• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 50
  • 33
  • 23
  • 9
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 527
  • 527
  • 394
  • 159
  • 108
  • 90
  • 79
  • 72
  • 61
  • 55
  • 54
  • 51
  • 51
  • 49
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Structural Health Monitoring System for Deepwater Risers with Vortex-Induced Vibration: Nonlinear Modeling, Blind Identification, Fatigue/Damage Estimation and Vibration Control

Huang, Chaojun 16 September 2013 (has links)
This study focuses on developing structural health monitoring techniques to detect damage in deepwater risers subjected to vortex-induced vibration (VIV), and studying vibration control strategies to extend the service life of offshore structures. Vibration-based damage detection needs both responses from the undamaged and damaged deepwater risers. Because no experimental data for damaged deepwater risers is available, a model to predict the VIV responses of deepwater risers with given conditions is needed, which is the forward problem. In this study, a new three dimensional (3D) analytical model is proposed considering coupled VIV (in-line and cross-flow) for top-tensioned riser (TTR) with wake oscillators. The model is verified by direct numerical simulations and experimental data. The inverse problem is to detect damage using VIV responses from the analytical models with/without damage, where the change between dynamic properties obtained from riser responses represents damage. The inverse problem is performed in two steps: blind identification and damage detection. For blind identification, a wavelet modified second order blind identification (WMSOBI) method and a complex WMSOBI (CWMSOBI) method are proposed to extract modal properties from output only responses for standing and traveling wave vibration, respectively. Numerical simulations and experiments validate the effectiveness of proposed methods. For damage detection, a novel weighted distribution force change (WDFC) index (for standing wave) and a phase angle change (PAC) index (for traveling wave) are proposed and proven numerically. Experiments confirm that WDFC can accurately locate damage and estimate damage severity. Furthermore, a new fatigue damage estimation method involving WMSOBI, S-N curve and Miner's rule is proposed and proven to be effective using field test data. Vibration control is essential to extend the service life and enhance the safety of offshore structures. Literature review shows that semi-active control devices are potentially a good solution. A novel semi-active control strategy is proposed to tune the damper properties to match the dominant frequency of the structural response in real-time. The effectiveness of proposed strategy in vibration reduction for deepwater risers and offshore floating wind turbines is also validated through numerical studies.
362

Automated Recognition of 3D CAD Model Objects in Dense Laser Range Point Clouds

Bosche, Frederic January 2008 (has links)
There is shift in the Architectural / Engineering / Construction and Facility Management (AEC&FM) industry toward performance-driven projects. Assuring good performance requires efficient and reliable performance control processes. However, the current state of the AEC&FM industry is that control processes are inefficient because they generally rely on manually intensive, inefficient, and often inaccurate data collection techniques. Critical performance control processes include progress tracking and dimensional quality control. These particularly rely on the accurate and efficient collection of the as-built three-dimensional (3D) status of project objects. However, currently available techniques for as-built 3D data collection are extremely inefficient, and provide partial and often inaccurate information. These limitations have a negative impact on the quality of decisions made by project managers and consequently on project success. This thesis presents an innovative approach for Automated 3D Data Collection (A3dDC). This approach takes advantage of Laser Detection and Ranging (LADAR), 3D Computer-Aided-Design (CAD) modeling and registration technologies. The performance of this approach is investigated with a first set of experimental results obtained with real-life data. A second set of experiments then analyzes the feasibility of implementing, based on the developed approach, automated project performance control (APPC) applications such as automated project progress tracking and automated dimensional quality control. Finally, other applications are identified including planning for scanning and strategic scanning.
363

Structural health monitoring of a high speed naval vessel using ambient vibrations

Huston, Steven Paul 19 March 2010 (has links)
Traditional naval vessels with steel structures have the benefit of large safety factors and a distinct material endurance limit. However, as performance requirements and budget constraints rise, the demand for lighter weight vessels increases. Reducing the mass of vessels is commonly achieved by the use of aluminum or composite structures, which requires closer attention to be paid to crack initiation and propagation. It is rarely feasible to require a lengthy inspection process that removes the vessel from service for an extended amount of time. Structural health monitoring (SHM), involving continuous measurement of the structural response to an energy source, has been proposed as a step towards condition-based maintenance. Furthermore, using a passive monitoring system with an array of sensors has several advantages: monitoring can take place in real-time using only ambient noise vibrations and neither deployment of an active source nor visual access to the inspected areas are required. Passive SHM on a naval vessel is not without challenge. The structures of ships are typically geometrically complex, causing scattering, multiple reflections, and mode conversion of the propagating waves in the vessel. And rather than a distinct and predictable input produced by controlled active sources, the vibration sources are hull impacts, smaller waves, and even onboard machinery and activity. This research summarizes findings from data collected onboard a Navy vessel and presents recommendations data processing techniques. The intent is to present a robust method of passive structural health monitoring for such a vessel using only ambient vibrations recordings.
364

Reliability-based condition assessment of existing highway bridges

Wang, Naiyu 21 May 2010 (has links)
Condition assessment and safety verification of existing bridges and decisions as to whether bridge posting is required are addressed through analysis, load testing, or a combination of methods. Bridge rating through structural analysis is by far the most common procedure for rating existing bridges. The American Association of State Highway and Transportation Officials (AASHTO) Manual for Bridge Evaluation (MBE), First Edition permits bridge capacity ratings to be determined through allowable stress rating (ASR), load factor rating (LFR) or load and resistance factor rating (LRFR); the latter method is keyed to the AASHTO LRFD Bridge Design Specifications, which is reliability-based and has been required for the design of new bridges built with federal findings since October, 2007. A survey of current bridge rating practices in the United States has revealed that these three methods may lead to different ratings and posting limits for the same bridge, a situation that carries serious implications with regard to the safety of the public and the economic well-being of communities that may be affected by bridge postings or closures. To address this issue, a research program has been conducted with the overall objective of providing recommendations for improving the process by which the condition of existing bridge structures is assessed. This research required a coordinated program of load testing and finite element analysis of selected bridges in the State of Georgia to gain perspectives on the behavior of older bridges under various load conditions. Structural system reliability assessments of these bridges were conducted and bridge fragilities were developed for purposes of comparison with component reliability benchmarks for new bridges. A reliability-based bridge rating framework was developed, along with a series of recommended improvements to the current bridge rating methods, which facilitate the incorporation of various in situ conditions of existing bridges into the bridge rating process at both component and system levels. This framework permits bridge ratings to be conducted at three levels of increasing complexity to achieve the performance objectives, expressed in the terms of reliability, that are embedded in the LRFR option of the AASHTO Manual of Bridge Evaluation. This research was sponsored by the Georgia Department of Transportation, and has led to a set of Recommended Guidelines for Condition Assessment and Evaluation of Existing Bridges in Georgia.
365

Experimental testing, analysis, and strengthening of reinforced concrete pier caps by exterior post tensioning

O'Malley, Curtis John 17 May 2011 (has links)
Condition assessment of existing concrete bridge pier caps using the general shear provisions of the AASHTO LRFD Bridge Design Specification has caused the Georgia Department of Transportation (GDOT) to post a large number of bridges in the State of Georgia. Posting of bridges disrupts the free flow of goods within the region served by the bridge and has a negative economic impact. To prevent structural deterioration, diagonal cracking or failure of concrete pier caps in shear, the GDOT employs an in-situ strengthening technique that utilizes an external vertical post-tensioning system. However, the fundamental mechanics of this system and its effectiveness under service load have not been examined previously. This research examines the behavior of reinforced concrete pier caps that utilize the above strengthening system in a combined analytical and experimental program. In the experimental part of the study, two groups of full-scale reinforced concrete deep beam specimens were tested. The first group consisted of six deep beams with shear span/depth ratios of approximately 1.0, which is typical of bridge pier caps; of these six, two included the external post-tensioning system. In the second group, nine deep beam specimens that included a segment of the column representing the pier were tested; four of those tests included the external post-tensioning system. The tests revealed that the shear capacity computed using the AASHTO LRFD Bridge Design Specifications provided a conservative estimate of the specimen capacity in all but one case when compared to the experimental results. However, the AASHTO strut and tie provisions were found to provide a much closer assessment of the load carrying mechanism in the pier cap than the general shear provisions, in that they were able to predict the load at which yielding of the tension reinforcement occurred as well as the angle of the compression strut. The presence of the column segment in the second group had a significant impact on the failure mechanism developed in the specimen near ultimate load. The stress concentration at the reentrant corner between the pier cap and column interface served as an attractor for the formation of diagonal shear cracks, a mechanism not observed in previous deep beam tests in shear. The research has led to recommendations for improving the design of pier caps and the external post-tensioning system, where required, based on mechanics which are consistent with the results of the experimental program.
366

Structural Health Monitoring Of Composite Structures Using Magnetostrictive Sensors And Actuators

Ghosh, Debiprasad 01 1900 (has links)
Fiber reinforced composite materials are widely used in aerospace, mechanical, civil and other industries because of their high strength-to-weight and stiffness-to-weight ratios. However, composite structures are highly prone to impact damage. Possible types of defect or damage in composite include matrix cracking, fiber breakage, and delamination between plies. In addition, delamination in a laminated composite is usually invisible. It is very diffcult to detect it while the component is in service and this will eventually lead to catastrophic failure of the structure. Such damages may be caused by dropped tools and ground handling equipments. Damage in a composite structure normally starts as a tiny speckle and gradually grows with the increase in load to some degree. However, when such damage reaches a threshold level, serious accident can occur. Hence, it is important to have up-to-date information on the integrity of the structure to ensure the safety and reliability of composite components, which require frequent inspections to identify and quantify damage that might have occurred even during manufacturing, transportation or storage. How to identify a damage using the obtained information from a damaged composite structure is one of the most pivotal research objectives. Various forms of structural damage cause variations in structural mechanical characteristics, and this property is extensively employed for damage detection. Existing traditional non-destructive inspection techniques utilize a variety of methods such as acoustic emission, C-scan, thermography, shearography and Moir interferometry etc. Each of these techniques is limited in accuracy and applicability. Most of these methods require access to the structure.They also require a significant amount of equipment and expertise to perform inspection. The inspections are typically based on a schedule rather than based on the condition of the structure. Furthermore, the cost associated with these traditional non-destructive techniques can be rather prohibitive. Therefore, there is a need to develop a cost-effective, in-service, diagnostic system for monitoring structural integrity in composite structures. Structural health monitoring techniques based on dynamic response is being used for several years. Changes in lower natural frequencies and mode shapes with their special derivatives or stiffness/ exibility calculation from the measured displacement mode shapes are the most common parameters used in identification of damage. But the sensitivity of these parameters for incipient damage is not satisfactory. On the other hand, for in service structural health monitoring, direct use of structural response histories are more suitable. However, they are very few works reported in the literature on these aspects, especially for composite structures, where higher order modes are the ones that get normally excited due to the presence of flaws. Due to the absence of suitable direct procedure, damage identification from response histories needs inverse mapping; like artificial neural network. But, the main diffculty in such mapping using whole response histories is its high dimensionality. Different general purpose dimension reduction procedures; like principle component analysis or indepen- dent component analysis are available in the literature. As these dimensionally reduced spaces may loose the output uniqueness, which is an essential requirement for neural network mapping, suitable algorithms for extraction of damage signature from these re- sponse histories are not available. Alternatively, fusion of trained networks for different partitioning of the damage space or different number of dimension reduction technique, can overcome this issue efficiently. In addition, coordination of different networks trained with different partitioning for training and testing samples, training algorithms, initial conditions, learning and momentum rates, architectures and sequence of training etc., are some of the factors that improves the mapping efficiency of the networks. The applications of smart materials have drawn much attention in aerospace, civil, mechanical and even bioengineering. The emerging field of smart composite structures offers the promise of truly integrated health and usage monitoring, where a structure can sense and adapt to their environment, loading conditions and operational requirements, and materials can self-repair when damaged. The concept of structural health monitoring using smart materials relies on a network of sensors and actuators integrated with the structure. This area shows great promise as it will be possible to monitor the structural condition of a structure, throughout its service lifetime. Integrating intelligence into the structures using such networks is an interesting field of research in recent years. Some materials that are being used for this purpose include piezoelectric, magnetostrictive and fiber-optic sensors. Structural health monitoring using, piezoelectric or fiber-optic sensors are available in the literature. However, very few works have been reported in the literature on the use of magnetostrictive materials, especially for composite structures. Non contact sensing and actuation with high coupling factor, along with other prop- erties such as large bandwidth and less voltage requirement, make magnetostrictive materials increasingly popular as potential candidates for sensors and actuators in structural health monitoring. Constitutive relationships of magnetostrictive material are represented through two equations, one for actuation and other for sensing, both of which are coupled through magneto-mechanical coefficient. In existing finite element formulation, both the equations are decoupled assuming magnetic field as proportional to the applied current. This assumption neglects the stiffness contribution coming from the coupling between mechanical and magnetic domains, which can cause the response to deviate from the time response. In addition, due to different fabrication and curing difficulties, the actual properties of this material such as magneto-mechanical coupling coefficient or elastic modulus, may differ from results measured at laboratory conditions. Hence, identification of the material properties of these embedded sensor and actuator are essential at their in-situ condition. Although, finite element method still remains most versatile, accurate and generally applicable technique for numerical analysis, the method is computationally expensive for wave propagation analysis of large structures. This is because for accurate prediction, the finite element size should be of the order of the wavelength, which is very small due to high frequency loading. Even in health monitoring studies, when the flaw sizes are very small (of the order of few hundred microns), only higher order modes will get affected. This essentially leads to wave propagation problem. The requirement of cost-effective computation of wave propagation brings us to the necessity of spectral finite element method, which is suitable for the study of wave propagation problems. By virtue of its domain transfer formulation, it bypasses the large system size of finite element method. Further, inverse problem such as force identification problem can be performed most conveniently and efficiently, compared to any other existing methods. In addition, spectral element approach helps us to perform force identification directly from the response histories measured in the sensor. The spectral finite element is used widely for both elementary and higher order one or two dimensional waveguides. Higher order waveguides, normally gives a behavior, where a damping mode (evanescent) will start propagating beyond a certain frequency called the cut-off frequency. Hence, when the loading frequencies are much beyond their corresponding cut-off frequencies, higher order mo des start propagating along the structure and should be considered in the analysis of wave propagations. Based on these considerations, three main goals are identified to be pursued in this thesis. The first is to develop the constitutive relationship for magnetostrictive sensor and actuator suitable for structural analysis. The second is the development of different numerical tools for the modelling the damages. The third is the application of these developed elements towards solving inverse problems such as, material property identification, impact force identification, detection and identification of delamination in composite structure. The thesis consists of four parts spread over six chapters. In the first part, linear, nonlinear, coupled and uncoupled constitutive relationships of magnetostrictive materials are studied and the elastic modulus and magnetostrictive constant are evaluated from the experimental results reported in the literature. In uncoupled model, magnetic field for actuator is considered as coil constant times coil current. The coupled model is studied without assuming any explicit direct relationship with magnetic field. In linear coupled model, the elastic modulus, the permeability and magnetostrictive coupling are assumed as constant. In nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and mechanical domain using two nonlinear curves,’ namely the stress vs. strain curve and magnetic flux density vs. magnetic field curve. This is done by two different methods. In the first, the magnetic flux density is computed iteratively, while in the second, artificial neural network is used, where a trained network gives the necessary strain and magnetic flux density for a given magnetic field and stress level. In the second part, different finite element formulations for composite structures with embedded magnetostrictive patches, which can act both as sensors and actuators, is studied. Both mechanical and magnetic degrees of freedoms are considered in the formulation. One, two and three-dimensional finite element formulations for both coupled and uncoupled analysis is developed. These developed elements are then used to identify the errors in the overall response of the structure due to uncoupled assumption of the magnetostrictive patches and shown that this error is comparable with the sensitivity of the response due to different damage scenarios. These studies clearly bring out the requirement of coupled analysis for structural health monitoring when magnetostrictive sensor and actuator are used. For the specific cases of beam elements, super convergent finite element formulation for composite beam with embedded magnetostrictive patches is introduced for their specific advantages in having superior convergence and in addition, these elements are free from shear locking. A refined 2-node beam element is derived based on classical and first order shear deformation theory for axial-flexural-shear coupled deformation in asymmetrically stacked laminated composite beams with magnetostrictive patches. The element has an exact shape function matrix, which is derived by exactly solving the static part of the governing equations of motion, where a general ply stacking is considered. This makes the element super convergent for static analysis. The formulated consistent mass matrix, however, is approximate. Since the stiffness is exactly represented, the formulated element predicts natural frequency to greater level of accuracy with smaller discretization compared to other conventional finite elements. Finally, these elements are used for material property identification in conjunction with artificial neural network. In the third part, frequency domain analysis is performed using spectrally formulated beam elements. The formulated elements consider deformation due to both shear and lateral contraction, and numerical experiments are performed to highlight the higher order effects, especially at high frequencies. Spectral element is developed for modelling wave propagation in composite laminate in the presence of magnetostrictive patches. The element, by virtue of its frequency domain formulation, can analyze very large domain with nominal cost of computation and is suitable for studying wave propagation through composite materials. Further more, identification of impact force is performed form the magnetostrictive sensor response histories using these spectral elements. In the last part, different numerical examples for structural health monitoring are directed towards studying the responses due to the presence of the delamination in the structure; and the identification of the delamination from these responses using artificial neural network. Neural network is applied to get structural damage status from the finite element response using its mapping feature, which requires output uniqueness. To overcome the loss of output uniqueness due to the dimension reduction, damage space is divided into different overlapped zones and then different networks are trained for these zones. Committee machine is used to co ordinate among these networks. Next, a five-stage hierarchy of networks is used to consider partitioning of damage space, where different dimension reduction algorithms and different partitioning between training and testing samples are used for better mapping fro the identification procedure. The results of delamination detection for composite laminate show that the method developed in this thesis can be applied to structural damage detection and health monitoring for various industrial structures. This thesis collectively addresses all aspects pertaining to the solution of inverse problem and specially the health monitoring of composite structures using magnetostric tive sensor and actuator. In addition, the thesis discusses the necessity of higher order theory in the high frequency analysis of wavw propagation. The thesis ends with brief summary of the tasks accomplished, significant contribution made to the literature and the future applications where the proposed methods addressed in this thesis can be applied.
367

On Modeling Of Constrained Piezoelectric Thin Films For Structural Health Monitoring

Ali, Rizwaan 01 1900 (has links)
The behaviour of a free-standing thin film differs from that of a film surface-bonded or embedded due to the boundary constraints. A general dearth of analytical models, in regard to prediction of the operational competence of a constrained Piezoelectric thin film, prevails. In conventional design of miniaturized thin film devices, several non classical effects, for instance the effect of boundary constraints, are not considered. To warrant the design and performance optimisation of thin film sensors, such effect must be taken into account in a forethoughtful manner. This thesis is an attempt to achieve such optimisation through modeling of thin films. The coupled problem of a film on a substrate is solved semi-analytically in theoretical cases; and by finite element analysis in realistic cases for damage identification in the host structure. We first propose a two-dimensional analytical model of a constrained Piezoelectric thin film embedded in a host. Analytical expressions of capacitance and voltage across the electrodes are obtained by assuming first order shear deformation across the film thickness. The bonding layer between the film and the substrate, which is assumed to be an equivalent single layer including electrodes, insulation layer, adhesive layer etc., is modeled by taking into account its viscoelastic property. Residual stress is incorporated in the constitutive model through equivalent residual strain. Simulations on 10 m thick PVDF and 100 mPZT films are conducted. They illustrate the dependence of voltage response and capacitance on the applied stress, as well as on the residual stress. A maximum percentage variation in capacitance, as compared to the conventional estimate, is about 2% in a PVDF film and +75% to-65% in a PZT film for various combinations of tensile stresses applied at the ends of the film. Effect of residual stress is also exemplified via comparative response of a 1 m PZT film deposited on Pt/Ti/Si(0 0 1), with and without residual stress. For this case, an almost +50% increase in the voltage and an equivalent drop in the capacitance is observed. Next, we look into the voltage response profile of this model by employing it as a sensor to identify a finite mode I and mode II sub-surface cracks in a finite size host. To model the embedded crack, additional perturbation functions in the displacement field due to linear elastic crack tips in an infinite solid under plane strain condition are introduced to accommodate the stress free conditions at its surfaces. The film model requires the interfacial displacement and traction conditions, which are obtained from the analysis of the host. The combined analysis of the film and crack models brings forth the voltage gradient along the film span as a direct indicator of the location of crack in the axial direction, whereas the voltage magnitude represents the size of the crack. Following this analysis, a quasi three-dimensional(3-D) model of a Piezoelectric thin film surface-bonded to the host structure is proposed. With due consideration of restriction on the thickness of the film, here the model is based on a reduced 3-D continuum mechanics approach. The displacement field in the film is assumed to vary according to the third-order shear deformation theory; and the electrical and mechanical boundary conditions on the surfaces of the film are accommodated in a consistent manner. The formulation yields a governing inhomogeneous system of second-order Partial Differential Equations(PDEs), which is dependent on the displacement field at the film-host interface through force terms. Semi-analytical expressions of potential difference and capacitance are obtained. This system is solved numerically for two unknown rotations about X and Y axes of the film by finite element method. A maximum variation of about 2.5% is obtained in the capacitance of a 10 m PVDF film, as compared to its conventional estimate. The operational performance of this model is assessed in terms of its voltage response over the film area for various displacement fields. Conformation of this response to the input displacement field attests to its mathematical integrity. Next, we ascertain the versatility of this model in its role as a sensor for Structural Health Monitoring. To deal with cracks in the host plate, finite size rectangular surfaces are introduced as crack faces. The film domain and the host domain are discretized with an a posteriori h-refinement strategy and compatible interfacial nodes at the film-host interface via finite element interpolation. The resulting coupled problem is solved by static finite element analysis. The nature of the voltage pattern over the film surface is peculiar to the mode of crack, and is a qualitative portrayal of its presence. To correlate the electric potential(voltage) –a distributed parameter – to the geometry and orientation of the crack, as well as to quantify it, electrostatic measures in terms of integrated potential difference and its spatial gradients on the film surface are proffered. The numerical implications of these measures are elicited through simulation results of various crack sizes in damaged and healthy hosts under identical conditions of stress and boundary. The pattern of these measures in a damaged host becomes oscillatory as compared to straight lines observed in a healthy host. Furthermore, the reduced 3-D model is extended to perform dynamic analysis with the inclusion of inertial terms in the governing equilibrium equations. Subsequently, the acceleration terms appear in the governing inhomogeneous system of PDEs in the force terms. Finite element analyses of this extended film model on an isotropic beam with surface and sub-surface cracks, and on a composite plate with delamination, are then performed in the time domain. In all cases, an excellent conformation of the voltage profile at any point in the film domain to the velocity profile at the corresponding point in the film-host interface is observed. Again, to quantify the extent of damage in the host, we proffer electrical measures based on the Lpnorm, of second order, of the voltage and its directional derivatives. We exemplify the numerical implications of these measures in the time domain through sensitivity analysis in regard to the defected areas, and their region of occurrence relative to the film sensor. The response of the film model educes that the relatively flat curves after the first incident pulse in a healthy structure shoots off to a monotonic pattern in damaged hosts. The measures depict high degree of sensitivity in regard to the variation in the area of damage of any nature. An apposition of the static and dynamic analyses is elaborated towards the end of this dissertation. It proves to be very insightful in the damage assessment of the host structure, for it shows the utility of the dynamic model to sense the location of the damage occurrence, whereas a more in-depth assessment on its nature and mode of the crack would demand a static analysis in its proximal regions. To sum up, in light of these models and the proposed measures, this thesis establishes salient justifications pertaining to their pragmatic significance. We believe that these results represent an important contribution towards the ongoing research on understanding the role of boundary constraints in mechanically thin Piezoelectric films.
368

A Novel Ultrasonic Method to Quantify Bolt Tension

Martinez Garcia, Jairo Andres 01 January 2012 (has links)
The threaded fasteners are one of the most versatile methods for assembly of structural components. For example, in bridges large bolts are used to fix base columns and small bolts are used to support access ladders. Naturally not all bolts are critical for the operation of the structure. Fasteners loaded with small forces and present in large quantities do not receive the same treatment as the critical bolts. Typical maintenance operations such tension measurements, internal stress checking or monitoring of crack development are not practical due to cost and time constrains. Although failure of a single non-critical fastener is not a significant threat to the structure's stability, massive malfunction may cause structural problem such as insufficient stiffness or excessive vibrations. The health of bolted joints is defined by a single parameter: the clamping force (CF). The CF is the force that holds the elements of the joint together. If the CF is too low, separation and bolt fatigue may occur. On the other hand, excessive CF may produce damages in the structural members such as excessive distortion or breakage. The CF is generated by the superposition of the individual tension of the bolts. The bolt tension, also referred as bolt preload, is the actual force that is stretching the bolt body. Maintaining the appropriate tension in bolts ensures a proper CF and hence a good health of the joint. In this thesis, a novel methodology for estimating the tension in bolts using surface acoustic waves (SAWs) is investigated. The tension is estimated by using the reflection of SAWs created by the bolt head interference. Increments in the bolt tension raise the points of interaction between the waves and the bolt head (real area of contact), and hence the position of the reflective boundaries. The variations are estimated using the "conventional linear synthetic array" imaging technique. A singular transducer is actuated from predefined positions to produce an array of signals that are subsequently arranged and added to construct an acoustic image. Three sets of experiment are presented in this research for validating the proposed concept: tension estimation of a ¼ inch stainless steel bolt, a ½ inch stainless steel bolt and ¼ inch grade 8 bolt. Acoustic images of the surface of the clamped plate illustrate a clear trend in the position of the reflective boundary when torque is changed. In all cases, the torque increments increase the real area of contact and therefore the position of the reflective boundary. As expected, the real area of contact grew from the bolt head center to the perimeter, which causes an effect of apparent movement of the boundary. This research proves the potential of the ultrasonic imaging methodology to measure applied tension. The result showed that the system can be used to successfully inspect tension in bolts of ½ and ¼ inches. The methodology investigated in this thesis is the first steps towards the development of bolt tension sensor based on surface acoustic waves.
369

Design of vibrational and solar energy harvesting systems for powering wireless sensor networks in bridge structural health monitoring applications

Adams, Jacob Allan 03 February 2015 (has links)
Structural health monitoring systems provide a promising route to real-time data for analyzing the current state of large structures. In the wake of two high-profile bridge collapses due to an aging highway infrastructure, the interest in implementing such systems into fracture-critical and structurally deficient bridges is greater now than at any point in history. Traditionally, these technologies have not been cost-effective as bridges lack existing wiring architecture and the addition of this is cost prohibitive. Modern wireless sensor networks (WSN) now present a viable alternative to traditional networking; however, these systems must incorporate localized power sources capable of decade-long operation with minimal maintenance. To this end, this thesis explores the development of two energy harvesting systems capable of long-term bridge deployment with minimal maintenance. First, an electromagnetic, linear, vibrational energy harvester is explored that utilizes the excitations from passing traffic to induce motion in a translating permanent magnet mass. This motion is then converted to electrical energy using Faraday’s law of induction. This thesis presents a review of vibrational energy harvesting literature before detailing the process of designing, simulating, prototyping, and testing a selected design. Included is an analysis of the effects of frequency, excitation amplitude, load, and damping on the power production potential of the harvester. Second, a solar energy harvester using photovoltaic (PV) panels is explored for powering the critical gateway component of the WSN responsible for data aggregation. As solar energy harvesting is a more mature technology, this thesis focuses on the methodologies for properly sizing a solar harvesting system and experimentally validating the selected design. Fabrication of the prototype system was completed and field testing was performed in Austin, TX. The results validate the selected system’s ability to power the necessary 14 W DC load with a 0° panel azimuth angle (facing direct south) and 45° tilt. / text
370

Improvements to wireless, passive sensors for monitoring conditions within reinforced concrete structures

Chou, Chih-Chieh 20 December 2010 (has links)
The corrosion of steel reinforcement in reinforced concrete structures constitutes an alarming problem. To combat this problem, researchers at the University of Texas at Austin developed two, low-cost, passive, wireless sensors: a threshold, corrosion sensor and an analog conductivity sensor. Today, the basic circuit designs for both sensors are finished and their reliabilities are confirmed. However, multiple problems regarding the durability of the sensors remain. This research project: (a) identifies these problems, (b) proposes enhancements for each type of passive, wireless sensor, (c) tests and evaluates the proposed modifications to the sensors, and (d) proposes potential improvements and areas of research regarding the future development of these two sensors. / text

Page generated in 0.7955 seconds