transport inequalities. Besides, we study some general properties (differentiability, convexity, extreme points etc.) of different inf-convolution operators, including the one before, but also an operator related to a physical model (and to a large deviation phenomenon). We stay always in a graph. Secondly, we interest in connections between different notions of discrete Ricci curvature on the graphs which are proposed by several authors in the recent years, and functional inequalities of type transport-entropy, or transport-information related to a Markov chain. We also obtain an extension of Bonnet-Myers' result: an upper bound on the diameter of a graph of which the curvature is floored in some ways. Finally, restricting in the real line, we obtains a characterisation of a weak transport inequality and a log-Sobolev inequality restricted to convex functions. These results are from the geometrical properties related to the convex ordering.
|
12 |
A mean-field game model of economic growth : an essay in regularity theoryLima, Lucas Fabiano 20 December 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-06-27T20:42:50Z
No. of bitstreams: 1
DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:46Z (GMT) No. of bitstreams: 1
DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:52Z (GMT) No. of bitstreams: 1
DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) / Made available in DSpace on 2017-07-03T18:01:59Z (GMT). No. of bitstreams: 1
DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5)
Previous issue date: 2016-12-20 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In this thesis, we present a priori estimates for solutions of a mean-field game (MFG) defined
over a bounded domain Ω ⊂ ℝd. We propose an application of these results to a model of capital
and wealth accumulation.
In Chapter 1, an introduction to mean-field games is presented. We also put forward some of
the motivation from Economics and discuss previous developments in the theory of differential
games. These comments aim at indicating the connection between mean-field games theory, its
applications and the realm of Mathematical Analysis.
In Chapter 2, we present an optimal control problem. Here, the agents are supposed to be
undistinguishable, rational and intelligent. Undistinguishable means that every agent is governed
by the same stochastic differential equation. Rational means that all efforts of the agent is to
maximize a payoff functional. Intelligent means that they are able to solve an optimal control
problem. Once we describe this (stochastic) optimal control problem, we produce a heuristic
derivation of the mean-field games system, which is summarized in a Verification Theorem; this
gives rise to the Hamilton-Jacobi equation (HJ). After that, we obtain the Fokker-Plank equation
(FP). Finally, we present a representation formula for the solutions to the (HJ) equation, together
with some regularity results.
In Chapter 3, a specific optimal control problem is described and the associated MFG is
presented. This MFG is prescribed in a bounded domain
Ω ⊂ ℝd, which introduces substantialadditional challenges from the mathematical view point. This is due to estimates for the solutionsat the boundary in Lp. The rest of the chapter puts forward two well known tips of estimates: theso-called Hopf-Lax formula and the First Order Estimate.
In Chapter 4, the wealth and capital accumulation mean-field game model is presented. The
relevance of studying MFG in a bounded domain then becomes clear. In light of the results obtained
in Chapter 3, we close Chapter 4 with the Hopf-Lax formula, and the First Order estimates.
Three appendices close this thesis. They gather elementary material on Stochastic Calculus
and Functional Analysis. / Nesta dissertação são apresentadas algumas estimativas a priori para soluções de sistemas
mean-field games (MFG), definidos em domínios limitados Ω ⊂ ℝd. Tais estimativas são aplicadas
em um modelo mean-field específico, que descreve o acúmulo de riqueza e capital.
No Capítulo 1, é apresentada uma breve introdução histórica sobre os mean-field games.
Nesta introdução, exploramos sua relação com a teoria dos jogos, cujos alicerces foram construídos
por economistas e matemáticos ao longo do século XX. O objetivo do capítulo é transmitir.
No Capítulo 2, apresentamos um problema de controle ótimo em que cada agente é suposto
ser indistinguível, racional e inteligente. Indistinguível no sentido de que cada um é governado
pela mesma equação diferencial estocástica. Racional no sentido de que todos os esforços do
agente são no sentido de maximizar um funcional de recompensa e, inteligente no sentido de que
são capazes de resolver um problema de controle ótimo. Descreve-se este problema de controle
ótimo, e apresenta-se a derivação heurística dos mean-field games; obtém-se através de um
Teorema de Verificação, a equação de Hamilton-Jacobi (HJ) associada, e em seguida, obtémse
a equação de Fokker-Planck. De posse destas equações, apresentamos alguns resultados
preliminares, como uma fórmula de representação para soluções da equação de HJ e alguns
resultados de regularidade.
No Capítulo 3, descreve-se um problema específico de controle ótimo e apresenta-se a respectiva
derivação heurística culminando na descrição de um MFG com condições não periódicas
na fronteira; esta abordagem é original na literatura de MFG. O restante do capítulo é
dedicado à exposição de dois tipos bem conhecidos de estimativas: a fórmula de Hopf-Lax e
estimativa de Primeira Ordem. Uma observação relevante, é a de que o trabalho em obter-se
estimativas a priori é aumentado substancialmente neste caso, devido ao fato de lidarmos com
estimativas para os termos de fronteira com normas em Lp.
ao leitor, as origens da Teoria Econômica contemporânea, que surgem à partir da utilização da
Matemática na formulação e resolução de problemas econômicos. Tal abordagem é motivada
principalmente pelo rigor e clareza da Matemática em tais circunstâncias.
No Capítulo 4, apresenta-se o modelo de jogo do tipo mean-field de acúmulo de capital e
riqueza, o que deixa claro a relevância do estudo dos MFG em um domínio limitado. À luz dos
resultados obtidos no Capítulo 3, encerramos o Capítulo 4 com as estimativas do tipo Hopf-Lax
e de Primeira Ordem.
Três apêndices encerram o texto desta dissertação de mestrado; estes reúnem material elementar
sobre Cálculo Estocástico e Análise Funcional.
|
13 |
Solutions variationnelles et solutions de viscosité de l'équation de Hamilton-Jacobi / Variational and viscosity solutions of the Hamilton-Jacobi equationRoos, Valentine 30 June 2017 (has links)
On étudie l'équation de Hamilton-Jacobi évolutive du premier ordre, couplée avec une donnée initiale lipschitzienne. Le but est de comparer les solutions de viscosité et les solutions variationnelles pour cette équation, deux notions de solutions faibles qui coïncident en dynamique hamiltonienne convexe. Pour travailler dans un cadre pertinent pour les deux types de solutions, on doit d’abord construire une solution variationnelle sans hypothèse de compacité sur la variété ou le hamiltonien étudiés. On retrace dans ce cas la construction historique des solutions variationnelles, en détaillant les propriétés de la famille génératrice obtenue par la méthode des géodésiques brisées. Il en découle des estimées permettant d’obtenir la solution de viscosité à partir de la solution variationnelle par un procédé d’itération. Après avoir vérifié que la solution variationnelle construite coïncide effectivement avec la solution de viscosité pour un Hamiltonien convexe, on caractérise les Hamiltoniens intégrables pour lesquels cette propriété persiste, en étudiant attentivement des exemples élémentaires en dimension 1 et 2. / We study the first order Hamilton-Jacobi equation associated with a Lipschitz initial condition. The purpose of this thesis is to compare two notions of weak solutions for this equation, namely the viscosity solution and the variational solution, that are known to coincide in convex Hamiltonian dynamics. In order to work in a relevant framework for both notions, we first need to build a variational solution without compactness assumption on the manifold or the Hamiltonian. To do so, we follow the historical construction, detailing properties of the generating family obtained via the broken geodesics method. Local estimates allow to prove that the viscosity solution can be obtained from the variational solution via an iterative process. We then check that this construction gives effectively the viscosity solution for a convex Hamiltonian, and characterize the integrable Hamiltonians for which this property persists by carefully studying elementary examples in dimension 1 and 2.
|
14 |
Процедура коррекции области построения для численного метода решения дифференциальных игр быстродействия : магистерская диссертация / Correction procedure for the area of construction of a numerical method solving differential games of optimal timeMunts, N., Мунц, Н. В. January 2015 (has links)
The paper describes the software implementation of the numerical method proposed by M.Bardi and M.Falcone solving optimal time games. Examples of numerical calculations are given. The question of the applicability of this method for solving differential games with life line, i.e. with a set where the second player escapes and wins unconditionally, is discussed and examined. Currently, the study has not been completed and will be continued in the future. / В работе приведено описание программной реализации численного метода, предложенного М.Барди и М.Фальконе для решения игр быстродействия. Приведены примеры численного счета. Обсуждается и исследуется вопрос о применимости данного метода для решения дифференциальных игр быстродействия с линией жизни, то есть с множеством, при попадании системы на которое второй игрок безусловно выигрывает. В настоящее время это исследование не доведено до конца и будет продолжено в дальнейшем.
|
15 |
Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites / Mathematical and numerical studies of parabolic problems with boundary conditionsKarimou Gazibo, Mohamed 06 December 2013 (has links)
Cette thèse est centrée autour de l’étude théorique et de l’analyse numérique des équations paraboliques non linéaires avec divers conditions aux limites. La première partie est consacrée aux équations paraboliques dégénérées mêlant des phénomènes non-linéaires de diffusion et de transport. Nous définissons des notions de solutions entropiques adaptées pour chacune des conditions aux limites (flux nul, Robin, Dirichlet). La difficulté principale dans l’étude de ces problèmes est due au manque de régularité du flux pariétal pour traiter les termes de bords. Ceci pose un problème pour la preuve d’unicité. Pour y remédier, nous tirons profit du fait que ces résultats de régularités sur le bord sont plus faciles à obtenir pour le problème stationnaire et particulièrement en dimension un d’espace. Ainsi par la méthode de comparaison "fort-faible" nous arrivons à déduire l’unicité avec le choix d’une fonction test non symétrique et en utilisant la théorie des semi-groupes non linéaires.L’existence de solution se démontre en deux étapes, combinant la méthode de régularisation parabolique et les approximations de Galerkin. Nous développons ensuite une approche directe en construisant des solutions approchées par un schéma de volumes finis implicite en temps. Dans les deux cas, on combine les estimations dans les espaces fonctionnels bien choisis avec des arguments de compacité faible ou forte et diverses astuces permettant de passer à la limite dans des termes non linéaires. Notamment, nous introduisons une nouvelle notion de solution appelée solution processus intégrale dont l’objectif, dans le cadre de notre étude, est de pallier à la difficulté de prouver la convergence vers une solution entropique d’un schéma volumes finis pour le problème de flux nul au bord.La deuxième partie de cette thèse traite d’un problème à frontière libre décrivant la propagation d’un front de combustion et l’évolution de la température dans un milieu hétérogène. Il s’agit d’un système d’équations couplées constitué de l’équation de la chaleur bidimensionnelle et d’une équation de type Hamilton-Jacobi. L’objectif de cette partie est de construire un schéma numérique pour ce problème en combinant des discrétisations du type éléments finis avec les différences finies. Ceci nous permet notamment de vérifier la convergence de la solution numérique vers une solution onde pour un temps long. Dans un premier temps, nous nous intéressons à l’étude d’un problème unidimensionnel. Très vite,nous nous heurtons à un problème de stabilité du schéma. Cela est dû au problème de prise en compte de la condition de Neumann au bord. Par une technique de changement d’inconnue et d’approximation nous remédions à ce problème. Ensuite, nous adaptons cette technique pour la résolution du problème bidimensionnel. A l’aide d’un changement de variables, nous obtenons un domaine fixe facile pour la discrétisation. La monotonie du schéma obtenu est prouvée sous une hypothèse supplémentaire de propagation monotone qui exige que la frontière libre se déplace dans les directions d’un cône prescrit à l’avance. / This thesis focuses on the theoretical study and numerical analysis of parabolic equations with boundary conditions.The first part is devoted to degenerate parabolic equation which combines features of a hyperbolic conser-vation law with those of a porous medium equation. We define suitable notions of entropy solutions foreach of the boundary conditions (zero-flux, Robin, Dirichlet). The main difficulty in these studies residesin the formulation of the adequate notion of entropy solution and in the proof of uniqueness. There isa technical difficulty due to the lack of regularity required to treat the boundaries terms. We take ad-vantage of the fact that boundary regularity results are easier to obtain for the stationary problem, inparticular in one space dimension. Thus, using strong-weak uniqueness approach we get the uniquenesswith the choice of a non-symmetric test function and using the nonlinear semigroup theory. The exis-tence of solution is proved in two steps, combining the method of parabolic regularization and Galerkinapproximations. Next, we develop a direct approach to construct approximate solutions by an implicitfinite volume scheme. In both cases, the estimates in the appropriately chosen functional spaces are com-bined with arguments of weak or strong compactness and various tricks to pass to the limit in nonlinearterms. In the appendix, we propose a result of existence of strong trace of a solution for the degenerateparabolic problem. In another appendix of independent interest, we introduce a new concept of solutioncalled integral process solution. We exploit it to overcome the difficulty of proving the convergence ofour finite volume scheme to an entropy solution for the zero-flux boundary problem.The second part of this thesis deals with a free boundary problem describing the propagation of a com-bustion front and the evolution of the temperature in a heterogeneous medium. So we have a coupledproblem consisting of the heat equation of bidimensional space and a Hamilton-Jacobi equation. The ob-jective is to construct a numerical scheme and to verify that the numerical solution converges to a wavesolution for a long time. Recall that an existence of wave solution for this problem was already proven inan analytical framework. At first, we focus on the study of a one-dimensional problem. Here, we face aproblem of stability of the scheme. This is due to a difficulty of taking into account the Neumann boun-dary condition. Through a technique of change of unknown, we can propose a monotone scheme. Wealso adapt this technique for solving two-dimensional problem. Using a change of variables, we obtaina fixed domain where the discretization becomes easy. The monotony of the scheme is proved under anadditional assumption of monotone propagation that requires the free boundary moves in the directionsof a cone given beforehand.
|
16 |
[en] A PRIORI ESTIMATES WITH APPLICATION TO MEAN-FIELD GAMES / [pt] ESTIMATIVAS A PRIORI E JOGOS DE CAMPO MÉDIOJOAO VITOR MEDEIROS DOMINGOS 28 January 2021 (has links)
[pt] A estrutura dos mean-filed games foi desenvolvida com o intuito de estudar
problemas com um infinito número de jogadores em algum tipo de
competição, ao qual pode ser aplicado em diversos problemas. O estudo formalizado
desses problemas começou, na comunidade matemática com Lasry
and Lions, e mais ou menos na mesma época, porém independentemente,
na comunidade de engenharia por P. Caines, Minyi Huang, and Roland
Malhamé. Desde então a pesquisa nos mean-field games cresceu exponencialmente,
e nesse trabalho apresentaremos regularidade para um caso de
mean-field games utilizando tecnicas particulares.
Nesse trabalho, estudamos time-dependent mean-field games no caso
subquadrático, isto é, mean-field games, o qual é escrito como um sistema
de duas equações, uma equação de Hamilton-Jacobi e uma equação do
transporte ou uma equação de Fokker-Plank, em que o Hamiltoniano
na equação de Hamilton-Jacobi possui um crescimento subquadratico.
Começamos em assumir dez suposições, e então sob os mesmos deduzir
regularidade Lipschitz para o sistema. / [en] The mean-field games framework was developed to study problems with
an infinite number of rational players in competition, which could be applied
in many problems. The formalized study of these problems has begun,
in the mathematical community by Lasry and Lions, and beside them,
but independently close to the same time in the engineering community
by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal
contributions, the research in mean-field games has grown exponentially,
and in this work we present a regularity to a case of mean-field games using
particulars techniques.
In this work, we study time-dependent mean-field games in the subquadratic
case, that is, mean-field games, which are written as a system of
a Hamilton–Jacobi equation and a transport or Fokker–Planck equation,
where The Hamiltonian presented on the Hamilton–Jacobi equation has a
subquadratic growth. We begin by assuming ten assumptions, and then,
under these assumptions derive Lipschitz regularity of the system.
|
Page generated in 0.0721 seconds