• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 75
  • 72
  • 32
  • 28
  • 16
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 575
  • 575
  • 304
  • 242
  • 71
  • 70
  • 66
  • 57
  • 54
  • 48
  • 48
  • 47
  • 46
  • 46
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Identification systématique des microARNs impliqués dans les relations virus-hôte au cours de l'infection par le virus de l'hépatite C / Systematic identification of miRNAs involved in virus-host interaction during HCV infection

Pernot, Sophie 30 November 2015 (has links)
Le virus de l'hépatite C (HCV) est responsable de maladies chroniques du foie et l'une des principales causes de développement du carcinome hépatocellulaire (HCC). Cependant, les mécanismes moléculaires qui permettent le développement d’un HCC suite à une infection chronique par le HCV restent incompris. Les microARN (miR), de petits ARNs non codants qui régulent l'expression des gènes au niveau post-transcriptionnel, sont connus pour jouer un rôle important dans l'homéostasie cellulaire du foie. De plus en plus d’études suggèrent que l'infection par le HCV induit la modification de réseaux intracellulaires impliquant les miRs hépatiques contribuant au développement des lésions du foie, y compris le HCC. En utilisant des techniques d'analyse systématiques, nous avons identifié des miRs qui modulent le cycle viral du HCV mais également des miRs modulés lors de l'infection par le HCV. Cette analyse globale des interactions entre les miRs de l'hôte et le HCV améliore les connaissances actuelles sur les interactions entre le HCV et l’hôte qui contribuent vraisemblablement à la tumorigenèse dans le foie, et ouvre des perspectives pour de potentielles nouvelles approches pour prévenir et/ou traiter le HCC chez les patients infectés par le HCV. / Hepatitis C virus (HCV)-induced chronic liver disease is one of the leading causes of hepatocellular carcinoma (HCC). However, the molecular mechanisms that enable HCC development following chronic HCV infection remain poorly understood. MicroRNAs (miRs), small non coding RNAs that regulate gene expression at a post-transcriptional level have been reported to play an important role in cellular homeostasis within the liver. Increasing evidence suggests that HCV infection induces alteration of intrahepatic miR networks and that deregulation of miRs contributes to liver disease including HCC. Using high-throughput screening and RNA sequencing, we identified miRs that modulate the HCV life cycle and miRs that are modulated upon HCV infection. This comprehensive analysis of the HCV-host miR network improves the current knowledge of the HCV-host interactions that likely contribute to tumorigenesis in the liver and opens perspectives for novel potential approaches to prevent and/or treat HCC in HCV-infected patients.
312

Development of a Hepatitis C Virus knowledgebase with computational prediction of functional hypothesis of therapeutic relevance

Kojo, Kwofie Samuel January 2011 (has links)
Philosophiae Doctor - PhD / To ameliorate Hepatitis C Virus (HCV) therapeutic and diagnostic challenges requires robust intervention strategies, including approaches that leverage the plethora of rich data published in biomedical literature to gain greater understanding of HCV pathobiological mechanisms. The multitudes of metadata originating from HCV clinical trials as well as low and high-throughput experiments embedded in text corpora can be mined as data sources for the implementation of HCV-specific resources. HCV-customized resources may support the generation of worthy and testable hypothesis and reveal potential research clues to augment the pursuit of efficient diagnostic biomarkers and therapeutic targets. This research thesis report the development of two freely available HCV-specific web-based resources: (i) Dragon Exploratory System on Hepatitis C Virus (DESHCV) accessible via http://apps.sanbi.ac.za/DESHCV/ or http://cbrc.kaust.edu.sa/deshcv/ and (ii) Hepatitis C Virus Protein Interaction Database (HCVpro) accessible via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. DESHCV is a text mining system implemented using named concept recognition and cooccurrence based approaches to computationally analyze about 32, 000 HCV related abstracts obtained from PubMed. As part of DESHCV development, the pre-constructed dictionaries of the Dragon Exploratory System (DES) were enriched with HCV biomedical concepts, including HCV proteins, name variants and symbols to enable HCV knowledge specific exploration. The DESHCV query inputs consist of user-defined keywords, phrases and concepts. DESHCV is therefore an information extraction tool that enables users to computationally generate association between concepts and support the prediction of potential hypothesis with diagnostic and therapeutic relevance. Additionally, users can retrieve a list of abstracts containing tagged concepts that can be used to overcome the herculean task of manual biocuration. DESHCV has been used to simulate previously reported thalidomide-chronic hepatitis C hypothesis and also to model a potentially novel thalidomide-amantadine hypothesis. HCVpro is a relational knowledgebase dedicated to housing experimentally detected HCV-HCV and HCV-human protein interaction information obtained from other databases and curated from biomedical journal articles. Additionally, the database contains consolidated biological information consisting of hepatocellular carcinoma (HCC) related genes, comprehensive reviews on HCV biology and drug development, functional genomics and molecular biology data, and cross-referenced links to canonical pathways and other essential biomedical databases. Users can retrieve enriched information including interaction metadata from HCVpro by using protein identifiers, gene chromosomal locations, experiment types used in detecting the interactions, PubMed IDs of journal articles reporting the interactions, annotated protein interaction IDs from external databases, and via “string searches”. The utility of HCVpro has been demonstrated by harnessing integrated data to suggest putative baseline clues that seem to support current diagnostic exploratory efforts directed towards vimentin. Furthermore, eight genes comprising of ACLY, AZGP1, DDX3X, FGG, H19, SIAH1, SERPING1 and THBS1 have been recommended for possible investigation to evaluate their diagnostic potential. The data archived in HCVpro can be utilized to support protein-protein interaction network-based candidate HCC gene prioritization for possible validation by experimental biologists. / South Africa
313

Prediction of interacting motifs within the protein subunits of Picornavirus capsids

Ross, Caroline Jane January 2015 (has links)
The Picornaviridae family contains a number of pathogens which are economically important including Poliovirus, Coxsakievirus, Hepatitis A Virus, and Foot-and-Mouth-Disease-Virus. Recently the emergence of novel picornaviruses associated with gastrointestinal, neurological and respiratory diseases in humans has been reported. Although effective vaccines for viruses such as FMDV, PV and HAV have been developed there are currently no antivirals available for the treatment of picornavirus infections. Picornaviruses proteins are classified as: the structural proteins VP1, VP2, VP3 and VP4 which form the subunits of the viral capsid and the replication proteins which function as proteases, RNA-polymerases, primers and membrane binding proteins. Although the host specificity and viral pathogenicity varies across members of the family, the icosahedral capsid is highly conserved. The capsid consists of 60 protomers, each containing a single copy of VP1, VP2 and VP3. A fourth capsid protein, VP4, resides on the internal side of the capsid. Capsid assembly is integral to life-cycle of picornaviruses; however the process is complex and not fully-understood. The overall aim of the study was to broaden the understanding of the evolution and function of the structural proteins across the Picornaviridae family. Firstly a comprehensive analysis of the phylogenetic relationships amongst the individual structural proteins was performed. The functions of the structural proteins were further investigated by an exhaustive motif analysis. A subsequent structural analysis of highly conserved motifs was performed with respect to representative enteroviruses, Foot-and-Mouth-Disease-Virus and Theiler’s Virus. This was supplemented by the in silico prediction of interacting residues within the crystal structures of these protomers. Findings in this study suggest that the capsid proteins may be evolving independently from the replication proteins through possible inter-typic recombination of functional protein regions. Moreover the study predicts that protomer assembly may be facilitated through a network of multiple subunit-subunit interactions. Multiple conserved motifs and principle residues predicted to facilitate capsid subunit-subunit interactions were identified. It was also concluded that motif conservation may support the theory of inter-typic recombination between closely related virus sub-types. As capsid assembly is critical to the viral life-cycle, the principle interacting motifs may serve as novel drug targets for the antiviral treatment of picornavirus infections. Thus the findings in the study may be fundamental to the development of treatments which are more economically feasible or clinically effective than current vaccinations.
314

Interaction Of Human La Protein With The Internal Ribosome Entry Site Of Hepatitis C Virus : Functional Role In Mediating Internal Initiation Of Translation

Pudi, Renuka 07 1900 (has links) (PDF)
No description available.
315

Hepatitis Delta Virus: Identification of Host Factors Involved in the Viral Life Cycle, and the Investigation of the Evolutionary Relationship Between HDV and Plant Viroids

Sikora, Dorota January 2012 (has links)
Hepatitis delta virus (HDV) is the smallest known human RNA pathogen. It requires the human hepatitis B virus (HBV) for virion production and transmission, and is hence closely associated with HBV in natural infections. HDV RNA encodes only two viral proteins - the small and the large delta antigens. Due to its limited coding capacity, HDV needs to exploit host factors to ensure its propagation. However, few human proteins are known to interact with the HDV RNA genome. The current study has identified several host proteins interacting with an HDV-derived RNA promoter by multiple approaches: mass spectrometry of a UV-crosslinked ribonucleoprotein complex, RNA affinity chromatography, and screening of a library of purified RNA-binding proteins. Co-immunoprecipitation, both in vitro and ex vivo, confirmed the interactions of eEF1A1, p54nrb, PSF, hnRNP-L, GAPDH and ASF/SF2 with both polarities of the HDV RNA genome. In vitro transcription assays suggested a possible involvement of eEF1A1, GAPDH and PSF in HDV replication. At least three of these proteins, eEF1A1, GAPDH and ASF/SF2, have also been shown to associate with potato spindle tuber viroid (PSTVd) RNA. Because HDV’s structure and mechanism of replication share many similarities with viroids, subviral helper-independent plant pathogens, I transfected human hepatocytes with RNA derived from PSTVd. Here, I show that PSTVd RNA can replicate in human hepatocytes. I further demonstrate that a mutant of HDV, lacking the delta antigen coding region (miniHDV), can also replicate in human cells. However, both PSTVd and miniHDV require the function of the small delta antigen for successful replication. Our discovery that HDV and PSTVd RNAs associate with similar RNA-processing pathways and translation machineries during their replication provides new insight into HDV biology and its evolution.
316

Role of RNA Genome Structure and Paraspeckle Proteins In Hepatitis Delta Virus Replication

Beeharry, Yasnee January 2016 (has links)
The Hepatitis Delta Virus (HDV) is an RNA pathogen that uses the host DNA-dependent RNA polymerase II (RNAP II) to replicate. Previous studies identified the right terminal domain of genomic polarity (R199G) of HDV RNA as an RNAP II promoter, but the features required for HDV RNA to be used as an RNA promoter were unknown. In order to identify the structural features of an HDV RNA promoter, I analyzed 473,139 sequences representing 2,351 new R199G variants generated by high-throughput sequencing of a viral population replicating in 293 cells. To complement this analysis, I also analyzed the same region from HDV sequences isolated from various hosts. Base pair covariation analysis indicates a strong selection for the rod-like conformation. Several selected RNA motifs were identified, including a GC-rich stem, a CUC/GAG motif and a uridine at the initiation site of transcription. In addition, a polarization of purine/pyrimidine content was identified, which might represent a motif favourable for the binding of the host Polypyrimidine tract-binding protein-associated-splicing-factor (PSF), p54 and Paraspeckle Protein 1 (PSP1). Previously, it was shown that R199G binds both RNAP II and PSF, that PSF increased the HDV levels during in vitro transcription and that p54 binds R199G. In the present study, I showed that PSP1 also associates with HDV RNA and I investigated whether these proteins are required for HDV replication. My results show that knockdown of PSF, p54 and PSP1 resulted in a decrease of HDV accumulation. These proteins are highly concentrated in paraspeckles, which are nuclear structures involved in storage of transcripts generated by RNAP II. I found that upon viral replication in 293 cells, PSP1 appeared as bigger foci present outside of the nucleus, while PSF and p54 foci remained in the nucleus. NEAT1 is a long non-coding RNA essential for the formation of paraspeckles. Upon HDV replication, I found an increase of the intensity and size of NEAT1 foci that correlates with an increase of NEAT1 transcripts. Altogether, these data suggest that HDV replication results in an alteration of the paraspeckles structures, providing foundation for further investigation of the paraspeckles role in HDV cycle. Overall, the present study addresses the importance of the HDV RNA structure and of the host paraspeckle proteins for HDV replication.
317

Caractérisation des interactions du virus de l'hépatite C avec les protéoglycanes à héparane sulfate / Characterization of Hepatitis C Virus interaction with heparan sulfate proteoglycans

Xu, Yan 16 September 2014 (has links)
L’entrée du virus de l’hépatite C (VHC) dans les hépatocytes est un événement multi-étapes complexe, impliquant un certain nombre de facteurs cellulaires. Elle est initiée par la fixation des particules virales sur des structures d’héparanes sulfates (HS) présentes à la surface de l’hépatocyte. Cette étape initiale reste cependant peu comprise. En effet, en raison de l’interaction de la particule virale du VHC avec des lipoprotéines, la contribution exacte des différents composants du virion à cette interaction reste controversée. Au cours de cette thèse, nous avons étudié le rôle potentiel de protéines d'enveloppe du VHC et de l'apolipoprotéine E dans l'étape de liaison aux HS. Nous avons d’abord montré que la délétion de la région hypervariable 1 (HVR1), une région précédemment proposée pour participer à l’interaction avec les HS, n'avait aucun effet sur la liaison du virion aux HS, indiquant que cette région n'est pas impliquée dans cette interaction. Nous avons également utilisé des anticorps monoclonaux neutralisants reconnaissant différentes régions des glycoprotéines d'enveloppe du VHC dans un test de compétition utilisant des billes d’agarose couplées à l’héparine, un homologue structural des HS, pour précipiter le virus. Bien que les glycoprotéines d’enveloppe du VHC dissociées de la particule virale interagissaient avec l'héparine, aucun de ces anticorps n’était capable d'interférer avec l'interaction entre la particule virale et l’héparine, suggérant fortement que les glycoprotéines d'enveloppe du VHC présente à la surface des virions ne sont pas accessibles pour interagir avec les HS. En revanche, nos résultats d’études cinétiques, d’interaction avec l’héparine ainsi que les expériences d'inhibition avec des anticorps anti-apolipoprotéine E indiquent que cette apolipoprotéine joue un rôle majeur dans l'interaction initiale entre le VHC et les HS. Enfin, la caractérisation des déterminants structuraux des HS nécessaires à l'infection par le VHC, à l’aide d’ARN interférents ciblant des enzymes impliquées dans la voie de biosynthèse des HS et par compétition avec des héparines modifiées, indique que la N-sulfatation et la 6-O-sulfatation sont nécessaires pour l’initiation de l'infection par le VHC. Par contre la 2-O-sulfatation n’est pas indispensable pour l’étape d’entrée cellulaire du VHC. Enfin, nous avons également montré que la taille minimale des oligosaccharides d’HS requise pour l'infection par le VHC est un decasaccharide. En conclusion, l’ensemble de ces données indique que le VHC détourne l'apolipoprotéine E pour initier son interaction avec des structures d’HS spécifiques. / Hepatitis C virus (HCV) entry into hepatocytes is a complex multistep process involving a series of cellular factors. HCV entry is initiated by the binding of viral particles to cell surface heparan sulfate (HS) structures. However, due to the lipoprotein-like structure of HCV, the exact contribution of virion components to this interaction remains controversial. Here, we investigated the relative contribution of HCV envelope proteins and apolipoprotein E in the HS-binding step. Deletion of hypervariable region 1, a region previously proposed to be involved in HS-binding, did not alter HCV virion binding to HS, indicating that this region is not involved in this interaction. Neutralizing monoclonal antibodies recognizing different regions of HCV envelope glycoproteins were also used in a pull-down assay with beads coated with heparin, a close HS structural homologue. Although isolated HCV envelope glycoproteins could interact with heparin, none of these antibodies was able to interfere with virion-heparin interaction, strongly suggesting that, at the virion surface HCV envelope glycoproteins are not accessible for HS binding. In contrast, results from kinetic studies, heparin pull-down and inhibition experiments with anti-apolipoprotein E antibodies indicate that this apolipoprotein plays a major role in HCV-HS interaction. Finally, characterization of HS structural determinants required for HCV infection by silencing enzymes involved in the HS biosynthesis pathway and by competition with modified heparin indicated that N- and 6-O-sulfation but not 2-O-sulfation are required for HCV infection, and that the minimum HS oligosaccharide length required for HCV infection is a decasaccharide. Together, these data indicate that HCV hijacks apolipoprotein E to initiate its interaction with specific HS structures.
318

Implication du gène core dans l'accumulation de l'ADN circulaire clos de façon covalente du virus de l'hépatite B / Implication of core gene in hepatitis B virus covalently closed circular DNA accumulation

Fournier, Maëlenn 04 April 2014 (has links)
La particularité de ce virus de l'hépatite B est la synthèse d'un ADN circulaire clos covalent (ADNccc) qui est la forme de persistance du virus dans la cellule. Cet ADN est maintenu à une copie par cellule en moyenne chez l'homme grâce à un recyclage des nucléocapsides dans le noyau. En effet, durant le cycle viral, les nucléocapsides sont soit redirigées dans le noyau pour former de l'ADNccc, soit enveloppées puis sécrétées pour former de nouveaux virions. Du fait de son maintien au sein de l'hépatocyte, la formation et la régulation de l'ADNccc restent des éléments clés du traitement antiviral. Il a été montré in vitro que l'accumulation de cet ADN était régulée par les protéines d'enveloppe. Lors de l'étude du taux d'ADNccc dans des biopsies de foie de patients coinfectés HIV-HBV chronique, il a été découvert un patient présentant 300 fois plus d'ADNccc intrahépatique que la moyenne de la cohorte. L'objectif de ma thèse a été de comprendre quel était le mécanisme conduisant à cette accumulation d'ADNccc in vivo. Cela nous a permis de mettre en évidence le rôle du gène core dans l'accumulation de l'ADNccc / The feature of hepatitis B virus is the synthesis of a covalently closed circular DNA (cccDNA) which is the persistence form of the virus in cell. cccDNA is maintained to 1 copy per human cell thanks to the recycling of capsids into the nucleus. Indeed, during the viral cycle, capsids are either transported into the nucleus to form cccDNA or enveloped and secreted to form new infectious virions. Because of its maintenance in the hepatocyte, cccDNA formation and regulation are still key elements of antiviral treatment. It has been shown that, in vitro, cccDNA accumulation was regulated by envelope proteins. Upon the study of cccDNA levels in liver biopsies of HIV-HBV co-infected patients, an individual with a cccDNA level 300 fold higher than the average of the cohort was identified. My thesis objective was to understand which is the mechanism leading to the cccDNA accumulation observed in vivo. This allowed us to highlight the role of core gene in cccDNA accumulation
319

Import nucléaire de la capside du virus de l’hépatite B et libération du génome viral / Nuclear Import of the Hepatitis B virus and release of the viral genome

Delaleau, Mildred 09 December 2011 (has links)
Le virus de l’hépatite B (VHB) est un virus du foie qui cause 1 à 2 millions de morts chaque année. Approximativement 400 millions d’individus sont infectés chroniquement. Le VHB est un virus enveloppé et comprend un génome ADN de ~3.2 kbp au sein d’une capside icosaédrique. La capside est formée de 240 copies d’une protéine unique appelée Core ou protéine de la capside. Durant l’infection, la capside est importée dans le noyau pour libérer le génome viral. L’import est facilité au travers du complexe du pore nucléaire (NPC) en utilisant des récepteurs de transport nucléaire. Des biopsies réalisées sur des patients infectés par le VHB ont montrées que les capsides nucléaires sont issues de l’entrée nucléaire mais aussi de protéines Core nouvellement traduites.Ce travail analyse l’import nucléaire de la capside du VHB et la libération du génome viral. Nous avons montré que les imports des protéines Core et de la capside suivent des systèmes d’import différents. Il a été démontré à partir de tests d’import nucléaire basés sur des cellules perméabilisées par la digitonine que les capsides utilisent l’hétérodimère des importines α et β. Cette découverte est en accord avec de précédentes observations qui ont également démontrées l’exposition de NLS à la surface de la capside, sur lequel s’attache l’importine α. Des expériences de contrôle utilisant le GST-NLS ont permis de démontrer que la fixation du NLS sur l’importine nécessite une interaction avec l’importine  pour la stabilisation du complex de l’import. En analysant l’import nucléaire de la protéine Core non assemblée, nous avons pu observer un import basé uniquement sur l’interaction avec l’importine β, ce qui implique que la protéine Core présente un domaine IBB et non un NLS. Le transport a travers le NPC se termine par l’arrivée des capsides dans le panier nucléaire, qui est une structure en cage, du côté nucléaire. En accord avec la littérature, nous avons observé une liaison de l’importine β sur le domaine C-terminal de la Nup153. L’ajout de RanGTP, qui dissocie les complexes d’import, ne dissocie pas l’importine β de ce domaine, ce qui permet d’émettre l’hypothèse qu’un autre domaine de la Nup153 est impliqué. Contrairement aux autres cargos, la capside du VHB est stoppée dans le panier nucléaire par sont interaction avec la Nup153. Puisque le domaine de liaison de l’importine β chevauche celui de la capside, l’importine β doit se dissocier de la Nup153. L’interaction capside-Nup153 est supposée déstabiliser la capside et permettre la libération du génome viral dans le noyau et la diffusion des protéines Core en supériorité numérique par rapport à la Nup153.En conséquence, les capsides montrent une instabilité, comme nous l’avons démontré par chromatographie d’exclusion de taille, révélant non seulement la capside mais aussi ses intermédiaires d’association/dissociation. Ces expériences sont limitées aux capsides recombinantes car elles nécessitent une grande quantité d’échantillons. Dans le but de confirmer l’instabilité des autres capsides (matures et immatures), nous avons analysé l’accessibilité des acides nucléiques encapsidés pour la nucléase S7. Les résultats ont confirmé une dissociation in vitro partielle pour toutes les capsides, mais avec une cinétique lente, ce qui n’est pas cohérent avec la réaction in vivo. En analysant l’impact de la Nup153 sur cette accessibilité, nous observons qu’un facteur nucléaire supplémentaire, présent du moins dans les cellules hépatiques, accélère la cinétique de dissociation. / The hepatitis B virus (HBV) is a hepatotropic virus which causes 1 to 2 million of death every year. Approximately 400 million individuals are chronically infected. HBV is enveloped and comprises a DNA genome of ~3.2 kbp within an icosaedral capsid. The capsid is formed by 240 copies of one single protein species termed core or capsid protein. During the infection, the capsid is imported to the nucleus in order to release the viral genome. The import is facilitated through the nuclear pore complex (NPC) using nuclear transport receptors. Biopsies of HBV-infected patients show nuclear capsids, which are derived from nuclear entry of the capsid but also from nuclear import of progeny core proteins.This work investigates the nuclear import of the HBV capsid and the release of the viral genome. We showed that the imports of core protein and capsid follow different pathways. Capsids were shown to use the heterodimer of importin α and β for nuclear import as it was demonstrated by nuclear import essay, based on digitonin-permeabilised cells. This finding is consistent with earlier observations, which also demonstrated the exposure of NLS on the capsid surface, to which importin  attaches. Control experiments using GST-NLS demonstrated that binding of the NLS to importin  required interaction with importin  for stabilization of the import complex. Analysing the nuclear import of the unassembled core protein we observed an import based on interaction with only importin β implying that the core protein expose an importin -binding domain rather than an NLS.The transport through the NPC is terminated with the arrival of a cargo capsid in the nuclear basket, which is a cage like structure at the nuclear side of the NPC. Consistent with the literature we observed an attachment of importin  to the C terminal domain of Nup153. Addition of RanGTP, which dissociates import complexes, did not dissociate importin  from this domain, which led to the hypothesis that other Nup153 domains are involved. In contrast to other karyophilic cargos HBV capsids become arrested within the nuclear basket by capsid-Nup153 interaction. As the binding site of importin overlaps with the binding site of the capsid such importin -Nup153 interaction has to be dissociated. The subsequent capsid-Nup153 interaction was thought to destabilize the capsid allowing liberation of the viral genome into the nuclear and the diffusion of core proteins, supernumerous with regard to the Nup153 molecules, deeper into the nucleus. Accordingly, capsids show an imminent instability as we demonstrated by separation of capsids using size exclusion chromatography revealing not only capsids but assembly/disassembly intermediates. These experiments were limited to recombinant, E. coli-expressed due to the high amounts needed. To confirm the instability of other capsids e.g. genome-containing ones, we analyzed the accessibility of the capsid enclosed nucleic acids to the S7 nuclease. The results confirmed partial dissociation in vitro similar for all capsids but with a slow kinetic, which is not coherent with the in vivo reaction. Investigating the impact of Nup153 we observed that an additional nuclear factor, present in at least hepatoma cells accelerates the dissociation kinetic.
320

The Scavenger Receptor B1 is a multifunctional HCV entry factor / Le « Scavenger Récepteur B1 » est un facteur multifonctionnel de l'entrée cellulaire pour le virus de l'hépatite C

Dao Thi, Viet Loan 13 October 2011 (has links)
L’entrée cellulaire du virus de l’Hépatite C (VHC) est un processus complexe qui met en jeu plusieurs facteurs cellulaires. L’un d’eux est un récepteur des lipoprotéines, le « Scavenger Récepteur B1 » (SR-BI). SR-BI a initialement été proposé comme récepteur viral de par son interaction avec la glycoprotéine (GP) E2 du VHC. L’importance de SR-BI pour l’entrée cellulaire du VHC n’était, jusqu’alors suggérée que par des preuves indirectes. En outre, les mécanismes par lesquels SR-BI permet l’entrée du VHC restent peu connus. Néanmoins, grâce à l’identification de cellules hépatiques présentant un très faible niveau d’expression - non détectable - de ce récepteur et devenant susceptibles à l’infection par le VHC par l’expression ectopique de SR-BI, nous avons clairement démontré que SR-BI est indispensable pour l’entrée du VHC. Afin d’étudier le rôle de SR-BI dans l’entrée cellulaire du VHC, qui présente une singulière hétérogénéité en terme de propriétés biochimiques et de composition en protéines cellulaires intégrées à la surface des particules virales, celles-ci ont été séparées par centrifugation analytique en gradient de densité. Nous avons ainsi défini trois fonctions de SR-BI permettant l’entrée de sous-populations du VHC. D’un part, une fonction d’attachement, correspondant à la capture des particules de densités intermédiaires à la surface cellulaire. Cet attachement résulte de l’interaction entre SR-BI et des composants des lipoprotéines présents à la surface des particules virales, sans mettre en jeu d’interaction avec les GP virales. D’autre part, nous avons défini une fonction d’accès, requise pour toutes les sous-populations du VHC. Cette fonction, elle aussi indépendante de l’interaction directe entre la GP E2 et SR-BI, requiert la fonction physiologique de transfert de lipides de SR-BI. En effet, le blocage de cette fonction de transfert à l’aide de molécules inhibitrices ou par insertion de mutations invalidantes de SR-BI réduit significativement l’entrée du VHC. Enfin, nous avons mis en évidence une troisième fonction, appelée fonction de stimulation, nécessitant l’interaction de la GP E2 et SR-BI, ainsi que la fonction de transfert lipidique deSR-BI et qui, par ailleurs, est régulée par des composants des lipoprotéines. Par l’analyse fonctionnelle de mutants, nous avons défini des déterminants viraux, dans la région HVR1 à l’extrémité N-terminale de la GP E2, et cellulaires, dans la partie N-terminale de SR-BI, critiques pour l’interaction entre E2 et SR-BI et, par conséquent, régulent la fonction destimulation. En conclusion, nous avons démontré que le VHC exploite SR-BI de diverses façons et via des interactions à la fois avec des composants viraux et cellulaires incorporés dans les particules du VHC et ainsi permet l’entrée de particules virales très hétérogènes. / Hepatitis C virus (HCV), which is characterised by its highly heterogeneous biophysical properties, is thought to enter the cell in a slow and multistep manner involving several cell surface molecules. One of these cellular molecules is the Scavenger Receptor B1 (SR-BI), which was identified as an HCV receptor due to its interaction with the HCV glycoprotein E2.Until now, the exact usage of SR-BI by HCV and SR-BI mediated mechanism during cell entry remained unknown. In order to understand SR-BI functions during HCV cell entry, we wanted to study (1) the relevance of HCV E2 binding to SR-BI, (2) the implication of the physiological function of SR-BI itself and (3) how SR-BI mediates cell entry of heterogeneous HCV particles. Owing to the identification of two cell lines that express very low levels of endogenous SRBI, receptor complementation assays revealed, that the ectopic expression of SR-BI is indispensible for HCV entry. Accordingly, we showed for the first time, that SR-BI is an essential HCV entry factor. In order to study HCVcc populations that differ in biophysical properties and host protein composition, we separated them by density gradient analysis and assigned three different SR-BI functions to entry of particular HCV sub-populations. First, an attachment function, that leads to the initial capture of HCV particles of intermediate densities to the cell surface. This attachment function is mediated by an interaction between SR-BI and lipoprotein components on the viral particles but not by the viral glycoproteins. Second, we defined an access function, which is important for all different HCV sub-populations. This access function is also not dependent on the interaction between HCV E2 and SR-BI but involves the physiological function of the receptor. Blocking the lipid transfer function of SRBI upon either mutation or by a specific inhibitor abrogated strongly HCV entry. Finally we defined a third function of SR-BI, that we call enhancement function. This function is triggered upon E2-SR-BI interaction, is dependent on lipoprotein components and involves the lipid transfer function of SR-BI. Upon functional mutagenesis studies, we identified as critical determinants HVR1 (Hypervariable Region 1) residues in E2 and the N-terminus of SR-BI, allowing E2-SR-BI interaction and consequently the implementation of the enhancement function. In conclusion we demonstrate that SR-BI is an unparalled virus entry factor. Its usage by HCV to enter the cell is manifold and intriguingly, owing to the heterogeneous nature of HCV particles, involves different viral components exploiting different aspects of SR-BI.

Page generated in 0.0537 seconds