Spelling suggestions: "subject:"nns"" "subject:"anns""
1 |
Caractérisation du mécanisme de régulation négative de l'ARNm hns par le petit ARN régulateur DsrA chez Escherichia coliMorissette, Audrey January 2010 (has links)
DsrA est un petit ARN régulateur que l'on retrouve chez plusieurs espèces bactériennes, notamment Escherichia coli non-pathogène et pathogène. DsrA est exprimé principalement lorsque la bactérie est dans un environnement température suboptimale (<37 [degrés Celsius]). En conditions d'expression de DsrA, on retrouve une forme pleine longueur de 85 nucléotides et une forme tronquée de 60 nucléotides. Il a été montré que DsrA, dans sa forme pleine longueur ou tronquée, peut diminuer l'initiation de la traduction de l'ARNm hns , codant pour la protéine H-NS, un régulateur majeur de la transcription qui module près de 5% des gènes chez E. coli . Toutefois, les mécanismes impliqués dans la répression traductionnelle d'hns par DsrA n'ont pas été caractérisés. Les travaux présentés dans ce mémoire démontrent que DsrA bloque l'initiation de la traduction d'hns en s'appariant immédiatement en aval du codon d'initiation de la traduction. De plus, DsrA provoque la dégradation de l'ARNm hns en recrutant le complexe dégradosome ARN. La RNase E, qui fait partie de ce complexe, va cliver l'ARNm au nucléotide 131 dans la région codante du gène, soit 80 nucléotides en aval de l'appariement entre hns et DsrA. Ce clivage va provoquer la dégradation rapide de l'ARNm hns par les exoribonucléases de E. coli . Mes travaux de maîtrise ont abouti à un modèle d'action de DsrA sur hns qui pourrait inclure les autres cibles négatives de DsrA. De plus, ils suggèrent que les sRNA semblent partager le même mécanisme général de dégradation des ARNm. Ces travaux démontrent également que l'extrémité 5' de DsrA tronqué est monophosphate ce qui suggère un clivage par une ribonucléase. Toutefois aucune ribonucléase connue d' E. coli ne semble produire la forme tronquée de DsrA, bien que l'exoribonucléase PNPase semble influencer sa dégradation. Ces travaux démontrent également l'impact des protéines RppH et CsdA dans la dégradation de l'ARNm hns à 25 [degrés Celsius], c'est-à-dire lorsque DsrA est naturellement exprimé. Ces protéines sont importantes pour la stabilité de hns et pour sa dégradation en présence de DsrA. Toutefois, le mécanisme d'action de ces protéines n'a pas été déterminé.
|
2 |
An Investigation of Architectures For Integration Of Stand-Alone INS And GPS Navigation SystemsDikshit, Veena G 07 1900 (has links)
Inertial navigation systems (INSs) have the well-known advantages of being self-contained, weatherproof, jam-proof, and non-self-revealing while providing stable navigation information with little high-frequency noise. However, their single most important drawback is the growth of their error cumulatively with time in an unbounded manner. Navigation systems based on position fixing, in contrast, offer bounded errors in the long term, but their output is usually contaminated with strong high-frequency noise. To harness the advantages of both types of systems, INSs have been traditionally aided or augmented by one or more fixing system(s). Such an arrangement preserves the excellent short-term stability and damping (i.e. high-frequency rejection) capability of INSs while limiting its long-term drift. In recent years, the availability of navigation information from the Global Positioning System (GPS) reliably and accurately over the entire globe has made it a natural choice as the means of augmentation of INSs. An integrated navigation system combining data from two or more ‘pure’systems is called a hybrid navigation system (HNS).
There is no unique way of combining navigation information from the INS and GPS. Depending on the goals and specifications of the overall navigation system, the instrument and equipment available, cost constraints, and technology options, the scheme for integrating INS and GPS may take one of many forms. In generic terms integration of diverse ‘pure’ navigation systems can be performed at various levels. At the simplest and most basic level, each system may be allowed to run independently, generating its own navigation data separately which may then be combined periodically to reset any accumulated error. At the other extreme, the two (or more) systems may be intimately coupled right at their raw data levels in a quasi-continuous manner with the intention of maximising their mutually beneficial effect and deriving the ‘best’ possible navigation information.
Hybrid navigation architectures have been a subject of much research and development, and a significant body of information is available on the subject. However, there are clear gaps in open literature on many practical issues that arise in the context of implementing specific HNSs. In this thesis we investigate the architecture, implementation and performance issues of HNSs that combine stand-alone INS and GPS units.
The thesis consists of eight chapters. The first chapter offers an introduction to the navigation problem and discusses the basic types of navigation including inertial and satellite navigation. Inertial sensors such as gyroscopes and accelerometers and the GPS are discussed in some detail. The types and principle of gyroscopes and accelerometers and the error sources in inertial navigation are briefly covered, as also the advantages and disadvantages of INS and the trends in inertial system development.The chapter also touches upon GPS segments (space, control and user), the theory and determination of position fix, and the GPS error sources. Mention is also made of the types of GPS receiver available and the trends in GPS technologies. Integration of INS and GPS and its benefits are discussed and a set of specifications for an integrated system is laid out to serve as the basis for the configurations proposed later.
The second chapter, in its three sections, provides a summary of the significant literature relevant to INS and GPS in the context of their integration.
Chapter three discusses mechanisation aspects of the INS-GPS hybrid navigation system. This chapter is divided into three sections. In the first section the frames of reference, INS mechanisation and the error equations are discussed. The definitions for the various frames such as body, platform, local level, geodetic, Earth-centred-Earth-fixed (ECEF), and the computer frame are mentioned along with the direction cosine matrices for the transformation of frames. In the second section various types of mechanisation of INS and the summary of tilt, velocity and position equations are described. The INS can be mechanised in two ways: the stable platform and the strap-down. In this chapter the general error equations for platform tilt, velocity and position are listed. Platform-based systems can be mechanized as one of the following types, viz. unipolar, Focualt, north pointing and wander azimuth. The definitions and summary of the tilt, velocity and position, and the error equations are given for all these types of mechanization. The accelerometer and gyro error models are discussed. It is pointed out that inclusion of all the possible INS states in the model would lead to a 45-state system which would be too complex to handle on board. The scope for reduction of model order and the effect of such reduction are brought out. The section ends with a summary of the INS error equations considered for implementation. In the third section the GPS principle and derivation of navigation solutions based on GPS measurements are dealt with. GPS error modelling, computation of DOP (dilution of precision), and clock modelling are also discussed. In this section the navigation solution for various classes of users – stationary, low-dynamics, medium-dynamics and high-dynamics – are discussed. The INS model and the clock model defined in this chapter are used in configuring the integrated system model later.
Chapter four discusses the various HNS configurations and their implementation to mitigate the INS error. Three levels of integration are considered:
a. Output coupled: The INS needs initial alignment during which the INS position and velocity are initialised with the precisely known co-ordinates and components at the starting location. Starting with these initial conditions, the INS-sensed accelerations are continuously integrated to yield the current velocity and position. As mentioned earlier, the INS error is dependent on this initial value and further increases with time. If the initial position and velocity inputs are precise, the short-term INS accuracy (typically for the first 10-15 minutes in case of aircraft) is usually within acceptable limits. Further error built up during longer flights can be reduced by periodic updation of INS with the precise position and/or velocity values. To achieve this the pilot may, for example, fly over waypoints whose co-ordinates are precisely known. This would constitute a physical or manual method of INS re-initialisation. A better and more modern method is to use precise GPS-derived information to reinitialise the INS periodically and automatically.
b. Medium coupled: Another way of mitigating the INS error build-up is by using medium-coupled HNS wherein the INS errors are estimated using the GPS measurements as reference. The INS outputs are corrected by applying these error estimates. The important point to note here is that in medium coupling, the errors in the INS states are considered instead of the states themselves. The final geodetic outputs from the two systems are used as measurements. A twelve-state indirect feed-forward Kalman filter is used to estimate the INS position error.
c. Tightly coupled: The basic measurements from the GPS are pseudoranges which are the distances from the user to the GPS satellites. By making a minimum of four such measurements the GPS receiver computes the user location in the geodetic coordinates. Conversely, knowing the user position from INS, it is possible to calculate the expected pseudoranges to known GPS satellite locations. Comparing the measured and the computed pseudoranges, the filter estimates the errors in the INS position. In this work a seventeen-state, feed-forward, indirect Kalman filter is configured to estimate the INS-derived pseudorange errors. These errors are then translated into positional errors which are used to correct the indicated INS positions.
In configuring the filter it is assumed that the INS and GPS are physically separated and data transfer is through the interface buses. In this chapter the simulators used for validation and performance estimation of the configurations are also described. Two simulators are used to validate the hybrid system, namely, software-and hardware-based simulators. The simulators simulate the six-degree-of-freedom of trajectory generator, and error models of INS and GPS. The truth data from the trajectory generator are combined with the INS error and GPS error to get the INS and GPS outputs respectively.
The fifth and sixth chapters covers the validation of the above-mentioned three configurations. Since analysis of output coupled systems is rather straightforward, simulation and validation of the configuration are carried out for the medium and tightly coupled systems Covariance analysis and Error analysis modes of simulation are carried out to study and validate the behaviour of the configurations. In covariance analysis one obtains the root mean square (rms) value of the errors obtained from several Monte Carlo runs. It gives an estimate of the lower bound of the system errors. Covariance simulation provides a degree of confidence in the error model but is generally not sufficient to expose the complete behaviour of the system. For detailed investigation, error simulation needs to be carried out for the entire navigation system. In the thesis, covariance simulation is carried out for both the configurations to check the sensitivity of the system to measurement update rates, process noise, update times for the transition matrix, and also for the validity of the truncation of the Taylor series expansion. The details of the simulation processes and their results are discussed in these chapter.
The seventh chapter makes a performance comparison of the configurations and draws inferences for practical hybrid system implementation. From the comparisons it is seen that the loosely coupled configuration is the simplest. In this configuration there is no requirement of the Kalman filter. The accuracy depends on the update rate. If the position update is made, for example, once every 600 s then the error in the combined system will be limited to the sum of the error due to the GPS and that accumulated in the INS alone over the of 600 s interval. There is no coordinate transformation required. In the case of medium coupled filter the addition of process noise to the GPS clock model is not critical. The position accuracy achieved is around 2 m (rms). The coordinate transformations are only from the body to platform, and platform to geodetic axes. The observation matrix is very simple in this case and the computation burden is low. Dynamic tuning of the measurement matrix is not required in real time.In the case of tightly coupled configuration the addition of a certain amount of process noise deliberately to the GPS clock model is critical. The position accuracy achieved with tight coupling is around found to be 34 m (rms) without the addition of process noise. On addition of a controlled amount of noise to the GPS clock bias and clock drift states and inclusion of measurement noise as a function of GPS signal strength, the position accuracy improves significantly, to about 7m (rms). Figures 2a and 2b below depict the behaviour before and after inclusion of the noise. The coordinate transformations are from body to platform, platform to geodetic, and geodetic to ECEF coordinates, and vice versa. The observation matrix (H) for this integration model is very complicated, and the computational burden is very high. In this configuration H transfers the measurements from metres to radians. Dynamic tuning of measurement matrix is required in this case.
Chapter eight of the thesis summarises the results and lists out the conclusions arrived at from the study. It also includes a section with suggestions for future work in this direction.
|
3 |
An Evaluation of Electrocochleography as a Diagnostic Tool for Ménière’s DiseaseKalin, Catherine Julia January 2010 (has links)
Ménière’s disease (MD) is an idiopathic inner ear disorder, characterised by episodes of vertigo, tinnitus, sensorineural hearing loss, and aural fullness in the affected ear. The relatively high variability of symptomological changes renders it difficult to confirm the MD diagnosis. The purpose of this study is to compare the diagnostic power of an instrumental method, electrocochleography (ECochG), and two subjective methods, including the criteria based on the clinical guidelines provided by the American Academy of Otolaryngology-Head and Neck Surgery Committee on Hearing Equilibrium (AAO-HNS CHE) and Gibson’s Score.
A quota sampling method was used to include subjects. A total of 250 potential MD patients who were referred to the Department of Otolaryngology at the Christchurch Hospital between year 1994 and 2009 have had their signs and symptoms documented and ECochG testing completed. A selection of details obtained from both AAO-HNS CHE and ECochG assessment results were examined as a chart review in regard to its function as a diagnostic tool for MD.
The between-method reliability was found to be high, with a few disagreements on individual diagnosis. Based on a receiver operating characteristic (ROC) curve analysis, the ECochG measures were shown to be pertinent to the diagnosis of MD. It was also found that patients tested “positive”, as compared with those tested “negative”, tended to show higher correlations among the four key symptoms of MD and among the ECochG measures derived from the auditory evoked responses to tone bursts at frequencies in close proximity to each other.
|
4 |
A comparative study of liability arising from the carriage of dangerous goods between Chinese and English LawLu, Chang January 2009 (has links)
This thesis is about the rights and liabilities arising under English and Chinese law in respect of the carriage of dangerous cargo. It is noted that the danger in dangerous cargoes was not necessarily something in the goods themselves, but might well lie in the way they were packaged, looked after or transported. Accordingly, the responsibilities and liabilities of the various parties with regards to the carriage of dangerous cargoes are usually intertwined and complex. The purpose of this thesis is to analyse and evaluate the dangerous cargoes liabilities in English and Chinese law, by providing suggestions for existing problems in each country based on three sources: contract, tort and statute. Moreover, the chain of causation and concept of remoteness has particular importance in order to establish liability and decide which type and what amount of damage is recoverable. This thesis compares both countries’ liability regimes and how to secure compensation for its victims, and the restoration of the environment, with reference to the EU Environmental Liability Directive and relevant international conventions. The author draws her final conclusions from four important issues: (1) the meaning of dangerous cargo, the packing and handling; (2) the scheme of liability; (3) the channelling of liability; and (4) the type of recoverable damage.
|
5 |
An Inertial-Doppler Hybrid Navigation System For Aircraft : Analysis, Implementation And EvaluationWagde, Anil H 05 1900 (has links) (PDF)
No description available.
|
6 |
Att stå upp för sin rätt– är det värt det? : En intervjustudie med elever som har dövhet eller hörselnedsättning om self-advocacy i övergången till gymnasiet. / Standing up for yourself- is it worth it? : An interview study with pupils with deafness or pupils who are hard of hearing about self-advocacy in the transition to upper secondary school.Rikardsson, Sandra January 2021 (has links)
Syftet med studien är att bidra med kunskap om under vilka omständigheter elever med dövhet eller hörselnedsättning (d/hns) utövar self-advocacy i övergången från högstadiet till gymnasiet. Self-advocacy innebär att individen står upp för sina behov och påverkar sin omgivning för att få likvärdiga förutsättningar till delaktighet. Detta är en kvalitativ intervjustudie med abduktiv ansats. Resultatet bygger på intervjuer med åtta gymnasieelever med dövhet eller hörselnedsättning som går tillsammans med hörande klasskamrater. Teorier om self-advocacy och identitet används i analysen och relation och interaktion mellan olika aktörer är centrala. Resultaten visar att eleven med d/hns i en skolövergång hamnar i flera situationer där hen kan förbättra tillgängligheten i klassrummet genom att utöva self-advocacy. Exempelvis kan eleven berätta om sin d/hns, påverka mikrofonanvändande och påverka lärarens undervisning. Studien visar också att elever ibland väljer att inte stå upp för sina behov för att undvika stigmatisering. I resultatet har en modell tagits fram som lyfter in eleven i sin kontext under övergångsprocessen och modellen kan användas för att förstå det komplexa samspelet mellan elev, lärare och klasskamrater under övergången. Slutsatsen är att det kan vara krävande för eleven att återkommande förväntas stå upp för sitt behov av tillgänglig kommunikation och att omgivningens bemötande skapar eller hindrar handlingsutrymmet för self-advocacy. Lärarens relationsskapande och förståelse för sin maktposition verkar vara de mest avgörande faktorerna för utvecklandet av handlingsutrymme för elevens self-advocacy. / The purpose of this study is to contribute with knowledge about under what circumstances pupils with deafness or pupils who are hard of hearing (d/hh) practice self-advocacy during the transition from lower secondary school to upper secondary school. Self-advocacy means that the individual stands up for their needs and influences their surroundings to achieve equal conditions for participation. This is a qualitative interview study with an abductive approach. The results are based on interviews conducted with eight upper secondary d/hh pupils and attend classes with hearing classmates in mainstream school settings. Theories of self-advocacy and identity are used in the analysis, and relationships and interactions between people are central. The results show that the student with d/hh during a school transition ends up in several situations where he or she can improve accessibility in the classroom by practicing self-advocacy. For example, the student can inform their classmates and/or teacher about their d/hh, influence them to use microphones and influence the teaching. The study also shows that students sometimes choose not to stand up for their needs in order to avoid stigma. In the results, a model has been developed that highlights the student in its context during the transition process and the model can be used to understand the complexity in the interaction between student, teacher and classmates during the transition. The conclusion is that it can be demanding for the student to recurrently be expected to stand up for their need of accessible communication and that the environment's response creates or hinders the acting space for self-advocacy. The teacher's ability to build relationships and understanding of his or her position of power appears to be the most decisive factors for the development of acting space for the student's self-advocacy.
|
Page generated in 0.0371 seconds