Spelling suggestions: "subject:"hipersuperficies"" "subject:"hipersuperfícies""
21 |
[en] STABILITY OF MINIMAL SURFACES / [pt] ESTABILIDADE DE SUPERFÍCIES MÍNIMASDANIA GONZALEZ MORALES 23 June 2015 (has links)
[pt] Este trabalho tem como propósito o estudo da estabilidade de hipersuperfícies mínimas imersas em R n mais 1. Apresentamos algumas caracterizações de hipersuperfícies mínimas deduzindo as fórmulas da primeira e segunda variação do funcional da área. Em seguida, a partir do cálculo de variações, estabelecemos a relação entre a teoria espectral e a estabilidade. Em particular, estudamos a caraterização variacional do primeiro autovalor do operador de estabilidade. Com base nesta relação mostramos alguns critérios de estabilidade para hipersuperfícies mínimas imersas em R n mais 1. Em especial, exibimos em detalhes o critério de estabilidade de Barbosa-Do Carmo para a estabilidade de superfícies mínimas em R3. Assim como o critério de Fischer-Colbrie-Shoen para superfícies mínimas completas, não compactas, usando a teoria elíptica. Concluímos com a análise da estabilidade do catenoide em R3 e em R n mais 1. Obtemos os domínios de estabilidade do catenoide em R3 a partir da teoria de Sturm Liouville. Exibimos o teorema de estabilidade de Lindelof em R3 e em R n mais 1 e a propriedade do catenoide ter índice 1. / [en] This work aims to study the stability of minimally immersed hypersurfaces in R n more 1. We present some characterizations of minimal hypersurfaces deducting the formulas of the first and second variation of area. Afterwards, from the variational calculus, we establish the relationship between spectral theory and stability. Particulary, we study a variational characterization of the first eigenvalue associated to the stability operator. Based in this relationship we show some stability criteria for minimally immersed hypersurfaces in R n more 1. In particular, we exhibit in details the Barbosa-Do Carmo criterion for the stability of minimal surfaces in R3. We also establish the Fischer- Colbrie-Shoen criterion for complete, non compact, minimal surfaces using the elliptic theory. We conclude with the analysis of the stability of the catenoid in R3 and in Rn more 1. This is done by studying the stability domains of the catenoid in R3 using the Sturm-Liouville theory. We explain the Lindelof stability theorem in R3 and in R n more 1 and the property of the catenoids have index 1.
|
22 |
Imersões isométricas de formas espaciais em Sn x R e Hn x RCanevari, Samuel da Cruz 08 June 2015 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2016-10-05T11:50:42Z
No. of bitstreams: 1
TeseSCC.pdf: 2428184 bytes, checksum: e1ac9bcc617f51c6e101914c2bf485ad (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-05T18:25:42Z (GMT) No. of bitstreams: 1
TeseSCC.pdf: 2428184 bytes, checksum: e1ac9bcc617f51c6e101914c2bf485ad (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-05T18:25:51Z (GMT) No. of bitstreams: 1
TeseSCC.pdf: 2428184 bytes, checksum: e1ac9bcc617f51c6e101914c2bf485ad (MD5) / Made available in DSpace on 2016-10-05T18:37:11Z (GMT). No. of bitstreams: 1
TeseSCC.pdf: 2428184 bytes, checksum: e1ac9bcc617f51c6e101914c2bf485ad (MD5)
Previous issue date: 2015-06-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this thesis we classify the isometric immersions f : Mm ^ Sm+p x R with m > 3 P < m — ^d c < 1, where Mm denotes a Riemannian manifold with constant sectional curvature equal to c. We obtain partial results on the classification of isometric immersions f : Mm ^ Hm+p x R with m > 3 P < m — ^d c < 0, We also characterize the hvpersurfaces f : M3 ^ Q4(c) for which there exists another isometric immersion f : M3 ^ L4, where Q4(c^d L4 denote a 4-dimensional space form of constant sectional curvature c and the 4-dimensional Lorentz space, respectively. / Nesta tese classificamos as imersões isométrieas
f : Mm ^ gm+p x r com m > 3 P < m — 3 e c < 1, em que Mm denota uma variedade Riemanniana com curvatura seccional constante igual a c. Obtemos resultados parciais sobre a classificação das imersões isométrieas f : Mm ^ Hm+P x R com m > 3 P < m — 3 e c< 0, Caracterizamos ainda as hipersuperfíeies f : M3 ^ Q4(c) para as quais existe outra imersão isométrica f : M3 ^ L4, em que Q4(c) e L4 denotam, respectivamente, uma forma espacial Riemanniana com curvatura constante igual a c e o espaço de Lorentz de dimensão 4.
|
23 |
Conectividade de variedades semi-algébricas / Connectivity of semialgebraic setsMaldonado, Juan Carlos Nuñez 07 April 2017 (has links)
Neste projeto apresentamos os teoremas de estrutura, decomposição celular, e o teorema da existência da triangulação para conjuntos semi-algébricos compactos. Como aplicações destes teoremas mostramos o lema de seleção da curva local e global. Além disso, apresentamos uma breve descrição da topologia da fibra de Milnor local e global, bem como alguns resultados sobre o grau de conexidade da fibra genérica global de uma função polinomial complexa, que mostram a íntima relação entre o grau de conexidade com a dimensão do conjunto singular. / In this project we present some structure theorems, cell decomposition, and the theorem on the existence of triangulation for compact semi-algebraic sets. As applications we prove the curve selection lemma in the local and global cases. Moreover, we present a brief description about the topology of local and global Milnor´s fibers, as well as, some results about the connectivity degree of the generic fibers of a complex polynomial function, that show the close relation between the connectivity degree and the dimension of the singular locus.
|
24 |
Conectividade de variedades semi-algébricas / Connectivity of semialgebraic setsJuan Carlos Nuñez Maldonado 07 April 2017 (has links)
Neste projeto apresentamos os teoremas de estrutura, decomposição celular, e o teorema da existência da triangulação para conjuntos semi-algébricos compactos. Como aplicações destes teoremas mostramos o lema de seleção da curva local e global. Além disso, apresentamos uma breve descrição da topologia da fibra de Milnor local e global, bem como alguns resultados sobre o grau de conexidade da fibra genérica global de uma função polinomial complexa, que mostram a íntima relação entre o grau de conexidade com a dimensão do conjunto singular. / In this project we present some structure theorems, cell decomposition, and the theorem on the existence of triangulation for compact semi-algebraic sets. As applications we prove the curve selection lemma in the local and global cases. Moreover, we present a brief description about the topology of local and global Milnor´s fibers, as well as, some results about the connectivity degree of the generic fibers of a complex polynomial function, that show the close relation between the connectivity degree and the dimension of the singular locus.
|
25 |
Sobre hipersuperfÃcies mÃnimas, aplicaÃÃes do princÃpio do mÃximo fraco e de teoremas tipo-Liouville / On minimum hypersurfaces, application of the principle of maximum and weak theorems type-LiouvilleAntonio Wilson Rodrigues da Cunha 13 March 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / In this work we approach four research lines, where we began with the study of isometrically immersed hypersurfaces in a horoball. Next we studied Liouville type theorems in a complete Riemannian manifold for general operators. After we studied hypersurfaces f-minimal closed on a manifold with density, and nally we studied properly embedded minimal hypersurfaces with free boundary in a n-dimensional compact Riemannian manifold. Continuing, we obtain under a more general class operator than '-Laplacian, a Liouville type theorem for a complete Riemannian manifold, so that, prove a classication theorem for Killing graph of a foliation. Firstly, we are going to assume a weak maximum principle and that immersion is contained in a horoball, i.e., the set of bounded above Bussemann functions . We obtain an estimate for the highest quotient of r-curvatures. Moreover, under certain conditions on sectional curvature and assuming that the immersion is contained in a horoball, we forced the validity of the weak maximum principle and obtain the same estimates. Next, we establish a Choi-Wang type estimate for the rst eigenvalue of the weighter Laplacian on spaces with density in responding partially to Yau's conjecture for the rst eigenvalue weighter Laplacian for spaces with density, and moreover, we obtain an inequality Poincare type. With the estimates obtained, we establish an estimate of volume for a closed surface immersed in a space with density. Still following the study of spaces with density, we obtain a type Hientze-Karcher inequality for a compact manifold with nonempty boundary , so that, we obtain that if holds the equality than the manifold is isometric to a Euclidian ball. As consequence, we obtain under same conditions that if the f-mean curvature satisfy a bounded below than the manifold is isometric to a Euclidian ball. Finally, we obtain an estimate for the nonzero rst Steklov eigenvalue, where
we are giving a answer partial to a conjecture by Fraser and Li. Moreover, as a consequence we establish an estimate for the total length of the boundary of the properly embedded minimal surfaces with free boundary in terms of its topology, thus, we proved the same when the surface is embedded in the Euclidean ball 3-dimensional. / Neste trabalho, abordamos quatro linhas de estudo, onde iniciamos com o estudo de hipersuperfcies isometricamente imersas sobre uma horobola. Em seguida estudamos
Teoremas tipo Liouville para uma variedade Riemanniana completa em operadores mais gerais que o Laplaciano. Alem disso, estudamos hipersuperfcies f-mÃnimas fechadas em
uma variedade com densidade e, por fim, estudamos hipersuperfÃcies mÃnimas com bordo livre, propriamente imersas em uma variedade Riemanniana compacta n-dimensional.
Primeiramente, assumindo um princpio do maximo fraco e que a imersÃo està contida em uma horobola, i.e., um conjunto em que a funcÃo de Busemann à limitada superiormente, obtemos uma estimativa para o supremo do quociente das r-Ãsimas curvaturas. AlÃm disso, sob certas condiÃÃes sobre as curvaturas seccionais e assumindo que a imersÃo està contida em uma horobola, forÃamos a validade do princÃpio do mÃximo
fraco e obtemos as mesmas estimativas. Prosseguindo, obtemos, para um operador mais geral que o '-Laplaciano, um
teorema tipo-Liouville para uma variedade Riemanniana completa. Como aplicaÃÃo provamos um teorema de classificaÃÃo para grÃficos de Killing de uma folheaÃÃo.
Em seguida, estabelecemos uma estimativa tipo Choi e Wang para o primeiro autovalor do f-Laplaciano em espaÃos com densidade, no sentido de responder parcialmente à conjectura de Yau para o primeiro autovalor do Laplaciano; alÃm disso, obtemos uma desigualdade tipo Poincarà para esse operador. Com a estimativa obtida, pudemos estabelecer uma estimativa de volume para uma superfÃcie fechada mergulhada em um
espaÃo com densidade. Ainda seguindo o estudo de espaÃos com densidade, obtemos uma desigualdade tipo Heintze-Karcher para uma variedade compacta com bordo e verificamos que, se vale a igualdade, entÃo a variedade à isomÃtrica a uma bola Euclidiana. Como consequÃncia, obtemos que, nas mesmas condiÃÃes, e se a f-curvatura mÃdia satisfizer uma certa limitaÃÃo inferior, entÃo a variedade ainda à isometrica a uma bola Euclidiana. Finalmente, obtemos uma estimativa para o primeiro autovalor de Steklov, dando uma resposta parcial a uma conjectura devida a Fraser e Li. AlÃm disso, como consequÃncia, estabelecemos uma estimativa para o comprimento do bordo de uma superfÃcie mÃnima, compacta e propriamente megulhada com bordo livre em termos de sua topologia; assim, provamos o mesmo resultado quando a superfÃcie està mergulhada em uma bola Euclidiana 3-dimensional.
|
Page generated in 0.0578 seconds