• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 35
  • 32
  • 23
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 273
  • 273
  • 273
  • 64
  • 50
  • 37
  • 36
  • 36
  • 34
  • 33
  • 31
  • 31
  • 31
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Fetal Origin of Chronic Immune Disease: Role of Prenatal Stress Challenge

Jago, Caitlin A. January 2012 (has links)
<p>NB: I had another committee member, Dr. Mark Larché; and would like to have his name included in the document.</p> <p>Thank you.</p> / <p><strong>Introduction: </strong>Increasing incidence of chronic immune diseases are mirrored by changing disease risk factors, which include maternal stress during pregnancy. To date, no studies have investigated the impact of prenatal stress challenge (PNS) on the fetal immune system. Fetal liver and bone marrow represent major sources of hematopoietic stem cells (HSC) at mid gestation, which differentiate and mature in the thymus. Disturbance of immune development may cause immune impairment in later life. Further, progesterone is recognized as a critical part of feto-maternal interaction. This study aimed to determine if PNS interferes with normal fetal immune development in mice and the impact of progesterone supplementation on stress effects. <strong>Methods: </strong>DBA/2J-mated BALB/c dams were sorted into three groups: control, PNS (gestation days (GDs) 12.5 and 14.5) and PNS plus progesterone supplementation (DHD). Fetal tissue was collected on GDs 16.5 and 18.5. Flow cytometric analysis examined frequency and phenotype of fetal immune cell populations: HSC in fetal liver and bone marrow, and different stages of T cell maturation and regulatory T (Treg) cells in the thymus. Fetal tails were collected to determine fetal sex by PCR analysis. <strong>Results: </strong>PNS induced a decrease in organ size on GD16.5, which was not seen on GD18.5 and was reversed by DHD treatment. PNS altered the percentage and absolute number of HSC within the liver and bone marrow populations, on GD16.5 and 18.5. There was a significant lag in T cell maturation as demonstrated by the altered expression of CD3 and skewed CD3-:CD3+ ratio. There was a significant decrease in Treg cells within CD3+ thymic cells in response to PNS. PNS effects in the thymus were ameliorated by DHD treatment. There was no PNS-induced sex bias. <strong>Conclusions: </strong>These results indicate that PNS compromises the developing fetal immune system, which could account for impaired immune responses in adults with chronic immune disease, and provide evidence for a therapeutic role of progesterone supplementation.</p> / Master of Science (MSc)
262

Characterization of ex vivo expanded human hematopoietic stem and progenitor cells

Ansari, Unain 04 1900 (has links)
Les cellules souches hématopoïétiques (CSH) sont des cellules souches adultes, responsables du maintien du système sanguin tout au long de la vie des vertébrés. Les CSH sont des cellules multipotentes spécialisées qui possèdent deux propriétés principales : leur capacité à se différencier en de multiples lignées et leur capacité à créer d'autres cellules souches (c'est-à-dire l'autorenouvellement). Grâce à ces caractéristiques, les CSH ont un énorme potentiel thérapeutique. En effet, la transplantation de CSH constitue à ce jour une option de choix pour le traitement de plusieurs maladies et troubles hématologiques. Les CSH ne se retrouvent que dans certains échantillons biologiques comme la moelle osseuse, les cellules mobilisées de la moelle osseuse dans le sang périphérique ou les cellules de sang de cordon ombilical. Les applications cliniques des CSH sont souvent limitées en raison de leur faible fréquence dans les échantillons biologiques, c’est pourquoi leur expansion ex vivo est un domaine de recherche en plein essor. Des approches basées sur des petites molécules pour amplifier le nombre les cellules couches ex vivo ont été testées avec succès pour permettre la prolifération des cellules et freiner leur différentiation. Notre groupe a contribué à ce domaine en identifiant la petite molécule UM171 qui peut amplifier les CSH ex vivo par reprogrammation épigénétique. Dans le cadre des efforts d’expansion ex vivo des CSH, un obstacle majeur est la caractérisation des cellules qui ont proliféré ex vivo afin d’évaluer de façon exhaustive le potentiel des greffons pour des applications ultérieures. La caractérisation phénotypique des CSH amplifiées ex vivo est une approche prometteuse pour aider à isoler et à purifier les cellules souches. Les travaux de cette thèse explorent l'association de l'immunophénotype à la fonctionnalité des cellules souches pour nous aider à définir l'hétérogénéité des cellules amplifiées. Au chapitre 2, en utilisant un profilage de cellules amplifiées basée sur le transcriptome, nous avons pu identifier CEACAM1 comme un nouveau marqueur fonctionnel des CSH. Concomitamment, au chapitre 3, nous appliquons une approche alternative basée sur le protéome de la surface cellulaire pour aider à caractériser le phénotype des cellules souches et progénitrices hématopoïétiques (CSPH) amplifiées ex vivo afin d'identifier GPA33 en comme marqueur probable de CSH. Les marqueurs de surface compatibles avec la culture constituent un excellent outil pour un isolement prospectif rapide et des manipulations in vitro et in vivo supplémentaires pour permettre une meilleure compréhension de la biologie des cellules souches. La caractérisation des HSPC expansées ex vivo est donc une tentative de combler le fossé et de permettre des stratégies thérapeutiques améliorées. / Hematopoietic stem cells (HSCs) are responsible for maintaining the blood system throughout the lifespan of vertebrates. HSCs are specialized multipotent cells that have two main properties – their ability to differentiate into multiple lineages and their ability to create more stem cells (i.e. self-renewal). Due to these special abilities, HSCs have tremendous therapeutic potential. HSCs thus to date are the best curative measure against most hematological malignancies and disorders. HSCs occur in limited frequency and can be found only from certain conserved sources like the bone marrow or mobilized cells from the bone marrow in the peripheral blood or umbilical cord blood cells. Clinical applications of HSCs are often restricted due to their low occurring frequencies, therefore ex vivo expansion is a growing research field. Small molecule-based approaches to expand stem cells ex vivo have been successfully tested to allow for proliferation of cells by curbing their differentiation. Our group has contributed to this field by the identification of the small molecule UM171 which can expand hematopoietic stem and progenitor cells (HSPCs) ex vivo via epigenetic reprogramming. To expand HSPCs ex vivo a major hurdle is the proper characterization of the ex vivo expanded cells to evaluate the full potential of grafts for further downstream applications. Phenotypic dissociation of ex vivo expanded HSPCs is a prospective tool to help isolate and purify stem cells. Identification of culture-compatible surface markers is therefore the first step to help characterize the ex vivo expanded cells. The work in this thesis explores the association of immunophenotype to the functionality of stem cells to help us delineate the heterogeneity of expanded cells. In Chapter 2, using transcriptome-based interrogation of expanded cells, we were able to identify CEACAM1 as a novel functional marker of HSCs. Whereas, in Chapter 3 we apply an alternative cell surface proteome-based approach to help characterize the phenotype of ex vivo expanded HSPCs to identify GPA33 as a probable HSC marker. Culture-compatible surface markers make for an excellent tool for rapid prospective isolation and additional in vitro and in vivo manipulations to allow a better understanding of stem cell biology. Characterization of ex vivo expanded HSPCs is thus an attempt to help bridge the gap and allow for enhanced therapeutic strategies.
263

Regulating stem cell fate within microenvironmental niches

Buglass, Surahanil Katrin January 2014 (has links)
Improving the repopulation potential of human umbilical cord blood (UCB) haemopoietic stem cells (HSCs) remains a paramount goal in HSC transplantation (HSCT) therapy. This implies enhancing the homing and engraftment potential of UCB-CD34+CD133+ cells to the bone marrow (BM). Although an array of molecules continues to be identified as ‘key’ homing molecules, the molecular mechanisms controlling HSC homing are still not fully understood. The regulatory implications of hypoxia in the BM, with the concomitant stabilisation of hypoxia inducible transcription factor-1α (HIF-1α), are becoming more apparent, yet at the commencement of this thesis no study had explored whether hypoxia induced signalling can be adopted to regulate the homing and engraftment of transplanted HSCs. The aim of this DPhil project was thus to investigate whether hypoxic conditions as detected in the BM influence the adhesion of UBC-CD133+ cells to osteoblasts, BM stromal cells and BM endothelial cells-60 (BMEC-60), as well as their transmigration towards chemokine SDF-1α across BMEC-60. Increasing the exposure of UCB-CD133+ cells to 1.5% O2 doubled the percentage of transmigrating cells (p<0.05), and while hypoxia stimulated UCB-CD133+ cells preferentially adhered to IL-1β stimulated BMEC-60, their adhesion to non-stimulated (BMEC-60) was significantly improved (p<0.001). To help unravel the underlying molecular mechanisms, we attempted to examine the potential involvement of hypoxia regulated scaffolding protein HEF-1/NEDD9/Cas-L (HEF-1) in the increased percentage of migrating UCB-CD133+ cells after hypoxia pre-conditioning. The role of HEF-1 in HSCs is unexplored, and its multifunctional contribution in a variety of processes including cell migration, attachment and invasion make HEF-1 a prime candidate as a contributing homing molecule. After identifying a suitable short-hairpin RNA (shRNA) sequence to knockdown HEF-1, generating lentiviral (LV)-particles in house and optimising transduction protocols, HEF-1 knockdown was achieved in haemopoietic model cell lines KG-1 and KG-1A (KG-1/KG-1A–HEF1). Significantly decreased KG-1A–HEF1 cell adhesion to non-stimulated BMEC-60 was detected. Together, these studies provide a promising platform to further explore the role of HEF-1 in hypoxia induced UCB-CD133+ cell transmigration towards the key homing molecule SDF-1α.
264

L'impact des cellules souches issues de la moelle sur la néovascularisation dans un modèle de souris de rétinopathie induite par l'oxygène

Blais, Martine 08 1900 (has links)
La rétinopathie induite par l’oxygène (RIO) est un modèle animal semblable aux rétinopathies vue chez l’homme. Dans ce modèle, une destruction des microvaisseaux rétiniens est suivie d’une néovascularisation pathologique qui chez l’homme peut mener à un détachement de la rétine et subséquemment une perte de vision. Afin de remédier à cette revascularisation anarchique, un traitement de cellules souches (hématopoïétiques et mésenchymateuses) a été effectué chez des souris soumises à ce modèle. Les cellules injectées ont pu migrer à la rétine et induire une revascularisation saine (surtout les cellules souches mésenchymateuses). L’injection du milieu de culture de ces cellules induit aussi une revascularisation semblable à celle vue chez les souris traitées avec les cellules indiquant que l’effet thérapeutique des cellules semble être accompli par l’entremise de facteurs paracrines. Ces résultats suggèrent que ces cellules peuvent jouer un rôle au niveau de l’angiogénèse et indiquent un potentiel thérapeutique pour les rétinopathies. / Oxygen induced retinopathy (OIR) is an animal model that mimics the developing phases of retinopathies seen in humans such as diabetic retinopathy and retinopathy of prematurity. An initial destruction of retinal microvasculature is followed by pathological neovascularization that can lead to retinal detachment in humans and therefore blindness. Utilizing bone marrow derived stem cells (mesenchymal and hematopoietic), we aimed to repopulate the retina with normal vessels which are affected in the OIR model. Cells injected into the vitreous migrated to the retina and reduced both the area of vasoobliteration and neovascularization. Injection of conditioned cell medium also induced proper vascular repair similar to that seen in mice injected with cells indicating that the cells therapeutic effect is achieved through paracrine action. These results suggest that bone marrow stem cells play a role in angiogenesis and could be a potential therapeutic aid in treating retinopathies.
265

Thérapie génique ciblant CD33 dans les cellules souches hématopoïétiques, une approche innovatrice pour le traitement de la leucémie myéloïde aiguë

Tremblay-Laganière, Camille 09 1900 (has links)
No description available.
266

L'impact des cellules souches issues de la moelle sur la néovascularisation dans un modèle de souris de rétinopathie induite par l'oxygène

Blais, Martine 08 1900 (has links)
La rétinopathie induite par l’oxygène (RIO) est un modèle animal semblable aux rétinopathies vue chez l’homme. Dans ce modèle, une destruction des microvaisseaux rétiniens est suivie d’une néovascularisation pathologique qui chez l’homme peut mener à un détachement de la rétine et subséquemment une perte de vision. Afin de remédier à cette revascularisation anarchique, un traitement de cellules souches (hématopoïétiques et mésenchymateuses) a été effectué chez des souris soumises à ce modèle. Les cellules injectées ont pu migrer à la rétine et induire une revascularisation saine (surtout les cellules souches mésenchymateuses). L’injection du milieu de culture de ces cellules induit aussi une revascularisation semblable à celle vue chez les souris traitées avec les cellules indiquant que l’effet thérapeutique des cellules semble être accompli par l’entremise de facteurs paracrines. Ces résultats suggèrent que ces cellules peuvent jouer un rôle au niveau de l’angiogénèse et indiquent un potentiel thérapeutique pour les rétinopathies. / Oxygen induced retinopathy (OIR) is an animal model that mimics the developing phases of retinopathies seen in humans such as diabetic retinopathy and retinopathy of prematurity. An initial destruction of retinal microvasculature is followed by pathological neovascularization that can lead to retinal detachment in humans and therefore blindness. Utilizing bone marrow derived stem cells (mesenchymal and hematopoietic), we aimed to repopulate the retina with normal vessels which are affected in the OIR model. Cells injected into the vitreous migrated to the retina and reduced both the area of vasoobliteration and neovascularization. Injection of conditioned cell medium also induced proper vascular repair similar to that seen in mice injected with cells indicating that the cells therapeutic effect is achieved through paracrine action. These results suggest that bone marrow stem cells play a role in angiogenesis and could be a potential therapeutic aid in treating retinopathies.
267

Contrôle de la dynamique de la leucémie myéloïde chronique par Imatinib / Control of the dynamics of chronic myeloid leukemia by Imatinib

Benosman, Chahrazed 18 November 2010 (has links)
Dans ce travail de recherche, nous sommes intéresses par la modélisation de l'hématopoïèse. Les cellules souches hématopoïétiques (CSH) sont des cellules indifférenciées de la moelle osseuse, possédant la capacité de se renouveler et de se différencier (pour la production des globules rouges, globules blancs et les plaquettes). Le processus de l'hématopoïèse souvent révèle des irrégularités qui causent les maladies hématologiques. En modélisant la leucémie myéloide chronique (LMC), une maladie hématologique fréquente, nous représentons l'hématopoïèse des cellules normales et cancéreuses par un système d'équations différentielles ordinaires (EDO). L'homéostasie des cellules normales et différente de l'homéostasie des cellules cancéreuses, et dépend de quelques lignées des cellules normales et cancéreuses. Nous analysons la dynamique globale du modèle pour obtenir les conditions de régénération de l'hématopoïèse ou bien la persistance de la LMC. Nous démontrons aussi que la coexistence des cellules normales et cancéreuses ne peut avoir lieu pour longtemps. Imatinib est un traitement de base de la LMC, avec un dosage variant de 400 à 1000 mg par jour. Certains patients présentent des réponses différentes à la thérapie, pouvant être hématologique, cytogénétique et moléculaire. La thérapie échoue dans deux cas: le patient demande un temps plus long pour réagir, alors il s'agit d'une réponse suboptimale; ou bien le patient résiste après une bonne réponse initiale. Pour déterminer le dosage optimal, nécessaire à la réduction des cellules cancéreuses, nous représentons les effets de la thérapie par un problème de contrôle optimal. Notre but est de minimiser le cout du traitement et le nombre des cellules cancéreuses. La réponse suboptimale, la résistance et le rétablissement sont alors obtenus suivant l'influence de l'imatinib sur les taux de division et de mortalité des cellules cancéreuses. Nous étudions par ailleurs l'hématopoïèse selon un modèle structuré en age, décrivant l'évolution des CSH normales et cancéreuses. Nous démontrons que le taux de division des CSH cancéreuses joue un rôle important dans la détermination du contrôle optimal. En contrôlant la croissance des cellules normales et cancéreuses avec compétition inter spécifique, nous démontrons que le dosage optimal dépend de l'homéostasie des CSH cancéreuses. / Modelling hematopoiesis represents a feature of our research. Hematopoietic stem cells (HSC) are undifferentiated cells, located in bone marrow, with unique abilities of self-renewal and differentiation (production of white cells, red blood cells and platelets).The process of hematopoiesis often exhibits abnormalities causing hematological diseases. In modelling Chronic Myeloid Leukemia (CML), a frequent hematological disease, we represent hematopoiesis of normal and leukemic cells by means of ordinary differential equations (ODE). Homeostasis of normal and leukemic cells are supposed to be different and depend on some lines of normal and leukemic HSC. We analyze the global dynamics of the model to obtain the conditions for regeneration of hematopoiesis and persistence of CML. We prove as well that normal and leukemic cells can not coexist for a long time. Imatinib is the main treatment of CML, with posology varying from 400 to 1000 mg per day. Some affected individuals respond to therapy with various levels being hematologic, cytogenetic and molecular. Therapy fails in two cases: the patient takes a long time to react, then suboptimal response occurs; or the patient resists after an initial response. Determining the optimal dosage required to reduce leukemic cells is another challenge. We approach therapy effects as an optimal control problem to minimize the cost of treatment and the level of leukemic cells. Suboptimal response, resistance and recovery forms are obtained through the influence of imatinib onto the division and mortality rates of leukemic cells. Hematopoiesis can be investigated according to age of cells. An age-structured system, describing the evolution of normal and leukemic HSC shows that the division rate of leukemic HSC plays a crucial role when determining the optimal control. When controlling the growth of cells under interspecific competition within normal and leukemic HSC, we prove that optimal dosage is related to homeostasis of leukemic HSC.
268

Model Based Analysis of Clonal Developments Allows for Early Detection of Monoclonal Conversion and Leukemia

Baldow, Christoph, Thielecke, Lars, Glauche, Ingmar 28 March 2017 (has links)
The availability of several methods to unambiguously mark individual cells has strongly fostered the understanding of clonal developments in hematopoiesis and other stem cell driven regenerative tissues. While cellular barcoding is the method of choice for experimental studies, patients that underwent gene therapy carry a unique insertional mark within the transplanted cells originating from the integration of the retroviral vector. Close monitoring of such patients allows accessing their clonal dynamics, however, the early detection of events that predict monoclonal conversion and potentially the onset of leukemia are beneficial for treatment. We developed a simple mathematical model of a self-stabilizing hematopoietic stem cell population to generate a wide range of possible clonal developments, reproducing typical, experimentally and clinically observed scenarios. We use the resulting model scenarios to suggest and test a set of statistical measures that should allow for an interpretation and classification of relevant clonal dynamics. Apart from the assessment of several established diversity indices we suggest a measure that quantifies the extension to which the increase in the size of one clone is attributed to the total loss in the size of all other clones. By evaluating the change in relative clone sizes between consecutive measurements, the suggested measure, referred to as maximum relative clonal expansion (mRCE), proves to be highly sensitive in the detection of rapidly expanding cell clones prior to their dominant manifestation. This predictive potential places the mRCE as a suitable means for the early recognition of leukemogenesis especially in gene therapy patients that are closely monitored. Our model based approach illustrates how simulation studies can actively support the design and evaluation of preclinical strategies for the analysis and risk evaluation of clonal developments.
269

PAK1's regulation of eosinophil migration and implications for asthmatic inflammation

Mwanthi, Muithi 19 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / More than 300 million people world-wide suffer from breathlessness, wheezing, chest tightness, and coughing characteristic of chronic bronchial asthma, the global incidence of which is on the rise. Allergen-sensitization and challenge elicits pulmonary expression of chemoattractants that promote a chronic eosinophil-rich infiltrate. Eosinophils are increasingly recognized as important myeloid effectors in chronic inflammation characteristic of asthma, although few eosinophil molecular signaling pathways have successfully been targeted in asthma therapy. p21 activated kinases (PAKs), members of the Ste-20 family of serine/threonine kinases, act as molecular switches in cytoskeletal-dependent processes involved in cellular motility. We hypothesized that PAK1 modulated eosinophil infiltration in an allergic airway disease (AAD) murine model. In this model, Pak1 deficient mice developed reduced inflammatory AAD responses in vivo with notable decreases in eosinophil infiltration in the lungs and broncho-alveolar lavage fluids (BALF). To test the importance of PAK1 in hematopoietic cells in AAD we used complementary bone marrow transplant experiments that demonstrated decreased eosinophil inflammation in hosts transplanted with Pak1 deficient bone marrow. In in vitro studies, we show that eotaxin-signaling through PAK1 facilitated eotaxin-mediated eosinophil migration. Ablating PAK1 expression by genetic deletion in hematopoietic progenitors or siRNA treatment in derived human eosinophils impaired eotaxin-mediated eosinophil migration, while ectopic PAK1 expression promoted this migration. Together these data suggest a key role for PAK1 in the development of atopic eosinophil inflammation and eotaxin-mediated eosinophil migration.
270

Defining the mechanism of prostaglandin E₂-enhanced hematopoietic stem and progenitor cell homing

Speth, Jennifer M. 02 April 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for a number of hematological disorders. However, to be effective, transplanted HSCs must efficiently “home” to supportive niches within the bone marrow. Limited HSC number and poor function are complications of transplant in some circumstances, and can lead to delayed engraftment and immune reconstitution, or in some cases, bone marrow failure. Enhancing HSC homing is a strategy to improve stem cell transplantation efficiency. We have previously shown that ex vivo treatment of mouse or human HSCs with 16-16 dimethyl PGE2 (dmPGE2) increases their bone marrow homing efficiency and engraftment, resulting in part from upregulation of surface CXCR4 expression. We now show that pulse-treatment of mouse or human HSPCs with dmPGE2 stabilizes HIF1α in HSPCs, and that similar treatment with the hypoxia mimetic DMOG produces analogous effects to dmPGE2 on HSPC CXCR4 expression and homing. This suggests that HIF1α is responsible for PGE2’s enhancing effects on HSPCs. Pharmacological inhibition of HIF1α stabilization in vitro with Sodium Nitroprusside (SNP), confirms the requirement of HIF1α for dmPGE2-enhanced migration and CXCR4 upregulation. Additionally, we confirm the requirement for HIF1α in dmPGE2-enhanced in vivo homing using a conditional knockout mouse model of HIF1α gene deletion. Finally, we validate that the hypoxia response element located 1.3kb from the transcriptional start site within the CXCR4 promoter is required for enhanced CXCR4 expression after PGE2 treatment. Interestingly, we also observe an increase in the small GTPase Rac1 after dmPGE2 treatment, as well as a defect in PGE2-enhanced migration and CXCR4 expression in Rac1 knockout HSPCs. Using state-of-the-art imaging technology we, confirm an increase in Rac1 and CXCR4 colocalization after dmPGE2 treatment that likely explains enhanced sensitivity of PGE2-treated HSPCs to SDF-1. Taken together, these results define a precise mechanism through which ex vivo pulse treatment of HSPC with dmPGE2 enhances HSPC function through alterations in cell motility and homing, and describe a role for hypoxia and HIF1α in enhancement of hematopoietic transplantation.

Page generated in 0.0811 seconds