Spelling suggestions: "subject:"helmholtz equation"" "subject:"helmoholtz equation""
61 |
Formulação e implementação da versão direta do metodo dos elementos de contorno para tratamento de problemas acusticos estacionarios bidimensionais diretos e inversos / Formulation and implementation of a direct version of the boundary element method to describe stationary bidimensional direct inverse acoustic problemsMenoni, Jose Antonio 07 June 2004 (has links)
Orientador: Euclides de Mesquita Neto / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-04T01:41:44Z (GMT). No. of bitstreams: 1
Menoni_JoseAntonio_D.pdf: 11918799 bytes, checksum: c09bbd80eae74f22092698eb851e1578 (MD5)
Previous issue date: 2004 / Resumo: Este trabalho trata da formulação e da implementação da versão direta do Método dos Elementos de Contorno (MEC) para tratamento de problemas acústicos bidimensionais estacionários regidos pelo operador diferencial de Helrnholtz. São abordados tanto problemas internos, associados a domínios limitados, quanto problemas externos, associados a domínios ilimitados. A tese ainda aborda a solução de problemas diretos e inversos. A transformação da equação de Helrnholtz em Equação Integral de Contorno, bem como a síntese de sua Solução Fundamental é recuperada de forma detalhada no texto. Para o caso de problemas internos duas técnicas são estudadas para recuperação de grandezas modais de cavidades acústicas. A primeira é baseada na pesquisa direta das raÍzes do polinômio característico e a segunda é baseada na informação obtida a partir de Funções de Resposta em Freqüência sintetizadas pelo MEC. Os problemas da radiação e espalhamento acústico são formulados, implementados e validados. O trabalho apresenta ainda a solução de problemas inversos, no qual as variáveis acústicas em um contorno geométrico conhecido são determinadas a partir de medições em uma superficie fechada e que envolve o corpo radiante. Duas técnicas são utilizadas no processo inverso, a Decomposição em Valores Singulares e a técnica de regularização de Tikhonov. Discute-se a precisão e eficiência destas técnicas em função dos parâmetros que são variáveis presentes nestas técnicas / Abstract: The present Thesis reports a formulation and an implementation of the direct version of the Boundary Element Method (BEM) to model direct and indirect bidimensional stationary acoustic problems governed by the Helrnholz differential operator. Both internal and external problems, associated, respectively to bounded and unbounded domains, are treated in the analysis. The transformation of the Helmholtz differential equation into an equivalent Boundary Integral Equation (BIE) and the synthesis of its Fundamental Solution is recovered in detail. For internal problem two techniques are employed to obtain modal quantities of acoustic cavities. The fIrs is the direct search method of the characteristic polynomial roots. The second strategy is based on numerical Frequency Response Functions, synthesized by the BEM. Radiation and scatter problems are formulated, implemented and validated within the realm of the Boundary Element Method. The present work still addresses the solution of an inverse problem. The inverse problem consists of determining the acoustic variables on the boundary of a radiating or scattering body of known geometry, based on the acoustic fIelds measured over a c10sed surface which embodies the analized body. Two technique to solve the inversion problem are discussed. The fIrst is the Single Value Decomposition strategy and the other is the Tikhonov regularization strategy. The accuracy of this techniques are discussed as functions of the internal parameters which are intrinsic to those strategies / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
|
62 |
Étude mathématique et numérique des résonances dans une micro-cavité optique / Mathematical and numerical study of resonances in optical micro-cavitiesMoitier, Zoïs 03 October 2019 (has links)
Cette thèse est consacrée à l'étude des fréquences de résonance de cavités optiques bidimensionnelles. Plus particulièrement, on s'intéresse aux résonances à modes de galerie (modes localisés au bord de la cavité avec un grand nombre d'oscillations). La première partie traite du calcul numérique des résonances par la méthode des éléments finis à l'aide de couches parfaitement adaptées, et d'une analyse de sensibilité des paramètres de celles-ci dans les trois situations suivantes : un problème unidimensionnel, une réduction du cas bidimensionnel invariant par rotation et le cas général. La deuxième partie porte sur la construction de développements asymptotiques des résonances à modes de galerie quand le nombre d'oscillations le long du bord tend vers l'infini. On considère d'abord le cas d'un problème invariant par rotation pour lequel le nombre d'oscillations s'interprète comme un paramètre semiclassique grâce à la transformée de Fourier angulaire. Ensuite, pour le cas général, la construction utilise un ansatz phase-amplitude de type BKW qui permet de se ramener à un opérateur de Schrödinger généralisé. Enfin, les résonances calculées numériquement dans la première partie sont comparées aux développements asymptotiques explicités par calcul formel. / This thesis is devoted to the study of resonance frequencies of bidimensional optical cavities. More specifically, we are interested in whispering-gallery modes (modes localized along the cavity boundary with a large number of oscillations). The first part deals with the numerical computation of resonances by the finite element method using perfectly matched layers, and with a sensibility analysis in the three following situations: an unidimensional problem, a reduction of the rotationally invariant bidimensional case, and the general case. The second part focuses on the construction of asymptotic expansions of whispering-gallery modes as the number of oscillations along of boundary goes to infinity. We start by considering the case of a rotationally invariant problem for which the number of oscillations can be interpreted as a semiclassical parameter by means of an angular Fourier transform. Next, for the general case, the construction uses a phase-amplitude ansatz of WKB type which leads to a generalized Schrödinger operator. Finally, the numerically computed resonances obtained in the first part are compared to the asymptotic expansions made explicit by the use of a computer algebra software.
|
63 |
An Iterative Numerical Method for Multiple Scattering Using High Order Local Absorbing Boundary ConditionsHale, Jonathan Harriman 31 May 2022 (has links)
This thesis outlines an iterative approach for determining the scattered wave for two dimensional multiple acoustic scattering problems using high order local absorbing boundary conditions and second order finite difference. We seek to approximate the total wave as it is scattered off of multiple arbitrarily shaped obstacles. This is done by decomposing the scattered wave into the superposition of single scattered waves. We then repeatedly solve the single scattering system for each obstacle, while updating the boundary conditions based off the incident wave and the scattered wave off the other obstacles. We solve each single scattering by enclosing the obstacle in a circular artificial boundary and generating a curvilinear coordinate system for the computational region between the obstacle and the artificial boundary. We impose an absorbing boundary condition, specifically Karp's Farfield Expansion ABC, on the artificial boundary. We use a finite difference method to discretize the governing equations and to discretize the absorbing boundary conditions. This will create a linear system whose solution will approximate the single scattered wave. The forcing vector of the linear system is determined from the total influence on the obstacle boundary from the incident wave and the scattered waves from the other obstacles. In each iteration, we solve the singular acoustic scattering problem for each obstacle by using the scattered wave approximations from the other obstacles obtained from the previous iteration. The iterations continue until the solutions converge. This iterative method scales well to multiple scattering configurations with many obstacles, and achieves errors on the order of 1E-5 in less than five minutes. This is due to using LU factorization to solve the linear systems, paired with parallelization. I will include numerical results which demonstrate the accuracy and advantages of this iterative technique.
|
64 |
Estudo da aplicação do método dos elementos de contorno à análise de propagação em estruturas guiadas. / Applications of the boundary element method in the analysis of propagation in guided waves.Pouzada, Eduardo Victor dos Santos 23 April 1999 (has links)
O presente trabalho objetiva um estudo de aplicação do Método dos Elementos de Contorno à análise de problemas de propagação de ondas eletromagnéticas. O Método baseia-se numa formulação integral que elimina todas as operações de integração em domínio, restando apenas as de contorno. Inicialmente faz-se um estudo dos fundamentos teóricos do método, apresentando-o de forma genérica e encaminhando sua aplicação à equação de Helmholtz. Os procedimentos computacionais desenvolvidos para a implementação do método viabilizam a solução eficiente de problemas de interesse, envolvendo diferentes meios com ou sem perdas. São apresentados resultados de simulações realizadas que confirmam a aplicabilidade do método, permitindo também uma análise de seu desempenho através da variação de parâmetros, como, por exemplo, número de elementos na discretização e função de interpolação. / This work deals with a study of application of the Boundary Element Method (BEM) directed to electromagnetic guided wave propagation. This method relies on an integral formulation that does not need any domain integration. Only boundary integrations have to be performed. The work begins with a study of the theoretical foundations of the method, presenting its general formulation and then directing it to Helmholtzs equation solution. Developed computational procedures allow efficient application of the method to real problems with more than one medium, with or without losses. Simulations results are presented which confirm the applicability of the method and allow the analysis of its performance through parameters variation as, for example, the number of discretized elements and interpolation function.
|
65 |
Goal-Oriented Adaptivity using Unconventional Error Representations / Adaptabilité ciblée basée sur des représentations d'erreur non classiquesDarrigrand, Vincent 01 September 2017 (has links)
Dans un contexte d'adaptabilité ciblée, l'erreur commise sur une quantité d'intérêt peut être représentée grâce aux erreurs globales des problèmes direct et adjoint. Cette représentation de l'erreur est majorée par la somme des indicateurs d'erreurs élémentaires. Ces derniers sont alors utilisés pour produire des raffinements de maillage optimaux. Dans ces travaux, nous proposons de représenter l’erreur du problème adjoint via un opérateur alternatif. L’avantage principal de notre approche est que lorsque l'on choisit correctement l'opérateur alternatif, la majoration correspondante de l'erreur à la quantité d'intérêt devient plus précise, pour autant l'adaptabilité issue de l'utilisation de ces nouveaux indicateurs s'en trouve améliorée. Ces représentations peuvent être employées pour concevoir des algorithmes adaptatifs en espace (h), en ordre d’approximation (p) ou les deux (hp), basés sur la norme d’énergie ou bien ciblés sur une quantité d'intérêt. Bien que la méthode puisse être appliquée à une large gamme de problèmes, nous nous concentrons tout d’abord sur des problèmes unidimensionnels (1D), comme le problème d’Helmholtz et le problème de convection-diffusion stationnaire à convection dominante. Les résultats numériques en 1D montrent que, pour les problèmes de propagation d'ondes, les avantages de notre méthode sont notoires lorsque l'on considère l'opérateur de Laplace pour la représentation de l'erreur. Plus précisément, les majorations issues de la nouvelle représentation sont plus précises que celles provenant de la méthode classique et ce si l'on considère l'énergie globale ou bien une quantité d'intérêt particulière. Le phénomène est d’autant plus notable lorsque l'erreur de dispersion (pollution) est significative. Le problème 1D de convection-diffusion stationnaire à convection dominante avec des conditions limites de Dirichlet homogènes présente une couche limite qui produit une perte de stabilité numérique. La nouvelle représentation d'erreur délivre des majorations plus précises. Lorsqu’appliquée à une p-adaptabilité ciblée, la représentation d'erreur alternative permet une capture plus efficace la couche limite, malgré les oscillations numériques parasites existantes. Devant ces résultats encourageants, nous nous penchons sur l'équation d'Helmholtz à deux et trois dimensions (2D et 3D). Nous montrons, au travers de multiples simulations numériques, que les majorations fournies par les représentations d'erreur alternatives sont plus précises que celle de la représentation classique. Lorsque l'on utilise les indicateurs d'erreur alternatifs, un processus naïf de p-adaptabilité ciblée converge, tandis que dans les mêmes conditions, la méthode classique échoue et requiert l'utilisation d'un opérateur de projection ou d'autre techniques pour récupérer la convergence. Dans ce travail, nous fournissons également des directives pour déterminer les opérateurs qui fournissent des représentations d’erreur induisant de majorations précises. Des résultats similaires sont aussi établis tant pour un problème 2D de convection-diffusion stationnaire à convection dominante que pour des problèmes 2D ayant des coefficients de matériaux discontinus. Nous considérons un problème de diagraphie ultra-sonique en cours de forage pour illustrer l'applicabilité de la méthode proposée. / In Goal-Oriented Adaptivity (GOA), the error in a Quantity of Interest (QoI) is represented using global error functions of the direct and adjoint problems. This error representation is subsequently bounded above by element-wise error indicators that are used to drive optimal refinements. In this work, we propose to replace, in the error representation, the adjoint problem by an alternative operator. The main advantage of the proposed approach is that, when judiciously selecting such alternative operator, the corresponding upper bound of the error representation becomes sharper, leading to a more efficient GOA. These representations can be employed to design novel h, p, and hp energy-norm and goal-oriented adaptive algorithms. While the method can be applied to a variety of problems, in this Dissertation we first focus on one-dimensional (1D) problems, including Helmholtz and steady state convection-dominated diffusion problems. Numerical results in 1D show that for the Helmholtz problem, it is advantageous to select the Laplace operator for the alternative error representation. Specifically, the upper bounds of the new error representation are sharper than the classical ones used in both energy-norm and goal-oriented adaptive methods, especially when the dispersion (pollution) error is significant. The 1D steady state convection-dominated diffusion problem with homogeneous Dirichlet boundary conditions exhibits a boundary layer that produces a loss of numerical stability. The new error representation based on the Laplace operator delivers sharper error upper bounds. When applied to a p-GOA, the alternative error representation captures earlier the boundary layer, despite the existing spurious numerical oscillations. We then focus on the two- and three-dimensional (2D and 3D) Helmholtz equation. We show via extensive numerical experimentation that the upper bounds provided by the alternative error representations are sharper than the classical ones. When using the alternative error indicators, a naive p-adaptive process converges, whereas under the same conditions, the classical method fails and requires the use of the so-called Projection Based Interpolation (PBI) operator or some other technique to regain convergence. We also provide guidelines for finding operators delivering sharp error representation upper bounds. / En un contexto de adaptatividad orientada a un objetivo, el error en una cantidad de interés está representado a través de los errores globales de los problemas directo y adjunto. Esta representación del error se acota superiormente por una suma de indicadores de error de cada elemento. Estos se utilizan para producir refinamientos óptimos. En este trabajo, proponemos representar el error del problema adjunto utilizando un operador alternativo. La principal ventaja de nuestro enfoque es que cuando se elige correctamente dicho operador alternativo, la correspondiente cota superior se vuelve más cercana al error en la cantidad de interés, lo que permite una adaptatividad más eficiente. Estas representaciones pueden ser utilizadas para diseñar algoritmos adaptativos en h, p o hp, basados en la norma de la energía o para aproximar una cantidad de interés específica. Aunque el método propuesto se puede aplicar a una amplia gama de problemas, en esta tesis doctoral nos centramos primero en problemas unidimensionales (1D), tales como el problema de Helmholtz y el problema estacionario de convección-difusión con convección dominante. Los resultados numéricos en 1D muestran que, para los problemas de propagación de ondas, las ventajas de este método son notorias cuando se considera el operador de Laplace para la representación del error. Específicamente, las cotas superiores derivadas de la nueva representación son más cercanas a la cantidad de interés que las del método convencional. Esto es cierto tanto para la norma de la energía global como para una cantidad de interés particular, especialmente cuando el error de dispersión es significativo. El problema estacionario 1D de convección-difusión con convección dominante y con condiciones de Dirichlet homogéneas tiene una capa límite que produce una pérdida de estabilidad numérica. La nueva representación del error proporciona cotas superiores más cercanas a la cantidad de interés. Cuando se aplica a un algoritmo adaptativo en p orientado a un objetivo, la representación alternativa del error captura antes la capa límite, a pesar de las existentes oscilaciones numéricas no físicas. En esta tesis doctoral, también nos centramos en la ecuación de Helmholtz en dos y tres dimensiones (2D y 3D). Mostramos a través de múltiples experimentos numéricos que las cotas superiores proporcionadas por las representaciones alternativas del error son más cercanas a la cantidad de interés que cuando uno considera la representación clásica. Al utilizar los indicadores alternativos del error, un algoritmo adaptativo en p sencillo converge, mientras que en las mismas condiciones, el método convencional falla y requiere el uso de operadores de proyección o de otras técnicas para recuperar la convergencia. En este trabajo, también determinamos operadores que proporcionan representaciones del error que inducen cotas superiores más ajustadas. Establecemos resultados similares tanto para el problema estacionario de convección-difusión con convección dominante en 2D como para problemas 2D con materiales discontinuos. Finalmente, se considera un problema sónico en pozos petrolíferos para ilustrar la aplicabilidad del método propuesto.
|
66 |
Méthodes de réduction de modèles appliquées à des problèmes d'aéroacoustique résolus par équations intégrales / Reduced order methods applied to aeroacoustic problems solved by integral equationsCasenave, Fabien 05 December 2013 (has links)
Cette thèse s'articule autour de deux thématiques : les méthodes numériques pour la propagation d'ondes acoustiques sous écoulement et les méthodes de réduction de modèles. Dans la première thématique, nous développons une méthode de couplage d'éléments finis et d'éléments de frontière pour résoudre l'équation d'Helmholtz convectée, lorsque l'écoulement est uniforme à l'extérieur d'un domaine borné. En particulier, nous proposons une formulation bien posée à toutes les fréquences de la source. Dans la deuxième thématique, nous proposons une solution au problème classique d'accumulation d'arrondis machine qui survient en calculant l'estimateur d'erreur a posteriori dans la méthode des bases réduites. Par ailleurs, nous proposons une méthode non intrusive pour calculer une approximation sous forme séparée des systèmes linéaires résultant de l'approximation en dimension finie de problèmes aux limites dépendant d'un ou plusieurs paramètres / This thesis has two topics : numerical methods for acoustic wave propagation in a flow and reduced order models. In the first topic, we develop a coupled finite element and boundary element method to solve the convected Helmholtz equation, when the flow is uniform outside a bounded domain. In particular, we propose a formulation that is well-posed at all the frequencies of the source. In the second topic, we propose a solution to the classical problem of round-off error accumulation that occurs when computing the a posteriori error bound in the reduced basis method. Furthermore, we propose a non intrusive method for the approximation, in a separated representation form, of linear systems resulting from the finite-dimensional approximation of boundary-value problems depending on one or several parameters
|
67 |
Estudo da aplicação do método dos elementos de contorno à análise de propagação em estruturas guiadas. / Applications of the boundary element method in the analysis of propagation in guided waves.Eduardo Victor dos Santos Pouzada 23 April 1999 (has links)
O presente trabalho objetiva um estudo de aplicação do Método dos Elementos de Contorno à análise de problemas de propagação de ondas eletromagnéticas. O Método baseia-se numa formulação integral que elimina todas as operações de integração em domínio, restando apenas as de contorno. Inicialmente faz-se um estudo dos fundamentos teóricos do método, apresentando-o de forma genérica e encaminhando sua aplicação à equação de Helmholtz. Os procedimentos computacionais desenvolvidos para a implementação do método viabilizam a solução eficiente de problemas de interesse, envolvendo diferentes meios com ou sem perdas. São apresentados resultados de simulações realizadas que confirmam a aplicabilidade do método, permitindo também uma análise de seu desempenho através da variação de parâmetros, como, por exemplo, número de elementos na discretização e função de interpolação. / This work deals with a study of application of the Boundary Element Method (BEM) directed to electromagnetic guided wave propagation. This method relies on an integral formulation that does not need any domain integration. Only boundary integrations have to be performed. The work begins with a study of the theoretical foundations of the method, presenting its general formulation and then directing it to Helmholtzs equation solution. Developed computational procedures allow efficient application of the method to real problems with more than one medium, with or without losses. Simulations results are presented which confirm the applicability of the method and allow the analysis of its performance through parameters variation as, for example, the number of discretized elements and interpolation function.
|
68 |
On a Two Dimensional Inverse Scattering Problem for a Dielectric / Auf einer zweidimensionalen Inverse Scattering Problem für eine DielektrischeAltundag, Ahmet 07 February 2012 (has links)
No description available.
|
69 |
Integral Equation Methods for Rough Surface Scattering Problems in three Dimensions / Integralgleichungsmethoden für Streuprobleme an rauhen Oberflächen in drei DimensionenHeinemeyer, Eric 10 January 2008 (has links)
No description available.
|
70 |
Διάδοση και σκέδαση κυματικών πεδίων σε ανισότροπα μέσαΚαραδήμα, Αικατερίνη Στ. 07 April 2011 (has links)
Η θεωρία σκέδασης καλύπτει ένα μεγάλο φάσμα επιστημονικών και τεχνολογικών εφαρμογών, όπως μη καταστρεπτικός έλεγχος, ραντάρ, σόναρ, γεωφυσική έρευνα, απομακρυσμένη καταγραφή, ιατρική απεικόνιση, υποθαλάσσια ακουστική, σεισμολογία, αναγνώριση βιολογικών προτύπων και ειδικές τεχνικές που εφαρμόζονται στη διαγνωστική ιατρική. Στις περισσότερες από τις παραπάνω περιπτώσεις η υπόθεση πως το υλικό είναι ισότροπο δεν αρκεί και προκειμένου τα αποτελέσματα να προσεγγίζουν ικανοποιητικά την πραγματικότητα, θα πρέπει να γίνει η παραδοχή πως ο χώρος είναι ανισότροπος, πως οι ιδιότητές του εξαρτώνται δηλαδή από την κατεύθυνση. Παρόλο που η ιδιότητα της ανισοτροπίας ήταν ήδη γνωστή από την εποχή του Green (μέσα 19ου αιώνα), λόγω της αυξημένης μαθηματικής πολυπλοκότητας που παρουσιάζει, μόνο τα τελευταία χρόνια εμφανίζεται σημαντικός αριθμός δημοσιεύσεων που ασχολούνται με την ανισότροπη σκέδαση, οι οποίες στην πλειοψηφία τους αναφέρονται μόνο σε ανισότροπο σκεδαστή.
Η παρούσα διατριβή ερευνά το πρόβλημα ανισότροπης σκέδασης βαθμωτών πεδίων για τη γενική περίπτωση, όπου όχι μόνο ο σκεδαστής αλλά και ο χώρος σκέδασης είναι ανισότροποι χώροι και μάλιστα έχουν διαφορετικά χαρακτηριστικά.
Όπως προκύπτει, τα χαρακτηριστικά του ανισότροπου μέσου μεταφέρονται πλήρως από έναν τροποποιημένο τελεστή κλίσης, ο οποίος εμφανίζεται σε κάθε περίπτωση ανισοτροπίας και μας επιτρέπει να βρούμε τη θεμελιώδη λύση της τροποποιημένης εξίσωσης Helmholtz. Δεδομένης της θεμελιώδους λύσης, τοποθετείται το βασικό πρόβλημα σκέδασης σε ανισότροπα μέσα όπως και οι συνθήκες διαπερατότητας καθώς και οι συνοριακές συνθήκες. Στη συνέχεια παρουσιάζεται η μορφή και οι ιδιότητες των προσπίπτοντων πεδίων και παράγονται τα συναρτησιακά ενέργειας για αυτό το πρόβλημα σκέδασης. Αναπτύσσονται οι ολοκληρωτικές αναπαραστάσεις για το σκεδαζόμενο, το ολικό και το εσωτερικό πεδίο, ενώ παράλληλα προκύπτει η τροποποιημένη συνθήκη ακτινοβολίας και με αυτό τον τρόπο ολοκληρώνεται η βασική θεωρία. Με ασυμπτωτική ανάλυση προκύπτει το ανισότροπο πλάτος σκέδασης και έπειτα ορίζονται οι ενεργειακές διατομές που αντιστοιχούν στην περίπτωση που εξετάζεται. Ακολούθως αποδεικνύονται τα θεωρήματα αμοιβαιότητας, το γενικευμένο και το οπτικό θεώρημα σκέδασης για τα ανισότροπα μέσα. Ως εφαρμογή παρουσιάζεται το πρόβλημα σκέδασης χαμηλών συχνοτήτων για έναν ανισότροπο διαπερατό σκεδαστή. Τέλος, όλο το πρόβλημα ανισότροπης σκέδασης ανάγεται στο αντίστοιχο του ισότροπου χώρου, προς επιβεβαίωση των αποτελεσμάτων. / Scattering theory covers a large spectrum of scientific and technological applications such as non destructive control, radars, sonar, geophysical exploration, remote sensing, medical imaging, under-water acoustics, seismology, biological pattern recognition and special techniques in medical diagnostics. In most of the above cases the assumption that the material is isotropic is inadequate. Therefore, in order to conform to reality, we have to accept that the space is anisotropic, i.e. its properties depend on the direction. Although the anisotropic property was already known, since Green’s era, only a few publications have appeared, due to the mathematical complexity related with the anisotropic property. It was during the last years that more references considered the anisotropic scattering, while most of them regarded only anisotropic scatterers.
The thesis examines the problem of scalar field anisotropic scattering for the general case, where not only the scatterer but also the propagation space are anisotropic and they do not have the same characteristics.
It comes out that the characteristics of an anisotropic medium are being fully carried by a modified gradient operator which appears in any case of anisotropy and allows the calculation of the fundamental solution for the modified Helmholtz’ equation. Once the fundamental solution is known, the basic problem of anisotropic scattering is postulated as well as the transmission and the boundary conditions. Incident fields’ forms and characteristics are being presented and the energy functional for this scattering problem is being produced. The integral representations for the scattered, total and internal field are also developed, while at the same time arises the modified radiation condition. Asymptotic analysis produces the anisotropic scattering amplitude and afterwards follows the definition of the energy functionals that correspond to our case. The reciprocity theorems, the general scattering, as well as the optical theorem for anisotropic medium are also proved. As an example, the theory developed in this thesis is applied to the low frequency problem for an anisotropic scatterrer. Finally, the results are verified by reducing the whole problem of anisotropic scattering to its equivalent of isotropic space.
|
Page generated in 0.1318 seconds