Spelling suggestions: "subject:"holographie"" "subject:"l'holographie""
51 |
Solutions de Trou Noir aux Équations d'Einstein en Présence de Matière et Modifications de la Gravitation en Dimensions Supplémentaires.Goutéraux, Blaise 27 September 2010 (has links) (PDF)
Dans cette thèse, nous nous intéressons aux solutions de trou noir dans des théories de gravitation modifiées, inspirées par la Cosmologie ou la Théorie des Cordes. Les théories Einstein-Maxwell-Dilaton (EMD) comprennent des champs scalaires et de jauge additionnels, ainsi qu'un potentiel scalaire de Liouville en exponentielle. Dans les théories Einstein-Gauss-Bonnet, l'espace-temps est étendu à plus de quatre dimensions. Nous commençons par passer en revue et classer les solutions des théories EMD. Dans le cas où l'horizon du trou noir est planaire, l'obtention d'une équation maîtresse constitue l'un des principaux résultats. Elle alors permet d'intégrer totalement le système d'équations, au prix d'une contrainte sur les constantes de couplage, et sinon d'obtenir des solutions particulières. Dans le cas des théories Einstein-Gauss-Bonnet à six dimensions, le tenseur de Weyl de l'horizon intervient dans les équations par l'action de la constante de couplage du terme de Gauss-Bonnet : cela a pour effet de restreindre grandement la topologie de l'horizon, ce qui lève en partie la dégénérescence qui existait en Relativité Générale. Par la suite, nous étudions les propriétés thermodynamiques des trous noirs en Relativité Générale et en théories EMD. Pour ces dernières, nous montrons que des transitions de phases similaires à celles en Relativité Générale existent dans l'ensemble canonique. Plus généralement, ces propriétés dépendent de manière cruciale des constantes de couplage de la théorie. Pour finir, nous donnons une interprétation holographique aux trous noirs des théories EMD, en tant que bonnes approximations à l'Infra-Rouge. Nous calculons également les conductivités en courant continu et alternatif dans le cadre d'une application à la Matière Condensée, et trouvons certaines caractéristiques typiques des métaux étranges.
|
52 |
Holographie hétérodyne numérique pour l'étude des nanostructures plasmoniquesSuck, Sarah 02 November 2011 (has links) (PDF)
Dans cette thèse, nous étudions les caractéristiques de diffusion de nanostructures plas- moniques tout en adaptant et améliorant l'holographie hétérodyne numérique, qui est une technique d'imagerie plein champ pour mesurer en trois dimensions le diagramme de rayonnement. En outre, nous avons effectué de nombreuses mesures spectroscopiques pour enregistrer les spectres de diffusion de nanoobjets uniques. Afin d'obtenir une com- préhension plus profonde des caractéristiques du champ diffusé que nous mesurons, nous avons développé un modèle numérique basé sur la méthode des éléments finis. Ce modèle nous a permis de simuler le champ proche et le champ lointain d'une nanostructure avec une onde incidente en réflexion ou en transmission. Nous obtenons un excellent accord entre nos résultats expérimentaux et calculés. Dans cette thèse, nous avons étudié de nombreux nanostructures d'or fabriquées sur du verre par lithographie électronique. Des structures simples nous ont permis de valider la technique. Des objets plus sophistiques nous ont ensuite permis de constater que leur di- agramme de diffusion est extrêmement sensible aux facteurs externes et internes, tels que la polarisation et la longueur d'onde de la lumière incidente ou la géométrie de la struc- ture et sa longueur d'onde de résonance. En outre, nous montrons que la technique de l'holographie hétérodyne photothermique mesure directement l'augmentation de la tem- pérature, et ainsi, se présente comme une nouvelle méthode pour étudier la distribution de la chaleur dans des nanostructures plasmoniques.
|
53 |
Microscopie holographique numérique : modélisation et développement de méthodes pour l'étude d'écoulements canalisés et microcanalisésVerrier, Nicolas 22 October 2009 (has links) (PDF)
L'étude des écoulements, réactifs ou non, nécessite la mise en place de méthodes de diagnostics non-intrusives. Les méthodes de diagnostic optiques sont d'excellentes candidates pour répondre à ce type de problématique. Les milieux étudiés sont alors ensemencés de traceurs adaptés. S'ils sont correctement choisis, ces traceurs permettront de caractériser l'écoulement. L'utilisation de l'holographie numérique pour l'étude des écoulements offre un avantage certain par rapport à des méthodes d'imagerie classiques. En effet, elle permet d'accéder aux caractéristiques tridimensionnelles des traceurs utilisés (vitesses, tailles, position). La simplicité du montage optique utilisé pour l'enregistrement holographique rend cette technique particulièrement adaptée à l'étude des écoulements non-confinés tels que les sprays ou les jets. En revanche, dans le cadre de l'étude des écoulements confinés (écoulements canalisés par exemple), l'utilisation de l'holographie (et des méthodes de diagnostic optique en général) nécessite des modifications dans le dispositif expérimental. En effet, dans le cas d'écoulements canalisés, la géométrie cylindrique des canalisations introduit de l'astigmatisme dans le dispositif d'imagerie. Pour pouvoir étudier les écoulements canalisés et prendre en compte l'astigmatisme du montage, un modèle de simulation numérique des hologrammes est mis en place. Ce dernier permet, grâce au formalisme des matrices ABCD, de prendre en compte les paramètres géométriques la canalisation. Les hologrammes ainsi obtenus sont, ensuite, restitués par transformation de Fourier fractionnaire (TF fractionnaire). En effet, cet opérateur est adapté à la restitution des hologrammes enregistrés en lumière astigmate. De plus, il est ici prouvé que la TF fractionnaire permet effectivement de remettre au point sur les images des objets, que ceux-ci soient centrés sur l'axe optique du système ou non. Bien que l'astigmatisme puisse apparaître comme une difficulté à lever, il est possible d'en tirer partie. Ainsi, l'utilisation d'un faisceau référence focalisé dans la canalisation a permis d'isoler, de manière " tout-optique ", une région d'intérêt tridimensionnelle dans l'écoulement à étudier. Cette démarche permet ainsi d'alléger les traitements de restitution des hologrammes et offre la possibilité de sonder des volumes particuliers de l'écoulement. La généralisation de ces approches au cas des écoulements microcanalisés est discutée et appliquée, avec succès, à la visualisation de billes de latex de 5µm de diamètre situées dans un microcanal de 100µm de diamètre interne ou dans une région d'intérêt de dimensions réduites.
|
54 |
Conception and achievement of an interferometric device of shearography. Application through scattering media / Conception et réalisation d'un dispositif interférométrique de shearographie. Application en milieu diffusant.Rosso, Vanessa 10 December 2007 (has links)
Lobjectif de cette thèse était de concevoir et développer un dispositif expérimental réalisant des mesures dans la gamme micrométrique, qui soit compact, transportable et le plus stable possible pour la réalisation de mesures in-situ. Ce projet a donc contribué à la conception et à la réalisation dun dispositif interférométrique de shearographie qui constituera une base pour de futurs développements.
Un interféromètre original de shearographie à chemins optiques quasi-communs et utilisant la technique du décalage de phase temporel a été présenté dans ce travail. Lélément clef du montage expérimental de shearographie est le dispositif de cisaillement (« shearing device », en anglais) : il sagit dun prisme qui sépare les états de polarisation TE et TM grâce à une couche mince polarisante et une fine lame de verre qui lui est accolée. Cet élément de cisaillement ainsi que lutilisation dune caméra CMOS et dune cellule à cristaux liquide pour modulateur de phase, ont permis la réalisation dun interféromètre compact, en ligne, relativement bon marché et à chemins optiques quasi-communs, lui conférant ainsi une grande stabilité par rapport aux perturbations extérieures. De plus, la sensibilité de cet interféromètre peut être ajustée pour différentes applications en modifiant la distance de cisaillement, par exemple en utilisant une lame de verre dépaisseur différente accolée au prisme séparateur de polarisation. Des logiciels pour lacquisition et le traitement des images ont également été développés afin de rendre le système simple dutilisation et convivial.
Lefficacité de cet interféromètre de shearographie a été prouvée dans le domaine mécanique et une application originale a été développée dans le domaine de la biophotonique.
|
55 |
Suivi 3D de nanoparticules d'or par holographie digitaleVerpillat, Frédéric 06 July 2012 (has links) (PDF)
Nous présentons dans ce manuscrit un dispositif optique combinant l'holographie digitale et la microscopie en champ noir dans le but de suivre en trois dimensions des nanoparticules d'or en mouvement dans des fluides transparents ou des milieux biologiques. Ce montage permet à partir d'un seul hologramme de localiser simultanément plusieurs particules en mouvement dans un volume épais, avec une précision de localisation indépendante de la positions des particules. Nous rappelons tout d'abord le principe de l'holographie et nous dresserons un état de l'art des techniques de suivi 3D existantes utilisant l'holographie digitale. Nous expliquons pourquoi l'utilisation d'une illumination en champ noir est nécessaire à l'observation de nanoparticules, étant donné leur très faible section efficace de diffusion. Ensuite, nous décrivons le dispositif mis en place ainsi que le logiciel développé pour la reconstruction des hologrammes numériques en temps réel. Enfin, nous présentons les résultats expérimentaux obtenus sur des particules en mouvement brownien ainsi que des résultats préliminaires de localisation de nanoparticules injectées dans des cellules vivantes.
|
56 |
Développement de méthodes instrumentales en vue de l'étude Lagrangienne de l'évaporation dans une turbulence homogène isotropeChareyron, Delphine 16 December 2009 (has links) (PDF)
Cette thèse est centrée sur le développement d'outils expérimentaux permettant de mieux caractériser l'étude du couplage entre l'évaporation de gouttelettes et un écoulement turbulent gazeux environnant. Dans notre étude on cherche à se placer dans un régime de couplage fort entre les gouttelettes évaporantes et la turbulence. Dans ce régime peu renseigné dans la littérature, les gouttelettes se trouvent dans un régime intermédiaire entre le régime de traceur et le régime inertiel. Dans un premier temps nous présentons un dispositif expérimental capable de générer une turbulence homogène isotrope avec de fortes fluctuations de vitesse, ainsi que la réalisation de l'injection de gouttelettes initialement monodisperses. Puis, l'instrumentation Lagrangienne développée (en collaboration avec le laboratoire Hubert Curien de St Etienne) : l'holographie numérique en ligne, est ensuite testée et validée pour un fluide non évaporant. Une méthode de tracking des gouttelettes a été mise au point afin de reconstruire les trajectoires des gouttelettes dans le volume turbulent homogène isotrope. La précision obtenue sur les diamètres (2% pour des gouttes de 60 μm) vient complètement valider cette métrologie pour l'étude de l'évaporation. Les premiers résultats obtenus avec des gouttelettes évaporantes de fréon R114 font apparaître la visualisation, à notre connaissance inédite, des sillages évaporants. Une première reconstruction de trajectoire avec l'évolution du diamètre de la goutte au cours du temps est enfin présentée.
|
57 |
Algorithmen der Bildanalyse und -synthese für große Bilder und Hologramme / Algorithms for image analysis and synthesis of large images and hologramsKienel, Enrico 22 February 2013 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit Algorithmen aus dem Bereich der Bildsegmentierung sowie der Datensynthese für das so genannte Hologrammdruck-Prinzip.
Angelehnt an ein anatomisch motiviertes Forschungsprojekt werden aktive Konturen zur halbautomatischen Segmentierung digitalisierter histologischer Schnitte herangezogen. Die besondere Herausforderung liegt dabei in der Entwicklung von verschiedenen Ansätzen, die der Anpassung des Verfahrens für sehr große Bilder dienen, welche in diesem Kontext eine Größe von einigen hundert Megapixel erreichen können. Unter dem Aspekt der größtmöglichen Effizienz, jedoch mit der Beschränkung auf die Verwendung von Consumer-Hardware, werden Ideen vorgestellt, welche eine auf aktiven Konturen basierende Segmentierung bei derartigen Bildgrößen erstmals ermöglichen sowie zur Beschleunigung und Reduktion des Speicheraufwandes beitragen. Darüber hinaus wurde das Verfahren um ein intuitives Werkzeug erweitert, das eine interaktive lokale Korrektur der finalen Kontur gestattet und damit die Praxistauglichkeit der Methode maßgeblich erhöht.
Der zweite Teil der Arbeit beschäftigt sich mit einem Druckprinzip für die Herstellung von Hologrammen, basierend auf virtuellen Abbildungsgegenständen. Der Hologrammdruck, der namentlich an die Arbeitsweise eines Tintenstrahldruckers erinnern soll, benötigt dazu spezielle diskrete Bilddaten, die als Elementarhologramme bezeichnet werden. Diese tragen die visuelle Information verschiedener Blickrichtungen durch einen festen geometrischen Ort auf der Hologrammebene. Ein vollständiges, aus vielen Elementarhologrammen zusammengesetztes Hologramm erzeugt dabei ein erhebliches Datenvolumen, das parameterabhängig schnell im Terabyte-Bereich liegen kann. Zwei unabhängige Algorithmen zur Erzeugung geeignet aufbereiteter Daten unter intensiver Ausnutzung von Standard-Graphikhardware werden präsentiert, hinsichtlich ihrer Berechnungs- sowie Speicherkomplexität verglichen und unter Berücksichtigung von Qualitätsaspekten bewertet.
|
58 |
Holographie électronique en champ sombre : une technique fiable pour mesurer des déformations dans les dispositifs de la microélectroniqueDenneulin, Thibaud 15 November 2012 (has links) (PDF)
Les contraintes font maintenant partie des " boosters " de la microélectronique au même titre que le SOI (silicium sur isolant) ou le couple grille métallique / diélectrique haute permittivité. Appliquer une contrainte au niveau du canal des transistors MOSFETs (transistors à effet de champ à structure métal-oxyde-semiconducteur) permet d'augmenter de façon significative la mobilité des porteurs de charge. Il y a par conséquent un besoin de caractériser les déformations induites par ces contraintes à l'échelle nanométrique. L'holographie électronique en champ sombre est une technique de MET (Microscopie Électronique en Transmission) inventée en 2008 qui permet d'effectuer des cartographies quantitatives de déformation avec une résolution spatiale nanométrique et un champ de vue micrométrique. Dans cette thèse, la technique a été développée sur le microscope Titan du CEA. Différentes expériences ont été réalisées afin d'optimiser la préparation d'échantillon, les conditions d'illumination, d'acquisition et de reconstruction des hologrammes. La sensibilité et la justesse de mesure de la technique ont été évaluées en caractérisant des couches minces épitaxiées de Si_{1-x}Ge_{x}/Si et en effectuant des comparaisons avec des simulations mécaniques par éléments finis. Par la suite, la technique a été appliquée à la caractérisation de réseaux recuits de SiGe(C)/Si utilisés dans la conception de nouveaux transistors multi-canaux ou multi-fils. L'influence des phénomènes de relaxation, tels que l'interdiffusion du Ge et la formation des clusters de β-SiC a été étudiée. Enfin, l'holographie en champ sombre a été appliquée sur des transistors pMOS placés en déformation uniaxiale par des films stresseurs de SiN et des sources/drains de SiGe. Les mesures ont notamment permis de vérifier l'additivité des deux procédés de déformation.
|
59 |
Quantitative off-axis Electron Holography and (multi-)ferroic interfacesLubk, Axel 27 May 2010 (has links) (PDF)
A particularly interesting class of modern materials is ferroic ceramics. Their characteristic order parameter is a result of quantum chemistry taking place on a sub-Å length scale and long-range couplings, e.g. mediated by electrostatic or stress fields. Furthermore, the particular subclass of multiferroics possesses more than one order parameter and exhibits an intriguing coupling between them, which is interesting both from the fundamental physics point of view as well as from a technological vantage point. While on a more fundamental level it is desirable to elucidate the physical details of the coupling mechanism, this knowledge could subsequently lead to new and technologically interesting multiferroic materials, which overcome their current drawback that only one of the multiple order parameters is appreciably large while the others stay small. Due to the short and long range nature of the driving forces, one challenge for thoroughly understanding ferroic ceramics is the characterization of material properties within a large interval of length scales from several tens of µm to sub-Å. To that end, it is useful to exploit that all order parameters can be described as macroscopic fields, e.g. electric polarization or strain, which, in turn, can be either directly or indirectly probed with an electron beam such as used in Transmission Electron Microscopy (TEM). Consequently, TEM is excellently suited for investigating ferroic materials, i.e., state-of-the-art instruments facilitate aberration corrected imaging within a large magnification interval covering the length scales of interest, in particular the atomic regime. A general drawback of conventional TEM techniques is the loss of phase information originally contained in the scattered electron wave introduced by recording only the electron density. Electron Holography is an advanced TEM technique that facilitates the complete evaluation of the complex electron wave, which, in combination with the manifold possibilities of TEM, provides rather straightforward access to static electromagnetic fields within the ceramic. Nevertheless, quantification of order parameters such as the electric polarization or minute details in electromagnetic fields still require to correlate the experimentally gained observations to physical models, which combine the details of the microscopic imaging process, the electron-specimen scattering, and solid state physics of the specimen. The goal of this work is to investigate and advance the limits of Electron Holography as a truly quantitative TEM technique and apply the findings in, e.g., the investigation of ferroic ceramics. In the light of the previously mentioned difficulties, the problem has to be tackled from different directions:
Firstly, the whole holographic imaging process is reviewed and extended, if necessary, in order to provide quantitative measures for systematic and statistical errors inherent to reconstructed waves. In the course of that process, two previously not recognized holography-specific aberrations are identified, firstly, a resolution limiting spatial envelope and secondly, a spatial distortion to the reconstructed wave. Furthermore, several correction strategies have been developed, in order to correct the aforementioned two and other well-known disturbances, e.g. Fresnel fringes from the biprism filament. The previous holographic noise model has been extended to incorporate the important contribution from the detector and consequently to provide realistic statistic error bars of the holographically reconstructed amplitude and phase.
Secondly, an investigation of the electron-specimen scattering process itself is conducted, leading to a density matrix description of the holographic measurement. The general laws of quantum electrodynamics provide the framework of that description. Relativistic phenomena such as retardation of electromagnetic fields exchanged between beam electron and specimen and spin-orbit coupling of the beam electron are quantified, where the latter is found to be negligible within TEM. The decoherence of the electron wave by statistical coupling to the thermally moving crystal lattice of ceramics is treated by a newly developed algorithm facilitating in particular the accurate quantification of elastic scattering on heavy elements. Inelastic excitations in the ceramic, e.g. bulk plasmons or core electrons, are treated in combination with elastic scattering to identify their role in the holographic reconstruction process and to develop methods for an accurate calculation. A new scattering algorithm combining elastic and inelastic scattering is developed and applied to predict peculiar scattering contrasts of dipole transitions and to discuss the long-standing problem of contrast mismatch between scattering simulations and conventional imaging. To provide a user-friendly and continuing use of the findings, a software package SEMI (Simulation of Electron Microscopy Imaging) has been written, which facilitates the simulation of elastic and inelastic scattering processes and the subsequent imaging within different approximations, incorporating the newly developed algorithms.
Thirdly, Density Function Theory (DFT) solid state calculations have been employed to identify and quantify structural modifications and characteristic electromagnetic fields, such as occurring at domain boundaries, within typical ferroic ceramics like BaTiO3 or BiFeO3, and concomitantly provide models correlating observables of the (holographic) experiment to characteristics of the materials, e.g. the order parameters. This is particularly important when static electromagnetic fields provide no direct information about the order parameter, e.g. the electric polarization, i.e., it is possible to correlate the measurable atomic positions to the electric polarization within linear response theory. A software package ATA (AuTomated Atomic contrast fitting) has been developed facilitating an automated fitting of atomic positions and a subsequent determination of local polarization.
In a fourth step, electron holographic experiments analyzed with the help of the revised imaging process in combination with the knowledge gained from scattering theory are used as an input to the models established from solid state physics to yield quantitative information about bulk ferroelectric materials such as BaTiO3 and PbTiO3 and more complicated configurations such as domain walls in BiFeO3 and KnbO3. It is found that particular atomic shifts characteristic for ferroelectrics provide the most reliable quantitative information about the polarization down to nm length scales, whereas minute wave modification due to characteristic electron distributions within the ceramic are currently insufficiently quantitatively interpretable within Electron Holography. The linear response program, correlating atomic positions to ferroelectric polarization with the help of ab-initio calculated Born effective charges, has been successfully applied to determine finite size effects, screening layer widths and polarization charges in non-ferroelectric/ferroelectric layered systems.
Finally, a special section considers the evaluation of 3D electromagnetic fields by Electron Holographic Tomography, which provides the means to characterize even more complex 3D domain wall configurations. As the capabilities of the technique are still limited by holographic reconstruction errors and particular tomographic issues such as incomplete projection data, the main focus of that section is put on the characterization and improvement of the tomographic reconstruction process. A Singular Value based reconstruction method is developed, which facilitates a quantification and control of the tomographic reconstruction error. Furthermore, vector field reconstruction is extended in order to treat magnetic vector fields leaking out from the reconstruction volume. / Ferroische Keramiken bilden eine besonders interessante Klasse moderner funktionaler Werkstoffe. Ihr charakteristischer Ordnungsparameter ist das Ergebnis quantenchemischer Prozesse innerhalb einer sub- Å Längenskala und spezifischer langreichweitiger Kopplungen, welche beispielsweise durch elektromagnetische oder Spannungsfelder vermittelt werden. Des Weiteren besitzt die besondere Unterklasse der Multiferroika mehr als einen Ordnungsparameter und zeigt eine faszinierende Kopplung zwischen ihnen, was sowohl vom Standpunkt physikalischer Grundlagenforschung als auch aus technologischer Sicht von Interesse ist. Während es vom fundamentalen Standpunkt erstrebenswert ist, die physikalischen Details des Kopplungsmechanismus aufzuklären, könnte in der Folge dieses Wissen zu neuen und technologisch interessanten multiferroischen Materialien führen, welche den derzeit bestehenden Nachteil, dass nur ein Ordnungsparameter genügend groß ist, während die jeweils anderen klein bleiben, hinter sich lassen. Aufgrund der kurz- und langreichweitigen Natur der Antriebskräfte besteht eine Herausforderung für das umfassende Verständnis ferroischer Keramiken aus der Charakterisierung von Materialeigenschaften innerhalb eines breiten Intervalls von Längenskalen, welches von einigen 10 µm bis unterhalb eines Å reicht. Um dieses Ziel zu erreichen ist es zweckmäßig auszunutzen, dass alle Ordnungsparameter als makroskopische, beispielsweise elektrostatische oder Verzerrungs-, Felder beschrieben werden können, welche wiederum direkt oder indirekt mit einem Elektronenstrahl, wie er im Transmissionselektronenmikrokop (TEM) zur Anwendung kommt, gemessen werden können. Folglich ist die Transmissionselektronenmikroskopie hervorragend geeignet um ferroische Materialien zu untersuchen, das heißt, modernste Geräte ermöglichen aberrationskorrigierte Aufnahmen innerhalb eines großen Vergrößerungsbereiches, welche die interessanten Längenskalen und insbesondere den atomaren Bereich abdecken. Ein allgemeiner Nachteil der konventionellen TEM Techniken ist der Verlust der Phaseninformationen, welche ursprünglich in der Elektronenwelle vorhanden sind und durch die Aufzeichnung der Elektronenintensität zerstört werden. Elektronenholographie ist eine weiterentwickelte TEM Technik, welche die vollständige Auswertung der komplexen Elektronenwelle ermöglicht, was wiederum in Verbindung mit den vielfältigen Möglichkeiten der TEM einen vergleichsweise direkten Zugang zu elektromagnetischen Feldern in der Keramik ermöglicht. Nichtsdestotrotz erfordert die Quantifizierung von Ordnungsparametern, wie der elektrische Polarisierung, oder von kleinsten Details elektromagnetischer Felder die Korrelation experimenteller Daten mit physikalischen Modellen, welche die Details des mikroskopischen Bildgebungsprozesses mit der Elektronen-Objekt Streuung und der Festkörperphysik des Objektes kombinieren. Das Ziel dieser Arbeit besteht aus der Untersuchung und Erweiterung der Möglichkeiten von Elektronenholographie als quantitative TEM Messmethode und der Anwendung dieser Ergebnisse bei der Untersuchung ferroischer Keramiken. Im Lichte der eben erwähnten Schwierigkeiten muss das Problem von verschiedenen Richtungen bearbeitet werden:
Erstens wird der komplette holographische Bildgebungsprozess mit dem Ziel einer quantitativen Bewertung systematischer und statistischer Fehler der rekonstruierten Welle analysiert und gegebenenfalls erweitert. Im diesem Zuge wurden zwei bisher nicht erkannte holographiespezifische Fehler identifiziert, erstens eine auflösungsbegrenzende räumliche Enveloppe und zweitens eine räumliche Verzerrung der rekonstruierten Welle. Außerdem wurden verschiedene Korrekturmöglichkeiten entwickelt, um die zwei eben genannten und andere wohlbekannte Störungen, wie zum Beispiel die Fresnelstreifen des Biprismafadens, zu korrigieren. Das bisherige holographische Rauschmodel wurde erweitert um den beträchtlichen Einfluss des Detektors zu berücksichtigen und damit realistische Fehlerbalken für die holographisch rekonstruierte Amplitude und Phase zu erhalten.
Zum Zweiten wird der Streuprozess selber untersucht, was zu einer Dichtematrixbeschreibung der holographischen Messung führt. Den Rahmen dieser Untersuchungen liefern die Gesetze der Quantenelektrodynamik. Relativistische Phänomene wie die Retardierung elektromagnetischer Felder, welche zwischen Strahlelektron und Objekt ausgetauscht werden, oder Spin-Bahn Kopplung des Strahlelektrons werden quantifiziert, wobei letzteres als unwichtig für TEM eingestuft werden konnte. Die Dekohärenz der Elektronenwelle durch die statistische Kopplung an das thermisch bewegte Kristallgitter der Keramik wird mit einem neu entwickelten Algorithmus beschrieben, welcher insbesondere die genaue Quantifizierung der elastischen Streuung an schweren Elementen erlaubt. Ein weiterer neuer Streualgorithmus, welcher elastische und inelastische Streuung kombiniert, wird entwickelt und angewendet, um spezifische Streukontraste von Dipolübergängen vorauszusagen und das altbekannte Problem der Kontrastdiskrepanz zwischen simulierten und experimentellen Bildkontrasten zu diskutieren. Um eine anwenderfreundliche und fortdauernde Anwendung der Erkenntnisse zu ermöglichen, wurde das Softwarepaket SEMI geschrieben, welches die Simulation elastischer und inelastischer Streuprozesse und des nachfolgenden Bildgebungsprozesses innerhalb verschiedener Näherungen ermöglicht und die neu entwickelten Algorithmen beinhaltet.
Zum Dritten kommen dichtefunktionalbasierte Festkörperrechenmethoden zur Anwendung um charakteristische elektromagnetische Felder, wie sie beispielsweise an Domänengrenzen entstehen, innerhalb typischer ferroischer Keramiken wie BaTiO3 oder BiFeO3 zu identifizieren und zu quantifizieren und gleichzeitig Modelle zu entwickeln, welche Observablen des (holographischen) Experiments mit Charakteristika des Materials, beispielsweise den Ordnungsparamtern, korrelieren. Dies ist besonders wichtig, wenn statische elektromagnetische Felder keinen direkten Zugang zu den Ordnungsparametern, wie zum Beispiel die ferroelektrische Polarisation, liefern; beispielsweise besteht innerhalb linearer Antworttheorie die Möglichkeit, atomare Positionen mit der elektrischen Polarisation zu korrelieren. Ein Softwarepaket wurde entwickelt, welches die automatische Bestimmung der Atompositionen und der daraus resultierenden lokalen Polarisation ermöglicht.
In einem vierten Schritt wurden mit Hilfe des überarbeiteten holographischen Bildgebungsprozesses in Kombination mit den aus der Streutheorie gewonnenen Erkenntnissen holographische Experimente analysiert und als Input für die mit Hilfe der Festkörpertheorie entwickelten Modelle genutzt, um quantitative Informationen über raumferroische Materialien wie BaTiO3 und PbTiO3 und kompliziertere Anordnungen wie Domänengrenzen in BiFeO3 und KnbO3 zu gewinnen. Es konnte festgestellt werden, dass spezifische atomare Verschiebungen, welche charakteristisch für Ferroelektrika sind, die zuverlässigste quantitative Information über die Polarisation bis in den Längenbereich einiger nm liefern, wogegen kleinste Wellenmodifikationen aufgrund charakteristischer Elektronenverteilungen innerhalb der Keramik mit Hilfe von Elektronenholographie nur unzureichend interpretierbar sind. Das lineare Antwortprogramm, welches die Atompositionen über Bornsche effektive Ladungen mit ferroelektrischer Polarisation korreliert, wurde erfolgreich angewendet, um Größeneffekte und Ausdehnungen von Abschirmschichten und Polarisationladungen in nichtferroelektrisch/ferroelektrischen Schichtsystemen zu bestimmen.
Abschließend widmet sich ein spezieller Abschnitt der Auswertung 3D elektromagnetischer Felder mit Hilfe der elektronenholographischen Tomographie, was die Voraussetzung für die Charakterisierung von noch komplizierteren 3D Domänenwandanordnungen liefert. Da die Möglichkeiten dieser Technik durch den holographischen Rekonstruktionsfehler und spezifisch tomographische Probleme noch beschränkt sind, liegt der Schwerpunkt dieses Abschnitts in der Charakterisierung und Verbesserung des tomographischen Rekonstruktionsprozesses. Es wird eine singulärwertbasierte Rekonstruktionsmethode entwickelt, welche die Quantifizierung und Kontrolle des Rekonstruktionsfehlers ermöglicht. Außerdem wird die Vektorfeldrekonstruktion erweitert, um magnetische Vektorfelder, welche über das Rekonstruktionsvolumen hinausragen, zu behandeln.
|
60 |
Mesure d'un écoulement diphasique liquide/liquide par holographie numérique en ligne : Application à la caractérisation des émulsions en colonne pulsée.Lamadie, Fabrice 24 May 2013 (has links) (PDF)
De nombreux procédés de la recherche et de l'industrie utilisent l'extraction liquide-liquide, technique qui permet la séparation sélective de produits au sein d'un mélange. À cet effet, deux liquides non miscibles sont mis en contact : une phase aqueuse et une phase organique, l'une contenant généralement une molécule extractante capable de transférer les éléments désirés à l'autre. Le transfert se produit à la surface de contact entre les deux phases. Après le transfert, les deux phases sont séparées par décantation. Dans la pratique, ces opérations sont effectuées dans des appareils industriels. Pour optimiser et comprendre le fonctionnement de ces dispositifs, il est important de déterminer les caractéristiques fondamentales de l'émulsion. Il s'agit notamment des paramètres liés à la vitesse des écoulements ainsi que ceux liés au mélange des fluides comme l'aire interfaciale, le taux de rétention, ou la distribution en taille de la population de gouttes. Plusieurs techniques d'imagerie peuvent être utilisées pour les mesurer. L'une d'elles, l'holographie numérique, est bien connue pour permettre la reconstruction complète en 3D d'un écoulement à partir d'une seule acquisition. Ce travail de thèse traite d'une application de l'holographie numérique en ligne directement sur des gouttes en mouvement dans une phase liquide continue. La taille des gouttes a imposé l'exploration d'un régime de diffraction peu étudié à ce jour. Dans ce domaine, le modèle du disque opaque classiquement employé n'est pas valide et un meilleur accord est obtenu avec un modèle mixte lui associant une lentille mince. La focalisation des hologrammes est réalisée via une méthode dédiée et automatique qui a été établie à partir d'une étude complète de la littérature. Dans un deuxième temps, afin de mesurer des rétentions plus élevées, elle est complétée par une approche inverse permettant de corriger les mauvais positionnements et de restituer les gouttes non détectées. Ce traitement a été appliqué à des résultats expérimentaux, sur un dispositif de référence produisant des gouttes calibrées, et comparé à des mesures indépendantes. Ces essais ont validé la pertinence de l'holographie pour la caractérisation des émulsions.
|
Page generated in 0.0507 seconds