• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 14
  • 11
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 207
  • 207
  • 207
  • 50
  • 36
  • 26
  • 25
  • 22
  • 20
  • 19
  • 18
  • 18
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Vergleichende Analysen zur Replikation und zum intraaxonalen Transport des Pseudorabiesvirus und des Herpes Simplex Virus Typ 1 in primären Rattenneuronen

Negatsch, Alexandra 25 February 2014 (has links)
Nach dem Eintritt in den Wirtsorganismus und initialer Replikation infizieren Alphaherpesviren Neuronen zur weiteren Ausbreitung im Nervensystem und zur Etablierung einer Latenz. Dazu werden die Viruspartikel innerhalb der Axone retrograd von der Peripherie zum neuronalen Zellkörper transportiert. Die umgekehrte Richtung beschreibt den Weg des anterograden Transports vom Zellkörper zur Synapse für weitere Infektionen von Neuronen höherer Ordnung oder zurück zur Peripherie. Der retrograde intraaxonale Transport ist gut untersucht. Dagegen wird über den anterograden Transport kontrovers diskutiert. Zwei verschiedene Transportmodelle werden vermutet. Das „Married Model“ postuliert, dass umhüllte Virionen innerhalb von Vesikeln entlang des Axons transportiert werden. Die Freisetzung der Partikel erfolgt an der jeweiligen Synapse durch Endocytose. Das „Subassembly Model“ geht dagegen davon aus, dass einzelne Virusstrukurkomponenten (Nukleokapsid, Hülle) entlang des Axons transportiert werden. Der Zusammenbau und die Freisetzung erfolgt am Axonterminus bzw. an der Synapse (in vivo) oder am Wachstumskegel (in vitro) oder an speziellen Auftreibungen des Axons, den sogenannten Varicosities. Nach Infektion eines neuronalen Explantatsystems mit dem Pseudorabiesvirus (PrV) konnten ultrastrukturell umhüllte Virionen in Vesikeln detektiert werden und so der Nachweis der Gültigkeit des „Married Model“ als vorherrschendes Transportmodell geführt werden. Dagegen ist die Situation beim prototypischen Alphaherpesvirus, dem Herpes Simplex Virus Typ 1 (HSV-1), weiterhin ungeklärt. Aufgrund der zahlreichen unterschiedlichen Analysemethoden und -systeme war ein direkter Vergleich der beiden Viren bislang nicht möglich. Daher sollte in dieser Arbeit ein standardisiertes neuronales Kultursystem genutzt werden, um vier verschiedene HSV-1 Stämme im Vergleich zu PrV zu untersuchen. Für die Infektionen wurden sowohl Neuronen aus dem oberen Cervikalganglion als auch aus Spinalganglien genutzt. So konnte gezeigt werden, dass in Neuronen, welche mit den HSV-1 Stämmen HFEM, 17+ und SC16 infiziert waren ca. 75% als umhüllte Virionen in Vesikeln und ca. 25% als nackte Kapside vorlagen. Ingesamt war die Anzahl der Viruspartikel in HSV-1 infizierten Neuronen signifikant geringer als in PrV infizierten Kulturen. Überraschenderweise zeigten mit HSV-1 KOS infizierte Neuronen ein reverses Bild. Hier lagen nur 25% der Viruspartikel als umhüllte Virionen in Vesikeln vor, während 75% als nackte Kapside detektiert wurden. Dieser unerwartete Phänotyp sollte auf molekularbiologischer Ebene genauer untersucht werden. Dabei wurde auf die Genregion von US9 fokussiert. Das von US9 codierte Membranprotein spielt eine wichtige Rolle während des Zusammenbaus der Virionen und bei anschließenden axonalen anterograden Transportvorgängen. In dieser Arbeit konnte gezeigt werden, dass das HSV-1 KOS Genom durch verschiedene Basenaustausche an der vorhergesagten TATA-Box von US9 eine Mutation aufweist. Zusätzlich trägt das offene Leseraster durch eine weitere Mutation ein vorzeitiges Stopcodon auf und wird dadurch auf 58 Kodons reduziert, im Gegensatz zu anderen HSV-1 Stämmen, wo es 91 Kodons umfasst. Die Mutation an der TATA-Box verändert auch das ursprüngliche Stopcodon vom US8a Gen, was zur einer Verlängerung von ursprünglich 161 zu 191 Kodons führt. In Northern Blot Analysen konnte eine reduzierte Transkription von US9 in HSV-1 KOS infizierten Zellen detektiert werden. In HSV-1 KOS infizierten Zellen konnten mittels eines spezifischen Antiserums gegen US9 im Western Blot kein Genprodukt nachgewiesen werden. Auch Immunfluoreszenzanalysen zeigten, dass das abgeleitete verkürzte Protein offenbar nicht stabil exprimiert wird. Dagegen konnten Western Blot Analysen die Vergrößerung des pUS8a bestätigen. Der beobachtete auffällige intraaxonale Phänotyp könnte somit durch die Mutation des US9 Protein erklärt werden. Zusammenfassend wurde in dieser Arbeit gezeigt, dass auch bei HSV-1 vorwiegend das „Married Model“ für den anterograden intraaxonalen Transportweg bevorzugt wird und somit beide Alphaherpesviren, HSV-1 und PrV, denselben Transportweg nutzen.
192

Effects of herpes simplex virus 1 (HSV-1) infection on nuclear amyloid aggregation

Arone Blanco, Maria January 2018 (has links)
Huntington’s disease (HD) and Spinocerebellar ataxia (SCA) are incurable neurodegenerative diseases that affect the central nervous system. Amyloids, highly organized protein aggregates, are a hallmark for many neurodegenerative diseases. The presence and accumulation of amyloids are toxic and constitute the major cause of neuron cell death. Both genetic and environmental factors contribute to the onset and progression of these diseases. However, despite intensive research, the underlying cause remains unclear. The role of viral infection as an environmental factor in the context of neurodegenerative diseases has not received much attention. The purpose of this study is to investigate the effects of Herpes Simplex Virus 1 (HSV-1) infection on nuclear amyloid aggregation in model cell lines of HD and SCA. The research process consists mainly of laboratory work which involved the use of several molecular techniques used in the field of biotechnology. The work comprises cultivating cells, infecting cells with HSV-1, Fluorescence microscopy, Western Blot and isolation and detection of amyloids. Western Blot is used for the analysis of specific proteins associated with protein aggregation in HD and SCA. The techniques used for detecting amyloids are Dot Blot and Antibody-staining of amyloids in cells. The results from Western Blot showed that aggregates changed in the presence of the virus. This pattern is observed for both HD and SCA1 cell lines. A big effort is done in this study to optimize Dot Blot as it is method that could be applied in every lab. Normalization of samples proved to be the most challenging part with Dot Blot. No definitive conclusions can be drawn from the Dot Blot results as reproducibility and sensitivity were lacking. This work addresses some of the difficulties encountered when working with detection of amyloids especially Dot Blot. Antibody-staining of amyloids showed that amyloids were formed in the presence of virus in comparison to non-infected. To conclude, aggregates changed, and amyloids were formed in the presence of virus. These results point to the fact that HSV-1 infection could be involved in the process of nuclear amyloid aggregation. The data presented in this thesis will need further investigation and characterization to identify the precise role of viral-induced amyloid formation in HD and SCA patient cells. / Huntingtons sjukdom (HD) och Spinocerebellära ataxier (SCA) är obotliga neurodegenerativa sjukdomar som påverkar det centrala nervsystemet. Amyloid, proteinaggregat som har en viss konformation är ett kännemärke för många neurodegenerativa sjukdomar. Ackumulering av dessa amyloider är toxiskt och är den främsta orsaken till att nervceller dör. Både genetiska faktorer och miljöfaktorer bidrar till uppkomsten och progressionen av dessa sjukdomar. Trots intensiv forskning är den bakomliggande orsaken emellertid fortfarande oklar. Virusinfektion som en potentiell miljöfaktor har i detta sammanhang inte fått mycket uppmärksamhet. Syftet med denna studie är att undersöka effekterna av Herpes Simplex Virus 1 (HSV-1) infektion på amyloid aggregering i modellcellinjer av HD och SCA. Forskningsarbetet bestod i huvudsakligen av experimentellt arbete med hjälp av flera molekylära tekniker inom bioteknikområdet som cell odling, infektering av celler med HSV-1, fluorescensmikroskopi, Western Blot och isolering och detektion av amyloider. Western Blot användes for att analysera specifika proteiner associerade med protein aggregering i HD och SCA. Amyloider detekterades med Dot Blot och med antikroppar specifika för amyloider. Resultat från Western Blot visade att amyloiderna förändras i virusinfekterade celler. Detta mönster observerades i både HD and SCA1 cellinjer. En stor bemöda görs i denna studie för att optimera Dot Blot eftersom det är en metod som kan användas i alla laboratorier. Normalisering visade sig vara det svåraste med detektion av amyloider. Inga definitiva slutsatser kan dras från dessa experiment, eftersom reproducerbarhet och känslighet var bristande. Detta arbete tar upp några av de svårigheter som uppstod vid arbetande med detektion av amyloider speciellt Dot Blot. Detektion av amyloider med antikropp visade att amyloider bildades till stor utsträckning i infekterade cellinjer i jämförelse med icke-infekterade. Sammanfattningsvis, amyloider förändrades och amyloider bildades i närvaro av virus. Dessa resultat indikerar på att HSV-1 infektion skulle kunna vara involverad i processen av amyloid aggregering. De presenterade uppgifter i detta examensarbete är preliminära och behöver följas upp med ytterligare studier för att identifiera virusens exakta roll i amyloid bildning i HD och SCA patient celler.
193

Molecular characterization of the contribution of autophagy to antigen presentation using quantitative proteomics

Bell, Christina 07 1900 (has links)
L’autophagie est une voie hautement conservée de dégradation lysosomale des constituants cellulaires qui est essentiel à l’homéostasie cellulaire et contribue à l’apprêtement et à la présentation des antigènes. Les rôles relativement récents de l'autophagie dans l'immunité innée et acquise sous-tendent de nouveaux paradigmes immunologiques pouvant faciliter le développement de nouvelles thérapies où la dérégulation de l’autophagie est associée à des maladies auto-immunes. Cependant, l'étude in vivo de la réponse autophagique est difficile en raison du nombre limité de méthodes d'analyse pouvant fournir une définition dynamique des protéines clés impliquées dans cette voie. En conséquence, nous avons développé un programme de recherche en protéomique intégrée afin d’identifier et de quantifier les proteines associées à l'autophagie et de déterminer les mécanismes moléculaires régissant les fonctions de l’autophagosome dans la présentation antigénique en utilisant une approche de biologie des systèmes. Pour étudier comment l'autophagie et la présentation antigénique sont activement régulés dans les macrophages, nous avons d'abord procédé à une étude protéomique à grande échelle sous différentes conditions connues pour stimuler l'autophagie, tels l’activation par les cytokines et l’infection virale. La cytokine tumor necrosis factor-alpha (TNF-alpha) est l'une des principales cytokines pro-inflammatoires qui intervient dans les réactions locales et systémiques afin de développer une réponse immune adaptative. La protéomique quantitative d'extraits membranaires de macrophages contrôles et stimulés avec le TNF-alpha a révélé que l'activation des macrophages a entrainé la dégradation de protéines mitochondriales et des changements d’abondance de plusieurs protéines impliquées dans le trafic vésiculaire et la réponse immunitaire. Nous avons constaté que la dégradation des protéines mitochondriales était sous le contrôle de la voie ATG5, et était spécifique au TNF-alpha. En outre, l’utilisation d’un nouveau système de présentation antigènique, nous a permi de constater que l'induction de la mitophagie par le TNF-alpha a entrainée l’apprêtement et la présentation d’antigènes mitochondriaux par des molécules du CMH de classe I, contribuant ainsi la variation du répertoire immunopeptidomique à la surface cellulaire. Ces résultats mettent en évidence un rôle insoupçonné du TNF-alpha dans la mitophagie et permet une meilleure compréhension des mécanismes responsables de la présentation d’auto-antigènes par les molécules du CMH de classe I. Une interaction complexe existe également entre infection virale et l'autophagie. Récemment, notre laboratoire a fourni une première preuve suggérant que la macroautophagie peut contribuer à la présentation de protéines virales par les molécules du CMH de classe I lors de l’infection virale par l'herpès simplex virus de type 1 (HSV-1). Le virus HSV1 fait parti des virus humains les plus complexes et les plus répandues. Bien que la composition des particules virales a été étudiée précédemment, on connaît moins bien l'expression de l'ensemble du protéome viral lors de l’infection des cellules hôtes. Afin de caractériser les changements dynamiques de l’expression des protéines virales lors de l’infection, nous avons analysé par LC-MS/MS le protéome du HSV1 dans les macrophages infectés. Ces analyses nous ont permis d’identifier un total de 67 protéines virales structurales et non structurales (82% du protéome HSV1) en utilisant le spectromètre de masse LTQ-Orbitrap. Nous avons également identifié 90 nouveaux sites de phosphorylation et de dix nouveaux sites d’ubiquitylation sur différentes protéines virales. Suite à l’ubiquitylation, les protéines virales peuvent se localiser au noyau ou participer à des événements de fusion avec la membrane nucléaire, suggérant ainsi que cette modification pourrait influer le trafic vésiculaire des protéines virales. Le traitement avec des inhibiteurs de la réplication de l'ADN induit des changements sur l'abondance et la modification des protéines virales, mettant en évidence l'interdépendance des protéines virales au cours du cycle de vie du virus. Compte tenu de l'importance de la dynamique d'expression, de l’ubiquitylation et la phosphorylation sur la fonction des proteines virales, ces résultats ouvriront la voie vers de nouvelles études sur la biologie des virus de l'herpès. Fait intéressant, l'infection HSV1 dans les macrophages déclenche une nouvelle forme d'autophagie qui diffère remarquablement de la macroautophagie. Ce processus, appelé autophagie associée à l’enveloppe nucléaire (nuclear envelope derived autophagy, NEDA), conduit à la formation de vésicules membranaires contenant 4 couches lipidiques provenant de l'enveloppe nucléaire où on retrouve une grande proportion de certaines protéines virales, telle la glycoprotéine B. Les mécanismes régissant NEDA et leur importance lors de l’infection virale sont encore méconnus. En utilisant un essai de présentation antigénique, nous avons pu montrer que la voie NEDA est indépendante d’ATG5 et participe à l’apprêtement et la présentation d’antigènes viraux par le CMH de classe I. Pour comprendre l'implication de NEDA dans la présentation des antigènes, il est essentiel de caractériser le protéome des autophagosomes isolés à partir de macrophages infectés par HSV1. Aussi, nous avons développé une nouvelle approche de fractionnement basé sur l’isolation de lysosomes chargés de billes de latex, nous permettant ainsi d’obtenir des extraits cellulaires enrichis en autophagosomes. Le transfert des antigènes HSV1 dans les autophagosomes a été determine par protéomique quantitative. Les protéines provenant de l’enveloppe nucléaire ont été préférentiellement transférées dans les autophagosome lors de l'infection des macrophages par le HSV1. Les analyses protéomiques d’autophagosomes impliquant NEDA ou la macroautophagie ont permis de decouvrir des mécanismes jouant un rôle clé dans l’immunodominance de la glycoprotéine B lors de l'infection HSV1. Ces analyses ont également révélées que diverses voies autophagiques peuvent être induites pour favoriser la capture sélective de protéines virales, façonnant de façon dynamique la nature de la réponse immunitaire lors d'une infection. En conclusion, l'application des méthodes de protéomique quantitative a joué un rôle clé dans l'identification et la quantification des protéines ayant des rôles importants dans la régulation de l'autophagie chez les macrophages, et nous a permis d'identifier les changements qui se produisent lors de la formation des autophagosomes lors de maladies inflammatoires ou d’infection virale. En outre, notre approche de biologie des systèmes, qui combine la protéomique quantitative basée sur la spectrométrie de masse avec des essais fonctionnels tels la présentation antigénique, nous a permis d’acquérir de nouvelles connaissances sur les mécanismes moléculaires régissant les fonctions de l'autophagie lors de la présentation antigénique. Une meilleure compréhension de ces mécanismes permettra de réduire les effets nuisibles de l'immunodominance suite à l'infection virale ou lors du développement du cancer en mettant en place une réponse immunitaire appropriée. / Autophagy is a highly conserved lysosomal-mediated protein degradation pathway that plays a crucial role in maintaining cellular homeostasis and contributes to antigen processing and presentation. The emerging roles of autophagy in both innate and adaptive immunity underpin novel immunological paradigms that may provide opportunities for the development of new therapies where impaired autophagy is associated with autoimmune diseases. However, the in vivo study of autophagic response is challenging in view of the limited number of analytical approaches that can provide a dynamic definition of the key proteins involved in this pathway. Accordingly, we developed an integrated proteomics research program to unravel the molecular machines associated with autophagy and to decipher the fine details of the molecular mechanisms governing the functions of the autophagosome in antigen presentation using a systems biology approach. To study how autophagy and antigen presentation are actively modulated in macrophages, we first conducted comprehensive, global proteomics studies under different conditions known to stimulate autophagy. Autophagy is modulated by cytokines as well as by viral infection in various ways. TNF-alpha is one of the major proinflammatory cytokines that mediate local and systemic responses and direct the development of adaptive immunity. Label-free quantitative proteomics analysis of membrane extracts from TNF-alpha activated and resting macrophages revealed that TNF-alpha activation led to the downregulation of mitochondrial proteins and the differential regulation of several proteins involved in vesicle trafficking and immune response. Importantly, we found that the downregulation of mitochondria proteins occurred through Atg5-dependent mitophagy, and was specific to TNF-alpha. Furthermore, using a novel antigen presentation system, we observed that the induction of mitophagy by TNF-alpha enabled the processing and presentation of mitochondrial antigens at the cell surface by MHC class I molecules, suggesting that TNF-alpha induced mitophagy contributes to the modification of the MHC class I peptide repertoire. These findings highlight an unsuspected role of TNF-alpha in mitophagy and expanded our understanding of the mechanisms responsible for MHC class I presentation of self-antigens. A complex interplay also exists between viral infection and autophagy. Recently, our lab provided the first evidence that macroautophagy can contribute to the presentation of viral proteins on MHC class I molecules during Herpes Simplex Virus type 1 (HSV1) infection. HSV1 are among the most complex and widespread human viruses. While the composition of viral particles has been studied, less is known about the expression of the whole viral proteome in infected cells. To comprehensively characterize the system, we analyzed the proteome of the prototypical HSV1 in infected macrophages by LC-MS/MS. We achieved a very high level of protein coverage and identified a total of 67 structural and non-structural viral proteins (82% of the HSV1 proteome) using LC-MS/MS on a LTQ-Orbitrap instrument. We also obtained a comprehensive map of 90 novel phosphorylation sites and ten novel ubiquitylation sites on different viral proteins. Interestingly all ubiquitylated proteins could either localize to the nucleus or participate in membrane fusion events, suggesting that ubiquitylation of viral proteins might affect their trafficking. Treatment with inhibitors of DNA replication induced changes of both viral protein abundance and modifications, highlighting the interdependence of viral proteins during the life cycle of the virus. Given the importance of expression dynamics, ubiquitylation and phosphorylation for protein function, these findings will serve as important tools for future studies on herpes virus biology. Interestingly, HSV1 infection in macrophages triggers a novel form of autophagy which remarkably differs in many ways from macroautophagy. This process, referred to as nuclear envelope-derived autophagy (NEDA), leads to the formation of 4-membrane layered vesicles originating from the nuclear envelope where some viral protein such as glycoprotein B are highly enriched. To which extent this process differs from macroautophagy and participates in the pathogenesis of HSV infection is still largely unknown. Using a novel antigen presentation assay we could show that NEDA is an Atg5-independent pathway that participates in the capture of viral proteins, and their processing and presentation on MHC class I molecules. To understand the involvement of NEDA in antigen presentation it is crucial to characterize the autophagosomal proteome in HSV1 infected macrophages. We developed a novel isolation method based on the loading of the lysosomal compartment with latex beads, a unique tool to obtain very pure cell extracts, upon autophagy induction. The transfer of HSV1 antigens into autophagosomes was monitored using quantitative proteomics. Nuclear enveloped-derived proteins were preferentially transferred to the autophagosome during HSV1 infection. Detailed proteomics characterization of autophagosomes formed during NEDA and macroautophagy led to the discovery of mechanisms that play a key role in glycoprotein B immunodominance during HSV1 infection. These analyses also revealed that various autophagic pathways can be induced to promote the capture of selective sets of viral proteins, thus actively shaping the nature of the immune response during infection. In conclusion, the application of quantitative proteomics methods played a key role in identifying and quantifying important regulators of autophagy in macrophages and allowed us to identify changes occurring during the remodeling of autophagosomes in response to disease and inflammatory conditions such as viral infections. Furthermore, our systems biology approach that combined mass spectrometry-based quantitative proteomics with functional screens such as antigen presentation assays revealed novel biological insights on the molecular mechanisms governing the functions of autophagy in antigen presentation. Harnessing the contribution of autophagy in antigen presentation has the potential to minimize the deleterious effects of immunodominance in viral infection and cancer by shaping an appropriate immune response.
194

Analysis of artificial chromosomes in human embryonic stem cells

Mandegar, Mohammad Ali January 2011 (has links)
The development of safe and efficient gene delivery systems in pluripotent human embryonic stem cells (hESc) is essential to realising their full potential for basic and clinical research. The purpose of this study was to develop an efficient, non-integrating gene expression system in pluripotent hESc using human artificial chromosomes (HAC). Similar to endogenous chromosomes, HAC are capable of gene expression, replication and segregation during cell division. Unlike retroviral-mediated gene delivery vectors, HAC do not integrate into the host genome and can encompass large genomic regions for the delivery of multiple genes. Despite the advantages HAC offer, their use has been limited due to laborious cloning procedures and poor transfection efficiencies, and thus only studied in immortalised and tumour-derived human cell lines. In this study, the high transduction efficiency of herpes simplex virus type-1 (HSV-1) amplicons was utilised to overcome the described difficulties and delivered HAC vectors into pluripotent hESc. Analysis of stable hESc clones showed that de novo gene-expressing HAC were present at high frequencies ranging from 10-70% of metaphases analysed, without integrating into the genome. The established HAC contained an active centromere, and were stably maintained without integration or loss in the absence of selection for 90 days. Stable HAC-containing hESc clones retained their pluripotency as demonstrated by neuronal differentiation, in vitro germ layer and teratoma formation assays. HAC gene expression persisted, with some variation, post-differentiation in the various deriving cell types. This is the first report of successful de novo HAC formation in hESc for gene expression studies. These findings show potential for delivering high-capacity genomic constructs safely and efficiently into pluripotent cells for the purpose of genetic manipulation and ultimately patient-specific somatic gene therapy.
195

HSV-1 amplicon system for human artificial chromosome formation in human ES/iPS cells and pluripotency induction

Khoja, Suhail January 2012 (has links)
Development of safe and efficient approaches for gene delivery in human embryonic stem cells (hESc) and particularly in human induced pluripotent stem (hiPS) cells, which can be derived in a person-specific manner, is considered to be imperative for harnessing their full potential in both the basic and applied research. The aim of this study was to evaluate the potential of human artificial chromosome (HAC) for gene delivery and expression in hESc and hiPS cells. HAC offers many potential advantages including the provision for carrying large genes with corresponding regulatory elements to obtain long-term regulated gene expression. In addition, they can replicate and segregate independently without integration into the host cell genome. To develop HAC in hiPS cells, the first part of the study was aimed at generating hiPS cells utilising the Herpes Simplex Virus (HSV)-1 amplicon system. With the use of EBNA-1/OriP retention elements incorporated into the HSV-1 amplicon vectors, hiPS cells completely free of vector and transgenes sequences were successfully derived from human embryonic fibroblasts. The hiPS cells exhibited proliferation and differentiation potential similar to that of hESc. In the second part of the study, development of HAC in hESc and hiPS cells was assessed by utilising the HSV-1 amplicon system to deliver the HAC DNA. Analysis of the hESc confirmed the presence of functional HAC which replicated the behaviour of the host chromosomes. Additionally, HAC generation did not lead to impairment in the developmental potential and pluripotency of hESc. The hiPS cells supported HAC at low frequency but DNA also integrated into the host chromosomes. The HAC system, therefore, needs further refinements to improve the frequency of HAC formation and reduce the chromosomal integration of HAC constructs in hiPS cells. Overall, these findings provide a simple and safe way of pluripotency induction and genetic modification of pluripotent stem cells using the HSV-1 amplicon system and represent an important advance towards patient specific gene and cell therapy.
196

Contribution de la Glycoprotéine M dans la Sortie de HSV-1

Zhang, Jie 06 1900 (has links)
Le Virus Herpès Simplex de type 1 (HSV-1) est un agent infectieux qui cause l’herpès chez une grande proportion de la population mondiale. L’herpès est généralement considéré comme une maladie bénigne dont la forme la plus commune est l'herpès labial (communément appelé « bouton de fièvre »), mais elle peut se révéler très sérieuse et causer la cécité et l’encéphalite, voir létale dans certain cas. Le virus persiste toute la vie dans le corps de son hôte. Jusqu'à présent, aucun traitement ne peut éliminer le virus et aucun vaccin n’a été prouvé efficace pour contrôler l’infection herpétique. HSV-1 est un virus avec un génome d’ADN bicaténaire contenu dans une capside icosaèdrale entourée d’une enveloppe lipidique. Treize glycoprotéines virales se trouvent dans cette enveloppe et sont connues ou supposées jouer des rôles distincts dans différentes étapes du cycle de réplication viral, incluant l'attachement, l'entrée, l’assemblage, et la propagation des virus. La glycoprotéine M (gM) qui figure parmi ces glycoprotéines d’enveloppe, est la seule glycoprotéine non essentielle mais est conservée dans toute la famille herpesviridae. Récemment, l’homologue de gM dans le Pseudorabies virus (PRV), un autre herpesvirus, a été impliqué dans la phase finale de l’assemblage (i.e. l’enveloppement cytoplasmique) au niveau du réseau trans-Golgi (TGN) en reconnaissant spécifiquement des protéines tégumentaires et d’autres glycoprotéines d’enveloppe ([1]). Toutefois, il a été proposé que cette hypothèse ne s’applique pas pour le HSV-1 ([2]). De plus, contrairement à la localisation au TGN dans les cellules transfectées, HSV-1 gM se localise dans la membrane nucléaire et sur les virions périnucléaires durant une infection. L’objectif du projet présenté ici était d’éclaircir la relation de la localisation et la fonction de HSV-1 gM dans le contexte d’une infection. Dans les résultats rapportés ici, nous décrivons tout abord un mécanisme spécifique de ciblage nucléaire de HSV-1 gM. En phase précoce d’une infection, gM est ciblée à la membrane nucléaire d'une manière virus ii dépendante. Cela se produit avant la réorganisation du TGN normalement induite par l’infection et avant que gM n’entre dans la voie de sécrétion. Ce ciblage nucléaire actif et spécifique de gM ne semble pas dépendre des plusieurs des partenaires d’interaction proposés dans la littérature. Ces données suggèrent que la forme nucléaire de gM pourrait avoir un nouveau rôle indépendant de l’enveloppement final dans le cytoplasme. Dans la deuxième partie du travail présenté ici, nous avons concentré nos efforts sur le rôle de gM dans l’assemblage du virus en phase tardive de l’infection et en identifiant un domaine critique de gM. Nos résultats mettent en valeur l’importance du domaine carboxyl-terminal cytoplasmique de gM dans le transport de gM du réticulum endoplasmique (RE) à l’appareil de Golgi, dans l’enveloppement cytoplasmique et la propagation intercellulaire du virus. Ainsi, l’export du RE de gM a été complètement compromis dans les cellules transfectées exprimant un mutant de gM dépourvu de sa région C-terminale. La délétion la queue cytoplasmique de gM cause une réduction légère du titre viral et de la taille des plaques. L'analyse de ces mutants par microscopie électronique a démontré une accumulation des nucléocapsides sans enveloppe dans le cytoplasme par rapport aux virus de type sauvage. Étrangement, ce phénotype était apparent dans les cellules BHK mais absent dans les cellules 143B, suggérant que la fonction de gM dépende du type cellulaire. Finalement, le criblage de partenaires d’interaction du domaine C-terminal de gM identifiés par le système de double-hybride nous a permis de proposer plusieurs candidats susceptibles de réguler la fonction de gM dans la morphogénèse et la propagation de virus. / Herpes Simplex Virus type 1 (HSV-1) is an infectious agent causing herpes, which affects a large population worldwide. Herpes is generally considered a benign disease whose most common form is oral herpes (commonly called "cold sores"), but it can be very serious and cause herpetic blindness and encephalitis, and even be lethal in some cases. The virus can persist throughout life in the body of its host. So far, no treatment can eliminate the virus and no vaccine has proven effective in controlling herpes infections. HSV-1 has a double-stranded DNA genome embedded in an icosahedral capsid surrounded by a lipid envelope. Thirteen viral glycoproteins are located in the envelope and are known or believed to play different roles in different stages of the viral replication cycle, including attachment, entry, assembly, and viral propagation. Among these envelope glycoproteins, glycoprotein M (gM) is the only nonessential glycoprotein but is conserved in all the herpesviridae family. Recently, the homologue of gM in Pseudorabies virus (PRV), another herpesvirus, has been implicated in the final phase of assembly (e.g. the cytoplasmic envelopment) at the trans-Golgi network (TGN) ([1]). However, it was suggested that this does not apply to HSV-1 ([2]). Moreover, unlike its TGN localization in transfected cells, HSV-1 gM localizes to the nuclear membrane and on the perinuclear virions during infection. The objective of the project presented here was to clarify the relationship of the location and function of HSV-1 gM in the context of an infection. In the results reported here, we first describe a specific and active mechanism of nuclear targeting of HSV-1 gM. In early phase of infection, gM is targeted to the nuclear membrane in a virus dependent manner. This occurs before the known reorganization of the TGN induced by the virus and before gM enters the secretory pathway. This active and specific nuclear targeting of gM seemingly does not depend on the functional interaction partners proposed in the literature. These data suggest that nuclear gM could have a new role independent of that in the final envelopment in the cytoplasm. In the second part of the work presented here, we focused iv our efforts on the role of gM in virus assembly in the late phase of infection and define an important functional domain within gM. Our results highlight the importance of the carboxyl-terminal domain of gM in the intracellular transport of gM from endoplasmic reticulum (ER) to Golgi apparatus, in the cytoplasmic envelopment of the capsids and the intercellular spread of the virus. Hence, gM ER export was completely compromised in transfected cells after deletion of its C-terminal tail. Deletion of the gM cytoplasmic tail in mutant viruses resulted in a slight reduction in viral titer and plaque size. The analysis of these mutants by electron microscopy showed an accumulation of nucleocapsids without envelope in the cytoplasm compared to wild-type virus. Interestingly, this phenotype is apparent in BHK cells but not in 143B cells, hinting that the importance of gM may be cell type specific. Finally, screening of interaction partners of C-terminal domain of gM identified by the two-hybrid system allowed us to propose several interesting candidates that may regulate the function of gM in the virus morphogenesis and propagation.
197

Atividade da proteína quinase dependente de RNA (PKR) no sistema nociceptivo em um modelo experimental de neuropatia periférica de origem viral / Double stranded RNA-activated protein kinase (PKR) activity in the nociceptive system in an experimental model of peripheral neuropathy of viral origin

Mota, Clarissa Maria Dias 25 February 2016 (has links)
A proteína quinase dependente de RNA (PKR) é uma molécula sentinela ativada em situações de estresse celular, incluindo infecções virais. A ativação de PKR por meio de sua fosforilação aciona cascatas de sinalização intracelular envolvidas em respostas inflamatórias e inibição da síntese protéica. Dados prévios do nosso laboratório sugerem que PKR está envolvida na hiperalgesia térmica de origem inflamatória. No presente estudo, foi investigado o papel da PKR na hiperalgesia térmica induzida pelo vírus da herpes simples tipo 1 (HSV1), durante as fases herpética e pós-herpética, combinando métodos comportamentais, genéticos, farmacológicos e moleculares. Camundongos C57bl/6, PKR+/+ e PKR-/- machos foram inoculados com HSV1. Os grupos controle foram inoculados com HSV1 inativo. Alodínia mecânica e hiperalgesia térmica foram monitoradas antes da inoculação do vírus e 8, 14, 21 e 28 dias após a inoculação. A curva dose e temporesposta e o teste da capsaicina foram realizados no 8º e 21º dias após a inoculação do vírus. Também nos períodos herpético e pós-herpético, foi investigado o perfil de expressão de proteínas envolvidas nas vias de sinalização de PKR (PKR, eIF2?, PACT, IKK e PP2A?), assim como o efeito da inibição de PKR pelo monitoramento da fosforilação de PKR, IKK?/?, P38, JNK, ERK1,2 e STAT3, e expressão de CaMKII? e TRPV1 nos GRD (L3-L6) ipsilateralmente à pata inoculada. Alodínia mecânica e hiperalgesia térmica ficaram evidentes até 28 dias após a inoculação. Camundongos PKR-/- desenvolveram alodínia mecânica, mas não hiperalgesia térmica, quando comparados com animais PKR+/+. A inibição sistêmica de PKR reverteu a hiperalgesia térmica de modo tempo- e dose-dependente e preveniu o comportamento nocifensivo induzido por capsaicina, enquanto PKR-/- apresentaram resposta nocifensiva praticamente ausente em ambas as fases herpética e pósherpética. Houve aumento da expressão de PP2A? e da fosforilação de PKR, IKK?/? e eIF2?, durante os períodos herpético e pós-herpético, e de PACT na fase pósherpética. A inibição de PKR promoveu o aumento da fosforilação de P38 em ambas as fases, e redução da fosforilação de PLC?1 acompanhada do retorno da fosforilação de Akt e STAT3 ao nível do grupo controle e o aumento da expressão de Ca-MKII? na fase herpética. Já na fase pós-herpética, reduziu a fosforilação de JNK e Akt e a expressão de Ca-MKII?, retornou a fosforilação de ERK1,2, PLC?1 e STAT3 ao nível do grupo controle e aumentou a expressão de TRPV1. Nossos resultados indicam que a atividade de PKR desempenha papel essencial na hiperalgesia térmica induzida por infecção pelo HSV1 / Double stranded RNA-activated protein kinase (PKR) is a sentinel molecule activated by cellular stress conditions, including viral infections. PKR activation by phosphorylation triggers cascades involved in inflammatory response and protein synthesis suppression. Our previous data suggest that PKR is involved in the inflammatory thermal hyperalgesia. Here we investigated the role played by PKR on thermal hyperalgesia induced by herpes simplex virus type-1 (HSV-1), during herpetic and post-herpetic phases, by combining behavioral, genetic, pharmacological, and molecular methods. Adult male C57bl/6, PKR+/+ and PKR-/- mice were inoculated with HSV-1. Control groups were inoculated with inactive (mock) HSV1. Mechanical allodynia and thermal hyperalgesia were monitored before virus inoculation and 8, 14, 21, and 28 days post-inoculation. The dose- and timeresponse curve and the capsaicin test were performed at 8th and 21st days post virus inoculation. Also in the herpetic and post-herpetic periods, was investigated the expression profile of proteins involved in the PKR signaling pathways (PKR, eIF2?, PACT, IKK and PP2A?), and the effect of PKR inhibition by monitoring PKR, IKK?/?, P38, JNK, ERK1,2, and STAT3 phosphorylation, and Ca-MKII? and TRPV1 expression in the dorsal root ganglia (L3-L6) ipsilaterally to the inoculated paw. Mechanical allodynia and thermal hyperalgesia became evident until 28 days postinnoculation. PKR-/- mice developed mechanical allodynia but not thermal hyperalgesia, when compared with PKR+/+ mice. Systemic PKR inhibition reversed thermal hyperalgesia in a dose and time-dependent manner, and prevented the capsaicin-induced nocifensive behavior, whereas PKR-/- showed no nocifensive behavior almost absent in both herpetic and post-herpetic phases. There was increased expression of PP2A? and the phosphorylation of PKR, IKK?/?, and eIF2?, during herpetic and post-herpetic periods, and PACT in the post-herpetic phase. PKR inhibition increased P38 phosphorylation in both phases, and reduction of PLC?1 phosphorylation together with the return of the Akt and STAT3 phosphorylation to the control group level, and enhanced Ca-MKII? expression in the herpetic phase. At the post-herpetic phase, suppressed JNK and Akt, and Ca-MKII? expression returned ERK1,2, PLC?1 and STAT3 phosphorylation to control group level and increased TRPV1 expression. The data indicate that PKR activity plays an essential role in the HSV-1 infection-induced thermal hyperalgesia
198

Rôle des modulateurs de la protéine kinase D dans la propagation du virus herpès simplex de type 1

Roussel, Élisabeth 06 1900 (has links)
No description available.
199

Studies of viral and cellular proteins involved in herpes simplex virus type-1 egress

Ahmed, Md Firoz January 2019 (has links)
The egress pathway of herpes simplex virus-1 (HSV-1) is a complicated process mediated by co-ordinated activity of several virus glycoproteins. The virions are first assembled and enveloped at trans-Golgi-network (TGN) or endosome membranes and then travel through a guided pathway that is directed towards the cell adherent points for secretion. Once secreted the vast majority of virions remain associated with the extracellular membrane of cells and very few free virions are released into the culture medium (< 1%). The mechanisms that mediate both the targeted secretion of newly assembled virions at cell contact points and post-secretion attachment of virions with the extracellular surface of cells are poorly understood, and were the topics of this research. In this thesis, an HSV-1 passage mutant of increased virion secretion phenotype had been studied. Genome sequencing of the mutant virus identified mutations in three viral envelope proteins. Study of recombinant viruses that were constructed based on those three mutations revealed that a single amino acid change in glycoprotein I (gI) of glycine to arginine at residue 39 is responsible for the increased release of virus. The result suggests the principal effect of this mutation is to modify the secretory pathway used by virions during their release from infected cells. Data also suggests a role of gC in the attachment of virions to the extracellular surface of cells after egress. In the context of HSV-1 envelopment and egress glycoprotein E (gE), which forms a heterodimeric complex with gI (gE/gI), is known to be important. The gE/gI complex has been shown to interact with many tegument proteins and have a redundant role in secondary envelopment. The gE/gI complex has been also proposed to colocalise with various cellular components and sort the nascent virions to cell contact points. However, there is little understanding of the cellular proteins that gE/gI interact with, or the mechanisms that mediate targeted secretion of virions. This research has identified a novel interactome of gE/gI by mass-spectrometric analysis utilising stable isotope labelling with amino acids in cell culture (SILAC) medium. Among the cellular interactome obtained, Nipsnap1 was validated by co-precipitation assays from both infected and transfected cells, and furthermore using cell free systems, suggesting gE and Nipsnap1 directly interact. Nipsnap1 and its homologue Nipsnap2 have been proposed to contribute in vesicle transport and membrane fusion in cells. Using CRISPR-Cas9 technology these proteins were knocked out in a keratinocyte cell line (HaCaT) to investigate their role in HSV-1 egress. However, little or no effect on HSV-1 egress could be observed upon loss of either or both of these proteins suggesting the biological significance of gE-Nipsnap1 interaction may not be directly linked to any egress function of gE/gI. Two further interesting 'hits' from the gE/gI interactome were interferon-induced transmembrane protein type-2 (IFITM2), a virus restriction factor, and Myoferlin that has a putative role in endocytic vesicle recycling. This study could validate gE-Myoferlin interaction and co-localisation in infected or transfected cells however, functional significance of this interaction remains to be determined. Overall, the research of this thesis has provided a better understanding of the role of the gE/gI complex in HSV-1 egress and investigated the role of some interesting cellular proteins in the context of virion egress.
200

Contribution de la Glycoprotéine M dans la Sortie de HSV-1

Zhang, Jie 06 1900 (has links)
Le Virus Herpès Simplex de type 1 (HSV-1) est un agent infectieux qui cause l’herpès chez une grande proportion de la population mondiale. L’herpès est généralement considéré comme une maladie bénigne dont la forme la plus commune est l'herpès labial (communément appelé « bouton de fièvre »), mais elle peut se révéler très sérieuse et causer la cécité et l’encéphalite, voir létale dans certain cas. Le virus persiste toute la vie dans le corps de son hôte. Jusqu'à présent, aucun traitement ne peut éliminer le virus et aucun vaccin n’a été prouvé efficace pour contrôler l’infection herpétique. HSV-1 est un virus avec un génome d’ADN bicaténaire contenu dans une capside icosaèdrale entourée d’une enveloppe lipidique. Treize glycoprotéines virales se trouvent dans cette enveloppe et sont connues ou supposées jouer des rôles distincts dans différentes étapes du cycle de réplication viral, incluant l'attachement, l'entrée, l’assemblage, et la propagation des virus. La glycoprotéine M (gM) qui figure parmi ces glycoprotéines d’enveloppe, est la seule glycoprotéine non essentielle mais est conservée dans toute la famille herpesviridae. Récemment, l’homologue de gM dans le Pseudorabies virus (PRV), un autre herpesvirus, a été impliqué dans la phase finale de l’assemblage (i.e. l’enveloppement cytoplasmique) au niveau du réseau trans-Golgi (TGN) en reconnaissant spécifiquement des protéines tégumentaires et d’autres glycoprotéines d’enveloppe ([1]). Toutefois, il a été proposé que cette hypothèse ne s’applique pas pour le HSV-1 ([2]). De plus, contrairement à la localisation au TGN dans les cellules transfectées, HSV-1 gM se localise dans la membrane nucléaire et sur les virions périnucléaires durant une infection. L’objectif du projet présenté ici était d’éclaircir la relation de la localisation et la fonction de HSV-1 gM dans le contexte d’une infection. Dans les résultats rapportés ici, nous décrivons tout abord un mécanisme spécifique de ciblage nucléaire de HSV-1 gM. En phase précoce d’une infection, gM est ciblée à la membrane nucléaire d'une manière virus ii dépendante. Cela se produit avant la réorganisation du TGN normalement induite par l’infection et avant que gM n’entre dans la voie de sécrétion. Ce ciblage nucléaire actif et spécifique de gM ne semble pas dépendre des plusieurs des partenaires d’interaction proposés dans la littérature. Ces données suggèrent que la forme nucléaire de gM pourrait avoir un nouveau rôle indépendant de l’enveloppement final dans le cytoplasme. Dans la deuxième partie du travail présenté ici, nous avons concentré nos efforts sur le rôle de gM dans l’assemblage du virus en phase tardive de l’infection et en identifiant un domaine critique de gM. Nos résultats mettent en valeur l’importance du domaine carboxyl-terminal cytoplasmique de gM dans le transport de gM du réticulum endoplasmique (RE) à l’appareil de Golgi, dans l’enveloppement cytoplasmique et la propagation intercellulaire du virus. Ainsi, l’export du RE de gM a été complètement compromis dans les cellules transfectées exprimant un mutant de gM dépourvu de sa région C-terminale. La délétion la queue cytoplasmique de gM cause une réduction légère du titre viral et de la taille des plaques. L'analyse de ces mutants par microscopie électronique a démontré une accumulation des nucléocapsides sans enveloppe dans le cytoplasme par rapport aux virus de type sauvage. Étrangement, ce phénotype était apparent dans les cellules BHK mais absent dans les cellules 143B, suggérant que la fonction de gM dépende du type cellulaire. Finalement, le criblage de partenaires d’interaction du domaine C-terminal de gM identifiés par le système de double-hybride nous a permis de proposer plusieurs candidats susceptibles de réguler la fonction de gM dans la morphogénèse et la propagation de virus. / Herpes Simplex Virus type 1 (HSV-1) is an infectious agent causing herpes, which affects a large population worldwide. Herpes is generally considered a benign disease whose most common form is oral herpes (commonly called "cold sores"), but it can be very serious and cause herpetic blindness and encephalitis, and even be lethal in some cases. The virus can persist throughout life in the body of its host. So far, no treatment can eliminate the virus and no vaccine has proven effective in controlling herpes infections. HSV-1 has a double-stranded DNA genome embedded in an icosahedral capsid surrounded by a lipid envelope. Thirteen viral glycoproteins are located in the envelope and are known or believed to play different roles in different stages of the viral replication cycle, including attachment, entry, assembly, and viral propagation. Among these envelope glycoproteins, glycoprotein M (gM) is the only nonessential glycoprotein but is conserved in all the herpesviridae family. Recently, the homologue of gM in Pseudorabies virus (PRV), another herpesvirus, has been implicated in the final phase of assembly (e.g. the cytoplasmic envelopment) at the trans-Golgi network (TGN) ([1]). However, it was suggested that this does not apply to HSV-1 ([2]). Moreover, unlike its TGN localization in transfected cells, HSV-1 gM localizes to the nuclear membrane and on the perinuclear virions during infection. The objective of the project presented here was to clarify the relationship of the location and function of HSV-1 gM in the context of an infection. In the results reported here, we first describe a specific and active mechanism of nuclear targeting of HSV-1 gM. In early phase of infection, gM is targeted to the nuclear membrane in a virus dependent manner. This occurs before the known reorganization of the TGN induced by the virus and before gM enters the secretory pathway. This active and specific nuclear targeting of gM seemingly does not depend on the functional interaction partners proposed in the literature. These data suggest that nuclear gM could have a new role independent of that in the final envelopment in the cytoplasm. In the second part of the work presented here, we focused iv our efforts on the role of gM in virus assembly in the late phase of infection and define an important functional domain within gM. Our results highlight the importance of the carboxyl-terminal domain of gM in the intracellular transport of gM from endoplasmic reticulum (ER) to Golgi apparatus, in the cytoplasmic envelopment of the capsids and the intercellular spread of the virus. Hence, gM ER export was completely compromised in transfected cells after deletion of its C-terminal tail. Deletion of the gM cytoplasmic tail in mutant viruses resulted in a slight reduction in viral titer and plaque size. The analysis of these mutants by electron microscopy showed an accumulation of nucleocapsids without envelope in the cytoplasm compared to wild-type virus. Interestingly, this phenotype is apparent in BHK cells but not in 143B cells, hinting that the importance of gM may be cell type specific. Finally, screening of interaction partners of C-terminal domain of gM identified by the two-hybrid system allowed us to propose several interesting candidates that may regulate the function of gM in the virus morphogenesis and propagation.

Page generated in 0.0647 seconds