• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 40
  • 33
  • 12
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 263
  • 263
  • 74
  • 60
  • 49
  • 48
  • 40
  • 39
  • 36
  • 33
  • 30
  • 30
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Couplage fluide-structure d'ordre (très) élevé pour des schémas volumes finis 2D Lagrange-projection / High-order fluid-structure coupling with conservative Lagrange-remap finite volume schemes on Cartesian grids

Dakin, Gautier 09 November 2017 (has links)
Ce travail est consacré à l’étude numérique de l’interaction entre un fluide compressible et une structure indéformable, en adaptant une famille récente de schémas d’ordre très élevé à la prise en compte de conditions aux bords particulières entre le fluide et la structure. Plus précisément,on évalue l’apport de schémas d’ordre strictement supérieur à 3 par rapport à des stratégies plus classiques dans la littérature restreintes aux ordres 1 et 2. Un résultat important est qu’il est possible de réaliser le couplage à tout ordre et qu’il existe des configurations pour lesquelles on observe un gain important pour les ordres élevés. Une revue bibliographique est faite rappelant les résultats théoriques concernant les systèmes hyperboliques et décrivant les méthodes utilisées dans la littérature pour la simulation de la dynamique des gaz et la prise en compte des conditions aux bords. Un schéma sur grilles cartésiennes décalées et d’ordre très élevé est proposé pour la résolution des équations d’Euler en 1D/2D. Ce schéma est basé sur le formalisme Lagrange-projection et bien que formulé en énergie interne assure conservation et consistance faible grâce à un correctif en énergie interne. Parallèlement, l’étude pour les systèmes hyperboliques linéaires de discrétisation à l’ordre très élevé des conditions aux bords est faite. Elle met en évidence la nécessité pour l’ordre élevé de s’intéresser à la stabilité des schémas ainsi obtenus. À partir de ces travaux, la prise en compte de conditions aux bords en vitesse normale imposée est réalisée pour les équations d’Euler en 1D et 2D. Enfin, une procédure de couplage entre fluide compressible et structure indéformable est proposée. / This work is devoted to the construction of stable and high-order numerical methods in order to simulate fluid - rigid body interactions. In this manuscript, a bibliographic overview is done, which highlights theoretical results about hyperbolic system of conservation laws, as well as the methods available in the literature for the hydrodynamics simulation and the numericalboundary treatment. A high-order accurate scheme is proposed on staggered Cartesian grids to approximate the solution of Euler equations in 1D and 2D. The scheme relies on Lagrange-remap formalism, and although formulated in internal energy, ensures both conservation and weak consistency thanks to an internal energy corrector. In the same time, the study of high-order numerical boundary treatment for linear hyperbolic system is done. It highlights the necessity to focus especially on the linear stability of the effective scheme. Starting from the linear results, the numerical boundary treatment with imposed normal velocity is done for Euler equations in 1D and 2D. Last, the coupling between a compressible fluid and a rigid body is realized, using the designed procedure for numerical boudary treatment.
172

Analyse mathématique et numérique de systèmes d’hydrodynamique compressible et de photonique en coordonnées polaires / Mathematical and Numerical Analysis of Systems of Compressible Hydrodynamics and Photonics with Polar Coordinates

Meltz, Bertrand 13 November 2015 (has links)
Ce manuscrit de thèse est consacré à l'analyse mathématique et numérique des systèmes de l'hydrodynamique compressible et de la photonique. Plus particulièrement, on étudie la construction de méthodes numériques dans des systèmes de coordonnées 2D polaires (une coordonnée radiale et une coordonnée d'angle) et où les équations sont discrétisées sur des maillages polaires structurés. Ces méthodes sont adaptées à la simulation d'écoulements à symétrie polaire puisqu'elles préservent ces symétries par construction. En revanche, ces systèmes de coordonnées introduisent des singularités géométriques et des termes sources géométriques qui doivent être traités avec attention. Dans la première partie de ce document, consacrée à l'hydrodynamique, on propose une classe de schémas numériques d'ordre arbitrairement élevé pour la résolution des équations d'Euler. Ces schémas utilisent des méthodes de résolution à directions alternées où chaque sous-système est résolu par un solveur Lagrange+projection. On étudie l'influence de la singularité géométrique r=0 des systèmes de coordonnées cylindriques et sphériques sur la précision du solveur 2D développé. La deuxième partie de ce manuscrit est consacrée à l'étude des équations de la photonique. Ces équations font intervenir un grand nombre de dimensions mathématiques et un terme source pouvant être raide. La principale difficulté ici est de capturer le bon régime asymptotique sur maillage grossier. On construit d'abord une classe de modèles où l'intensité radiative est projetée sur une base d'harmoniques sphériques afin de réduire le nombre de dimensions. Puis on propose un schéma numérique en coordonnées polaires et on prouve que le schéma restitue la bonne limite de diffusion aussi bien dans la direction radiale que dans la direction angulaire. / This thesis deals with the mathematical and numerical analysis of the systems of compressible hydrodynamics and radiative transfer. More precisely, we study the derivation of numerical methods with 2D polar coordinates (one for the radius, one for the angle) where equations are discretized on regular polar grids. On one hand, these methods are well-suited for the simulation of flows with polar symetries since they preserve these symetries by construction. On the other hand, such coordinates systems introduce geometrical singularities as well as geometrical source terms which must be carefully treated. The first part of this document is devoted to the study of hydrodynamics equations, or Euler equations. We propose a new class of arbitrary high-order numerical schemes in both space and time and rely on directional splitting methods for the resolution of 2D equations. Each sub-system is solved using a Lagrange+Remap solver. We study the influence of the r=0 geometrical singularities of the cylindrical and spherical coordinates systems on the precision of the 2D numerical solutions. The second part of this document is devoted to the study of radiative transfer equations. In these equations, the unknowns depend on a large number of variables and a stiff source term is involved. The main difficulty consists in capturing the correct asymptotic behavior on coarse grids. We first construct a class of models where the radiative intensity is projected on a truncated spherical harmonics basis in order to lower the number of mathematical dimensions. Then we propose an Asymptotic Preserving scheme built in polar coordinates and we show that the scheme capture the correct diffusion limit in the radial direction as well as in the polar direction.
173

Embedded and high-order meshes : two alternatives to linear body-fitted meshes / Maillages immergés et d'ordre élevé : deux alternatives à la représentation linéaire des maillages en géométrie inscrite

Feuillet, Rémi 10 December 2019 (has links)
La simulation numérique de phénomènes physiques complexes requiert généralement l’utilisation d’un maillage. En mécanique des fluides numérique, cela consisteà représenter un objet dans un gros volume de contrôle. Cet objet étant celui dont l’on souhaite simuler le comportement. Usuellement, l’objet et la boîte englobante sont représentés par des maillage de surface linéaires et la zone intermédiaire est remplie par un maillage volumique. L’objectif de cette thèse est de s’intéresser à deux manières différentes de représenter cet objet. La première approche dite immergée consiste à mailler intégralement le volume de contrôle et ensuite à simuler le comportement autour de l’objet sans avoir à mailler explicitement dans le volume ladite géometrie. L’objet étant implicitement pris en compte par le schéma numérique. Le couplage de cette méthode avec de l’adaptation de maillage linéaire est notamment étudié. La deuxième approche dite d’ordre élevé consiste quant à elle consiste à augmenter le degré polynomial du maillage de surface de l’objet. La première étape consiste donc à générer le maillage de surface de degré élevé et ensuite àpropager l’information de degré élevé dans les éléments volumiques environnants si nécessaire. Dans ce cadre-là, il s’agit de s’assurer de la validité de telles modifications et à considérer l’extension des méthodes classiques de modification de maillages linéaires. / The numerical simulation of complex physical phenomenons usually requires a mesh. In Computational Fluid Dynamics, it consists in representing an object inside a huge control volume. This object is then the subject of some physical study. In general, this object and its bounding box are represented by linear surface meshes and the intermediary zone is filled by a volume mesh. The aim of this thesis is to have a look on two different approaches for representing the object. The first approach called embedded method consist in integrally meshing the bounding box volume without explicitly meshing the object in it. In this case, the presence of the object is implicitly simulated by the CFD solver. The coupling of this method with linear mesh adaptation is in particular discussed.The second approach called high-order method consist on the contrary by increasing the polynomial order of the surface mesh of the object. The first step is therefore to generate a suitable high-order mesh and then to propagate the high-order information in the neighboring volume if necessary. In this context, it is mandatory to make sure that such modifications are valid and then the extension of classic mesh modification techniques has to be considered.
174

Numerical and modeling methods for multi-level large eddy simulations of turbulent flows in complex geometries / Modélisation et méthodes numériques pour la simulation aux grandes échelles muti-niveaux des écoulements turbulents dans des géométries complexes

Legrand, Nicolas 13 December 2017 (has links)
La simulation aux grandes échelles est devenue un outil d’analyse incontournable pour l’étude des écoulements turbulents dans des géométries complexes. Cependant, à cause de l’augmentation constante des ressources de calcul, le traitement des grandes quantités de données générées par les simulations hautement résolues est devenu un véritable défi qu’il n’est plus possible de relever avec des outils traditionnels. En mécanique des fluides numérique, cette problématique émergente soulève les mêmes questions que celles communément rencontrées en informatique avec des données massives. A ce sujet, certaines méthodes ont déjà été développées telles que le partitionnement et l’ordonnancement des données ou bien encore le traitement en parallèle mais restent insuffisantes pour les simulations numériques modernes. Ainsi, l’objectif de cette thèse est de proposer de nouveaux formalismes permettant de contourner le problème de volume de données en vue des futurs calculs exaflopiques que l’informatique devrait atteindre en 2020. A cette fin, une méthode massivement parallèle de co-traitement, adaptée au formalisme non-structuré, a été développée afin d’extraire les grandes structures des écoulements turbulents. Son principe consiste à introduire une série de grilles de plus en plus grossières réduisant ainsi la quantité de données à traiter tout en gardant intactes les structures cohérentes d’intérêt. Les données sont transférées d’une grille à une autre grâce à l’utilisation de filtres et de méthodes d’interpolation d’ordre élevé. L’efficacité de cette méthodologie a pu être démontrée en appliquant des techniques de décomposition modale lors de la simulation 3D d’une pale de turbine turbulente sur une grille de plusieurs milliards d’éléments. En outre, cette capacité à pouvoir gérer plusieurs niveaux de grilles au sein d’une simulation a été utilisée par la suite pour la mise en place de calculs basés sur une stratégie multi-niveaux. L’objectif de cette méthode est d’évaluer au cours du calcul les erreurs numériques et celles liées à la modélisation en simulant simultanément la même configuration pour deux résolutions différentes. Cette estimation de l’erreur est précieuse car elle permet de générer des grilles optimisées à travers la construction d’une mesure objective de la qualité des grilles. Ainsi, cette méthodologie de multi-résolution tente de limiter le coût de calcul de la simulation en minimisant les erreurs de modélisation en sous-maille, et a été appliquée avec succès à la simulation d’un écoulement turbulent autour d’un cylindre. / Large-Eddy Simulation (LES) has become a major tool for the analysis of highly turbulent flows in complex geometries. However, due to the steadily increase of computational resources, the amount of data generated by well-resolved numerical simulations is such that it has become very challenging to manage them with traditional data processing tools. In Computational Fluid Dynamics (CFD), this emerging problematic leads to the same "Big Data" challenges as in the computer science field. Some techniques have already been developed such as data partitioning and ordering or parallel processing but still remain insufficient for modern numerical simulations. Hence, the objective of this work is to propose new processing formalisms to circumvent the data volume issue for the future 2020 exa-scale computing objectives. To this aim, a massively parallel co-processing method, suited for complex geometries, was developed in order to extract large-scale features in turbulent flows. The principle of the method is to introduce a series of coarser nested grids to reduce the amount of data while keeping the large scales of interest. Data is transferred from one grid level to another using high-order filters and accurate interpolation techniques. This method enabled to apply modal decomposition techniques to a billion-cell LES of a 3D turbulent turbine blade, thus demonstrating its effectiveness. The capability of performing calculations on several embedded grid levels was then used to devise the multi-resolution LES (MR-LES). The aim of the method is to evaluate the modeling and numerical errors during an LES by conducting the same simulation on two different mesh resolutions, simultaneously. This error estimation is highly valuable as it allows to generate optimal grids through the building of an objective grid quality measure. MR-LES intents to limit the computational cost of the simulation while minimizing the sub-grid scale modeling errors. This novel framework was applied successfully to the simulation of a turbulent flow around a 3D cylinder.
175

Relativistic Plasmonics for Ultra-Short Radiation Sources / Plasmonique relativiste pour sources de rayonnement ultra-brèves

Cantono, Giada 27 October 2017 (has links)
La plasmonique étudie le couplage entre le rayonnement électromagnétique et les oscillations collectives des électrons dans un matériel. Les plasmons de surface (SPs), notamment, ont la capacité de concentrer le champ électromagnétique sur des distances micrométriques, ce qui les rend intéressants pour le développement des dispositifs photoniques les plus novateurs. 'Etendre l'excitation de SPs au régime de champs élevés, où les électrons oscillent à des vitesses relativistes, ouvre des perspectives stimulantes pour la manipulation de la lumière laser ultra-intense et le développement de sources de rayonnement énergétiques et à courte durée. En fait, l'excitation de modes résonnants du plasma est l'une des stratégies possibles pour transférer efficacement l'énergie d'une impulsion laser ultra-puissante à une cible solide, cela étant parmi les défis actuels dans la physique de l’interaction laser-matière à haute intensité. Dans le cadre de ces deux sujets, ce travail de thèse démontre la possibilité d'exciter de façon résonnante des plasmons de surface avec des impulsions laser ultra-intenses. Elle étudie comment ces ondes peuvent à la fois accélérer de paquets d'électrons relativistes le long de la surface de la cible mais aussi augmenter la génération d'harmoniques d'ordre élevé de la fréquence laser. Ces deux processus ont été caractérisés avec de nombreuses expériences et simulations numériques. En utilisant un schéma d’interaction standard de la plasmonique classique, les SPs sont excités sur des cibles dont la surface présente une modulation périodique régulière à l'échelle micrométrique (cibles réseau). Dans ce cas, les propriétés de l'émission d'électrons tout comme celles des harmoniques permettent d’envisager leur utilisation dans des application pratiques. En réussissant à dépasser les principaux problèmes conceptuels et techniques qui jusqu'au présent avaient empêché l'application d'effets plasmoniques dans le régime de champs élevés, ces résultats apportent un intérêt nouveau à l'exploration de la Plasmonique Relativiste. / Plasmonics studies how the electromagnetic radiation couples with the collective oscillations of the electrons within a medium. Surface plasmons (SPs), in particular, have a well-established role in the development of forefront photonic devices, as they allow for strong enhancement of the local EM field over sub-micrometric dimensions. Promoting the SP excitation to the high-field regime, where the electrons quiver at relativistic velocities, would open stimulating perspectives for the both the manipulation of ultra-intense laser light and the development of energetic, short radiation sources. Indeed, the excitation of resonant plasma modes is a possible strategy to efficiently deliver the energy of a high-power laser to a solid target, this being among the current challenges in the physics of highly-intense laser-matter interaction. Gathering these topics, this thesis demonstrates the opportunity of resonant surface plasmon excitation at ultra-high laser intensities by studying how such waves accelerate bunches of relativistic electrons along the target surface and how they enhance the generation of high-order harmonics of the laser frequency. Both these processes have been investigated with numerous experiments and extensive numerical simulations. Adopting a standard configuration from classical plasmonics, SPs are excited on solid, wavelength-scale grating targets. In their presence, both electron and harmonic emissions exhibit remarkable features that support the conception of practical applications. Putting aside some major technical and conceptual issues discouraging the applicability of plasmonic effects in the high-field regime, these results are expected to mark new promises to the exploration of Relativistic Plasmonics.
176

An Iterative Numerical Method for Multiple Scattering Using High Order Local Absorbing Boundary Conditions

Hale, Jonathan Harriman 31 May 2022 (has links)
This thesis outlines an iterative approach for determining the scattered wave for two dimensional multiple acoustic scattering problems using high order local absorbing boundary conditions and second order finite difference. We seek to approximate the total wave as it is scattered off of multiple arbitrarily shaped obstacles. This is done by decomposing the scattered wave into the superposition of single scattered waves. We then repeatedly solve the single scattering system for each obstacle, while updating the boundary conditions based off the incident wave and the scattered wave off the other obstacles. We solve each single scattering by enclosing the obstacle in a circular artificial boundary and generating a curvilinear coordinate system for the computational region between the obstacle and the artificial boundary. We impose an absorbing boundary condition, specifically Karp's Farfield Expansion ABC, on the artificial boundary. We use a finite difference method to discretize the governing equations and to discretize the absorbing boundary conditions. This will create a linear system whose solution will approximate the single scattered wave. The forcing vector of the linear system is determined from the total influence on the obstacle boundary from the incident wave and the scattered waves from the other obstacles. In each iteration, we solve the singular acoustic scattering problem for each obstacle by using the scattered wave approximations from the other obstacles obtained from the previous iteration. The iterations continue until the solutions converge. This iterative method scales well to multiple scattering configurations with many obstacles, and achieves errors on the order of 1E-5 in less than five minutes. This is due to using LU factorization to solve the linear systems, paired with parallelization. I will include numerical results which demonstrate the accuracy and advantages of this iterative technique.
177

Computational fluid dynamics on wildly heterogeneous systems

Huismann, Immo 23 February 2021 (has links)
In the last decade, high-order methods have gained increased attention. These combine the convergence properties of spectral methods with the geometrical flexibility of low-order methods. However, the time step is restrictive, necessitating the implicit treatment of diffusion terms in addition to the pressure. Therefore, efficient solution of elliptic equations is of central importance for fast flow solvers. As the operators scale with O(p · N), where N is the number of degrees of freedom and p the polynomial degree, the runtime of the best available multigrid algorithms scales with O(p · N) as well. This super-linear scaling limits the applicability of high-order methods to mid-range polynomial orders and constitutes a major road block on the way to faster flow solvers. This work reduces the super-linear scaling of elliptic solvers to a linear one. First, the static condensation method improves the condition of the system, then the associated operator is cast into matrix-free tensor-product form and factorized to linear complexity. The low increase in the condition and the linear runtime of the operator lead to linearly scaling solvers when increasing the polynomial degree, albeit with low robustness against the number of elements. A p-multigrid with overlapping Schwarz smoothers regains the robustness, but requires inverse operators on the subdomains and in the condensed case these are neither linearly scaling nor matrix-free. Embedding the condensed system into the full one leads to a matrix-free operator and factorization thereof to a linearly scaling inverse. In combination with the previously gained operator a multigrid method with a constant runtime per degree of freedom results, regardless of whether the polynomial degree or the number of elements is increased. Computing on heterogeneous hardware is investigated as a means to attain a higher performance and future-proof the algorithms. A two-level parallelization extends the traditional hybrid programming model by using a coarse-grain layer implementing domain decomposition and a fine-grain parallelization which is hardware-specific. Thereafter, load balancing is investigated on a preconditioned conjugate gradient solver and functional performance models adapted to account for the communication barriers in the algorithm. With the new model, runtime prediction and measurement fit closely with an error margin near 5 %. The devised methods are combined into a flow solver which attains the same throughput when computing with p = 16 as with p = 8, preserving the linear scaling. Furthermore, the multigrid method reduces the cost of implicit treatment of the pressure to the one for explicit treatment of the convection terms. Lastly, benchmarks confirm that the solver outperforms established high-order codes.
178

A new scalar auxiliary variable approach for general dissipative systems

Fukeng Huang (10669023) 07 May 2021 (has links)
In this thesis, we first propose a new scalar auxiliary variable (SAV) approach for general dissipative nonlinear systems. This new approach is half computational cost of the original SAV approach, can be extended to high order unconditionally energy stable backward differentiation formula (BDF) schemes and not restricted to the gradient flow structure. Rigorous error estimates for this new SAV approach are conducted for the Allen-Cahn and Cahn-Hilliard type equations from the BDF1 to the BDF5 schemes in a unified form. As an application of this new approach, we construct high order unconditionally stable, fully discrete schemes for the incompressible Navier-Stokes equation with periodic boundary condition. The corresponding error estimates for the fully discrete schemes are also reported. Secondly, by combining the new SAV approach with functional transformation, we propose a new method to construct high-order, linear, positivity/bound preserving and unconditionally energy stable schemes for general dissipative systems whose solutions are positivity/bound preserving. We apply this new method to second order equations: the Allen-Cahn equation with logarithm potential, the Poisson-Nernst-Planck equation and the Keller-Segel equations and fourth order equations: the thin film equation and the Cahn-Hilliard equation with logarithm potential. Ample numerical examples are provided to demonstrate the improved efficiency and accuracy of the proposed method.
179

An innovative model for developing critical thinking skills throughmathematical education

Aizikovitsh, Einav, Amit, Miriam 11 April 2012 (has links)
In a challenging and constantly changing world, students are required to develop advanced thinking skills such as critical systematic thinking, decision making and problem solving. This challenge requires developing critical thinking abilities which are essential in unfamiliar situations. A central component in current reforms in mathematics and science studies worldwide is the transition from the traditional dominant instruction which focuses on algorithmic cognitive skills towards higher order cognitive skills. The transition includes, a component of scientific inquiry, learning science from the student''s personal, environmental and social contexts and the integration of critical thinking. The planning and implementation of learning strategies that encourage first order thinking among students is not a simple task. In an attempt to put the importance of this transition in mathematical education to a test, we propose a new method for mathematical instruction based on the infusion approach put forward by Swartz in 1992. In fact, the model is derived from two additional theories., that of Ennis (1989) and of Libermann and Tversky (2001). Union of the two latter is suggested by the infusion theory. The model consists of a learning unit (30h hours) that focuses primarily on statistics every day life situations, and implemented in an interactive and supportive environment. It was applied to mathematically gifted youth of the Kidumatica project at Ben Gurion University. Among the instructed subjects were bidimensional charts, Bayes law and conditional probability; Critical thinking skills such as raising questions, seeking for alternatives and doubting were evaluated. We used Cornell tests (Ennis 1985) to confirm that our students developed critical thinking skills.
180

Positioning in GNSS-challenged environments : design framework, algorithms and technologies / Positionnement en environnements contraints : conception, algorithmes et technologies

Lu, Ye 17 September 2015 (has links)
Tandis que les humains explorent la nature sans relâche, ils font également attention à être plus conscients d'eux-mêmes, à mieux connaître ce qui les entourent, et, par exemple, à être informés de leurs positions, vitesses, ou trajectoires où qu'ils se trouvent. Les systèmes de positionnement par satellites (GNSS) ont fourni une manière de le faire à l'extérieur, devenant un assistant indispensable pour nous. Après le succès de GPS et GLONASS, Galileo et BeiDou sont actuellement en cours de déploiement, offrant plus de choix pour le positionnement autonome ou assisté. Toutefois, les signaux GNSS sont vulnérables aux obstacles: il n'y a presque pas de service GNSS à l'intérieur des bâtiments, dans les tunnels, ou dans les parkings souterrains; la continuité des services de positionnement par satellites n'est toujours pas assurée dans les "canyons urbains". Afin de faire face à ce problème, cette thèse est consacrée au positionnement en environnements contraints (où le GNSS n'est pas disponible), en y incluant la conception, les algorithmes et les technologies correspondantes. Un état de l'art est élaboré sur les systèmes de positionnement à radio ou à l'inertie. Parmi les technologies possibles, la discussion ne se limite pas à l'approche basée sur GNSS, mais elle est centrée sur cette dernière à cause de ses avantages et aussi de l’implication profonde de notre groupe de recherche dans ce domaine. Nous avons, d'une part, étudié la possibilité ainsi que les limites du positionnement avec une précision centimétrique en déployant notre système Repealite (i.e. un système de positionnement à l'intérieur d'une base des émetteurs GNSS spéciaux); et proposé, d'autre part, une méthode de localisation en groupe d'objets dynamiques communicants. Cette méthode procède d'une problématique délicate que l'on rencontre dans les approches GNSS, qu'est la détermination de la position initiale du récepteur. On montre en quoi elle permet également d'aller au-delà de la portée des approches classiques GNSS / While the human beings explore the nature tirelessly, they also put significant concerns to be aware of themselves, to know better of the circumstances, and to be informed with their precise positions, velocities, trajectories, and so on, in local environments. The Global Navigation Satellite Systems (GNSS) have provided an efficient method to do so outdoors, and have already become an indispensable assistant of many people. After the success of GPS and GLONASS, Galileo and BeiDou are currently under deployment, offering more choices of the independent or collaborative positioning. However, the GNSS signal is vulnerable to obstructions: almost no GNSS services are available inside buildings, tunnels, or underground parkings; the services are not always coherent in urban canyons. In order to address this problem, this thesis is dedicated to the design frameworks for the positioning in GNSS-challenged environments, as well as the corresponding algorithms and technologies. A brief survey of the latest radio-based and inertial positioning/tracking systems is provided. Among the feasible technologies, the discussion is centered on but not limited to the GNSS-based approach, which is due to the inherited advantages of this approach and also the deep engagement of our research group in this domain. We have, on one hand, explored the possibility and limitations on the centimeter-accuracy positioning with our Repealite system (i.e. a GNSS-base indoor positioning system with specific features); on the other hand, a method of batch localization for the nodes in a network of dynamic communicating objects is proposed, which is originated from an issue of the GNSS-based approach - the resolution of the receiver initial point, but then it goes beyond the scope of the “classical” GNSS-based approach

Page generated in 0.1636 seconds