Spelling suggestions: "subject:"holography."" "subject:"colography.""
251 |
Differential Near Field Holography for Small Antenna ArraysJanice, Brian A 29 August 2011 (has links)
"Near-field diagnosis of antenna arrays is often done using microwave holography; however, the technique of near-field to near-field back-propagation quickly loses its accuracy with measurements taken farther than one wavelength from the aperture. The loss of accuracy is partially due to windowing, but may also be attributed to the decay of evanescent modes responsible for the fine distribution of the fields close to the array. In an effort to achieve better resolution, the difference between these two phase-synchronized near-field measurements is used and propagated back. The performance of such a method is established for different conditions; the extension of this technique to the calibration of small antenna arrays is also discussed. The method is based on the idea of differential backpropagation using the measured/simulated/analytical data in the near field. After completing the corresponding literature search authors have found that the same idea was first proposed by P. L. Ransom and R. Mittra in 1971, at that point with the Univ. of Illinois. This method is basically the same, but it includes a few distinct features: 1. The near field of a (faulty) array under test is measured at via a near field antenna range. 2. The template (non-faulty) near field of an array is simulated numerically (full-wave FDTD solver or FEM Ansoft/ANSYS HFSS solver) at the same distance - an alternative is to use measurements for a non-faulty array. 3. Both fields are assumed (or made) to be coherent (synchronized in phase). 4. A difference between two fields is formed and is then propagated back to array surface using the angular spectrum method (inverse Fourier propagator). The corresponding result is the surface (aperture) error field. This approach is more precise than the inverse Rayleigh formula used in Ransom and Mittra's paper since the evanescent spectrum may be included into consideration. 5. The error field magnitude peaks at faulty elements (both amplitude and phase excitation fault). 6. The method inherently includes all mutual coupling effects since both the template field and the measured field are full-wave results."
|
252 |
Development of a multi-wavelength lensless digital holography system for 3D deformations and shape measurements of tympanic membranesLu, Weina 23 April 2012 (has links)
Current methodologies for characterization of tympanic membranes (TMs) have some limitations. They: are qualitative rather than quantitative, consist of single point mobility measurements, or only include one-dimensional deformation measurements. Furthermore, none of the current clinical tools for diagnosis of hearing losses have the capability to measure the shape of TM, which is very useful for anatomical or pathological investigations. The multi-wavelength lensless digital holography system (MLDHS) reported in this work consists of laser delivery (LD), optical head (OH), and computing platform (CP) subsystems, with capabilities of real-time, non-contact, full-field of view measurements. One version of the LD houses two tunable near-infrared external-cavity diode lasers with central wavelengths of 780.24nm and 779.74nm respectively, an acousto-optic modulator, and a laser-to-fiber mechanism. The output of the LD is delivered to an ultra-fast MEMS-based fiber optic switch and the light beam is directed to the OH, which is arranged to perform imaging and measurements by phase-shifting holography. The second LD version subsystem contains one tunable near-infrared diode laser in the range from 770nm to 789nm, an anamorphic prism pair, an acousto-optic modulator, a half-wave plate, and a fiber coupler assembly. The output of the LD is delivered to the OH directly. The OH is designed by 3D optical ray tracing simulations in which components are rotated at specific angles to overcome reflection issues. A high-resolution digital camera with pixel size of 6.7μm by 6.7μm in the OH is used for image recording at high-rates while the CP acquires and processes images in either time-averaged or double-exposure modes. The choice of working version depends on the requirements of the measurement and the sample under test. MLDHS can obtain shape and one-dimensional deformations along one optical axis (z-axis). In order to recover 3D deformations, assumptions based on elasticity theory are prerequisites for the calculations: (a) the TM is analyzed as a thin shell; (b) shape before and after deformation is considered nearly the same since acoustic pressure typically introduces nanometer scale deformations; and (c) normal vectors remain perpendicular to the deformed mid-plane of the TM. Another part of this Thesis is the design and prototyping of the MLDHS, which translates this holographic platform into a simple and compact holographic instrument for measurements of the visible tympanic-membrane motions in live patients. Therefore, the OH subsystem needs to be light and portable, as it can be mounted on a robotic arm be near the ear canal, while the LD subsystem needs to be stable and safely protected. Preliminary results of acoustically induced 3D deformations and shape measurements by a single instrument that demonstrate the capabilities of the devices developed in this Thesis are presented.
|
253 |
Time resolved and time average imaging of magnetic nano-structuresBurgos Parra, Erick Omar January 2018 (has links)
The ability of a ferromagnet to maintain its magnetic state in the absence of an external magnetic field has made ferromagnetic materials an important subject of study in physics since the end of the 19th century. Moreover, ferromagnetic materials are the cornerstone for data storage systems such as magnetic tapes, magnetic disk drives and magnetic random access memory. The discovery of the Giant Magneto Resistance (GMR) in 1988 suggested that, since the magnetic state of the electrical conductor has an important effect upon the current flow, there may also be an inverse influence of the current upon the magnetization. In this effect, predicted in 1989 [1] by Slonczewski and called Spin Transfer Torque, angular momentum transferred by a spin polarized current can exert a torque on the magnetization of a ferromagnetic material, changing the local magnetization and stimulating the precession of the magnetic moments, generating microwave signals. This provides a new method of manipulating magnetization without applying an external field. Large polarized currents lead to spin transfer effects which are the driving force for the magnetic dynamics of devices known as Spin Transfer Oscillators (STO). In this new kind of nano-device the emission of microwaves is stimulated by a DC electrical current and measured as a change in the output voltage due the GMR effect. The specific characteristics of these devices such as working frequency and DC current ranges, microwave emission linewidth, and maximum emission power among others, are given by the design and size of the device,and the nature of the magnetic oscillations producing the emission. Among the multiple types of STO that now exist , I have focused my research upon three of them: Spin Transfer Vortex Oscillators (STVO), Single Layer Spin Transfer Oscillators (SL-STO) and Orthogonal Pseudo Spin Valves. Within STVOs and SL-STOs we can nucleate what is called a magnetic vortex. A magnetic vortex is a curling of the in-plane of a magnetic layer with its centre pointing out of the magnetization plane. The gyration of this vortex due to STT produces a microwave emission < 1GHz with a greater emission power than that produced by the precession of magnetic moments in STOs. The phase-locked synchronisation of multiple vortices is expected to exhibit enhanced microwaved power and phase stability compared to a single vortex device, providing a solution to the drawbacks of the STO in the low frequency regime. On the other hand, Orthogonal Pseudo Spin Valves promote the nucleation of magnetic dissipative solitons, also called magnetic droplets. This type of magnetic structure has an opposite out of plane magnetization to the layer that contains it. Compared to the microwave emission of magnetic vortices , magnetic droplets have a higher frequency range and emission power. However, their nucleation is subject to large external fields being applied to the sample. In this thesis, I electrically characterized these devices and applied magnetic imaging techniques in order to go further in the understanding of the spatial features and dynamic behaviour of these magnetic structures. It is not possible to acquire this knowledge by only using electrical characterization. Understanding the magnetization dynamics in these devices is crucial for the design of STO based devices while imaging studies are required to prove the existence of these magnetic structures, as in case of the magnetic droplet. In chapter 2 I will introduce the background concepts of magnetism that are relevant to this thesis. I will go from the basics principles of ferromagnetism, its quantum mechanical treatment, and the theory that explain the dynamics of the magnetisation. I will also present the state of the art in experimental research in the field of spin transfer oscillators. My aim is to give the basic background needed to understand the results presented in this thesis. In chapter 3 I will introduce the two main experimental techniques used for imaging the magnetisation of the devices presented: Holography with Extended Reference by Autocorrelation Linear Differential Operator (HERALDO) and Time Resolved Scanning Kerr Microscopy (TRSKM). I will revise the theoretical background concepts and the development of the techniques in order to demostrate the uniqueness of each technique and how they were used in this thesis. It is interesting to note that while MOKE is a well-known and widely-used technique, far fewer laboratories in the world area able to perform time resolved measurements using MOKE, with the University of Exeter being one of them. Furthermore, HERALDO is a novel technique that is used for the first time to image magnetic structures within multilayer systems in this thesis, which is a milestone in the development of the techinque. In chapter 4 I present an investigation of the magnetization dynamics of a SL-STO. Electrical transport measurements provided an initial characterization of the device. We then used HERALDO for the first time to investigate the magnetization dynamics in an intermediate layer of a multilayer stack. We present time averaged measurements of the magnetisation of a magnetic vortex formed underneath a nano contact (NC) positioned on top of the multilayer, using a combination of x-ray holography and x-ray magnetic circular dichroism. In chapter 5 I present the first direct measurement at the time of a magnetic dissipative droplet, using holography with extended reference autocorrelation by linear differential operator (HERALDO). I studied the out of plane magnetisation of the free layer under a NC within an orthogonal pseudo spin salve. In chapter 6 I present and study STVO devices with pairs of NCs of 100 nm diameter and centre-to-centre separation D = 200 to 1100 nm, by a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM). It will be shown that the dynamic behaviour of vortices and anti vortices changes when the distances between the NCs within the devices is changed.
|
254 |
Mesure interférométrique de phase et application à la combinaison cohérente d’un grand nombre de fibres amplificatrices / Interferometric phase measurement and its application for coherent fiber beam combining of a large number of amplifiersAntier-Murgey, Marie 17 November 2014 (has links)
Les propriétés intrinsèques des fibres amplificatrices telles que leur robustesse, leur efficacité, leur qualité de faisceau ou encore leur compacité ou leur bonne gestion thermique, en font un candidat idéal pour le développement de sources lasers de haute puissance, capables de rivaliser aujourd’hui avec les lasers solides. Les applications de ces sources avec de fortes puissances sont nombreuses : l’industrie (usinage, marquage), la défense (télémétrie, imagerie), la physique des particules. Dans ce dernier cas, des sources ultra-brèves et ultra-intenses permettent d’envisager de nouvelles applications telles que la proton-thérapie ou bien le remplacement des synchrotrons actuels par des architectures moins encombrantes et ayant un rendement plus important. Ce travail de thèse s’est déroulé dans le contexte du projet ICAN qui vise à étudier l’architecture de ces nouvelles sources.La combinaison cohérente de plusieurs amplificateurs fibrés en parallèle permet d’augmenter la puissance de ces sources. Pour atteindre les énergies visées dans le projet ICAN, la combinaison cohérente de 10 000 fibres doit être envisagée. L’objectif de cette thèse est de développer des techniques de contrôle de la phase compatibles avec un très grand nombre de fibres, pour leur application aux lasers ultra-intenses nécessaires à la physique des particules.Deux architectures de combinaison cohérente basées sur une mesure de phase interférométrique ont été réalisées dans cette thèse. La première, basé sur l’holographie numérique, permet un contrôle de la phase sans aucun calcul, collectif tant au niveau de la mesure que de la correction. La seconde architecture possède un contrôle actif de phase basé sur un algorithme de traitement d’images et elle a une bande passante compatible avec le spectre de bruit des amplificateurs. La combinaison cohérente de 16 fibres à 1kHz avec une erreur résiduelle de phase de λ/60mrs a été démontrée. La compatibilité de ces deux architectures avec 10 000 fibres a été étudiée et nous avons apporté quelques éléments pour la combinaison cohérente d’un très grand nombre de fibres. / The intrinsic properties of optical fibers like robustness, efficiency, beam quality, compactness and good thermal management can now compete with solid state lasers to develop high power laser sources. The applications of such sources include industry (machining, marking), defense (telemetry, lidar), and fundamental research. In this case, high intensity lasers are compulsory to produce the next generation of particles accelerators more efficient and more compact, both for fundamental research and its direct applications such as proton therapy. This work was done in the context of the ICAN project, which studies the feasibility of such sources.To overcome the limitations in terms of power of a single amplified fiber, an idea is to use several fiber lasers and to combine them coherently. To reach the ultra-high peak power and high average power requirements for these applications, the coherent beam combining of 10,000 fiber amplifiers has to be envisaged. The goal of the work is to develop a scheme of phase control scalable to a high number of combined fibers.Two schemes based on an interferometric phase measurement are realized in this work. The fist scheme, based on digital holography, permits a collective phase measurement and correction without calculation. The second scheme is based on an active phase control with individual phase modulators. This control requires an image processing algorithm and has a bandwidth compatible with the phase spectral noise of the amplifiers. The coherent combining of 16 fibers at 1kHz with a residual phase shift error of λ/60rms is achieved in this case. We use this second scheme to evaluate its scalability. We show that the coherent combining of 10,000 fibers using off-the-shelf components is already possible.
|
255 |
Sound propagation in urban spacesDonavan, Paul Randall January 1976 (has links)
Thesis. 1976. Sc.D.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Microfiche copy available in Archives and Engineering. / Vita. / Includes bibliographical references. / by Paul R. Donavan. / Sc.D.
|
256 |
Desenvolvimento da microscopia holográfica digital por reflexão para avaliação 3D de superfícies. / Development of digital holographic microscopy by reflection for 3D surface evaluation.Valin Fernández, Meylí 08 December 2017 (has links)
Dentre dos procedimentos geradores de perfil óptico encontra-se a microscopia holográfica digital. Esta ferramenta interferométrica surgiu da ideia inicial proposta por D. Gabor sobre holografia, a qual permite mediante o registro da interferência de campos ópticos coerentes, guardar e extrair informações de imagens. A microscopia holográfica digital permite a análise de objetos com resoluções transversais semelhantes às obtidas por microscopia óptica, e ainda, possui a vantagem pela natureza da holografia de permitir realizar análises através do acesso a valores quantitativos de fase. Apresentam-se neste trabalho os conceitos básicos da holografia digital e da microscopia holográfica digital, com o objetivo, de introduzir o desenvolvimento de uma metodologia para a implementação da microscopia holográfica digital por reflexão para o controle dimensional de objetos e determinação da rugosidade superficial de amostras de aço. Os hologramas são obtidos mediante uma instalação óptica, que consiste em um interferômetro de Michelson por reflexão com o uso de uma lente objetiva de microscópio e uma câmera CCD sem lente. Para a reconstrução das imagens de contraste de fase são utilizadas técnicas numéricas que capacitam à microscopia holográfica digital para a supressão do termo de ordem zero, controle da resolução de pixel, desmodulação da fase óptica, determinação dos mapas de intensidades e fase, filtragem e compensação de aberrações dos hologramas obtidos. As reconstruções numéricas dos feixes objeto e referência são realizadas utilizando o método de dupla propagação. Foi desenvolvido um algoritmo que apresenta a imagem de contraste de fase com base num critério de distância a partir de um único holograma. Desta forma o programa utilizado permite a realização de medições quantitativas das dimensões dos objetos e da rugosidade superficial de amostras de aço, assim como, a representação em 3D da imagem de fase reconstruída com resultados validados através de um perfilômetro óptico 3D sem contacto modelo CCI-MP. / Among the procedures generating optical profile is the digital holographic microscopy. This interferometric tool arose from the initial idea proposed by D. Gabor on holography, which allows by recording the interference of coherent optical fields, save and extract information from images. Digital holographic microscopy allows the analysis of objects with transversal resolutions similar to those obtained by optical microscopy, and also has the advantage of the nature of holography to allow to perform analyzes through the access to quantitative phase values. This paper presents the basic concepts of digital holography and digital holographic microscopy, with the objective of introducing the development of a methodology for the implementation of digital holographic microscopy by reflection for the dimensional control of objects and determination of surface roughness of samples of steel. The holograms are obtained by means of an optical installation consisting of a Michelson interferometer by reflection using an objective microscope lens and a lensless CCD camera. For the reconstruction of phase contrast images, numerical techniques are used that enable digital holographic microscopy to suppress the zero-order term, control pixel resolution, optical phase demodulation, determination of intensity and phase maps, filtering and compensation of aberrations of the obtained holograms. Numerical reconstructions of the object and reference beams are performed using the double propagation method. An algorithm has been developed that presents the phase contrast image based on a distance criterion from a single hologram. In this way the program used allows the realization of quantitative measurements of the object dimensions and the surface roughness of steel samples, as well as the 3D representation of the reconstructed phase image with results validated through a 3D contactless optical profilometer model CCI- MP.
|
257 |
Micromagnetic modelling of imperfect crystalsÓ Conbhuí, Pádraig January 2018 (has links)
In paleomagnetism, practical measurements are rarely made using perfect, isolated, single-phase, ferromagnetic crystals. Experimental observations are typically made using magnetic materials formed by a variety of natural processes. In this thesis, we will look at bridging the gap between current numerical modelling capability and experimental observations. First, we work towards micromagnetic modelling of multi-phase magnetic materials, including magnetostriction, embedded in a rocky matrix, along with crystal defects. We present a derivation of the Boundary Element Method formulation used by the micromagnetics package, MERRILL, and provide an extension of this from single-phase materials to multi-phase. After discussing issues with previous approaches to modelling magnetostriction, we derive and present a more robust and flexible approach. This model of magnetostriction is suitable for non-uniformmagnetizations, for multi-phase materials, and for arbitrary boundary conditions, and can be incorporated into MERRILL.We then outline a method for extending our model to materials embedded in an infinite elastic matrix of arbitrary elasticity. Finally, we present a method for modelling the magnetic response of a material due to crystal defects, along with a concrete example of a magneto-dislocation coupling energy at a magnetite-ilmenite boundary where stress due to lattice misfit is eased by regular edge dislocations. Second, we work towards being able to verify micromagnetic models against nano-scale experimental data. To do this, we present two techniques for simulating electron holograms from micromagnetic modelling results, a technique capable of imaging magnetic structures at the nano-scale. We also present example electron holograms of commonly occurring magnetic structures in nano-scale rock and mineral magnetism, and highlight some distinguishing features, which may be useful for interpreting experimental electron holography data.
|
258 |
Estudo de materiais fotorrefrativos e suas aplicações no processamento óptico holográfico de informação / Study of photorefractive materials and their applications in holographic optical processing of informationGesualdi, Marcos Roberto da Rocha 31 January 2005 (has links)
O Estudo de Materiais Fotorrefrativos e suas Aplicações no Processamento Óptico Holográfico de Informação vêm sendo feitos por diversos Grupos de Pesquisas em vários laboratórios devido aos bons resultados obtidos com esses meios em diversas áreas. Entre outros efeitos foto-induzidos o processo que possibilita essas aplicações é o efeito fotorrefrativo, um fenômeno onde o registro holográfico no meio fotorrefrativo ocorre pela modulação do índice de refração de acordo com a distribuição espacial da intensidade da luz incidente, devido a uma redistribuição foto-induzida de cargas espaciais, e conseqüente, geração de um campo espaço-carga no meio. Neste trabalho, estuda-se a propagação e acoplamento de ondas eletromagnéticas em monocristais elétro-ópticos paraelétricos da Família das Silenitas \'BI IND. 12\'\'SI\'\'O IND. 20\' (BSO) e \'BI IND. 12\'\'TI\'\'O IND. 20\' (BTO) e nos ferroelétricos \'LI\'\'NB\'\'O IND. 3\' puros e dopados. O propósito de estudar esses materiais é caracterizá-los e, principalmente, otimizá-los para aplicação no processamento óptico e holográfico de informação. Utiliza-se técnicas de caracterização de redes holográficas fotorrefrativas e de lentes foto-induzidas para determinação de figuras de mérito e parâmetros fotorrefrativos e termo-ópticos nestes meios fotorrefrativos. Propõe-se também algumas aplicações no processamento óptico e holográfico de informação, nas áreas de pesquisa básica, tecnológicas e biomédicas, que vêm despertando grande interesse nos últimos anos, como holografia em tempo real com mapeamento de fase, interterometria speckle em tempo real e registro não-holográfico no processo de conversão incoerente-incoerente; entre outras no processamento óptico e holográfico de dados. / The Study of Photorefractive Materials and their Applications in Optical and Holographical Information Processing come being made for diverse Groups of Research in some laboratories due to the good results in many areas. Among other photo-induced effects, the process that allows these applications is the photorefractive effect, a phenomenon where the holographic recording in photorefractive medium occurs by means of the refractive index modulation due to the space distribution of the light intensity, producing a space-charge photo-induced redistribution, and consequently, the generation of a space-charge field governed by an electro-optic medium. In this work, we study the propagation and coupling of electromagnetic waves in electro-optic monocrystals of the sillemite family Bi12SiO20 (BSO) and Bi12TiO20 (BTO) and in the pure and dop-ed LiNbO3 crystals. The purpose to study these materials is to characterize them and, mainly, to optimize the conditions of their application in the optical and holographical information processing. We use photorefractive holographic gratings and photo-induced lens techniques for determination of figures of merit and photorefractive and thermo-optic parameters in these photorefractive materials. We also consider some applications in the optical and holographical information processing in the research basic, technological and biomedical areas, that come waken great interest in the last years, as phase- shifting real-time holography, real-time speckle interferometry and non-holographic recording with incoherent-incoherent conversion process; among others in the optic and holographic data processing.
|
259 |
Opto-Electrochemical Methods for Imaging the Reactivity of Individual Nanoparticles / Méthodes Opto-Electrochimiques pour Imager la Réactivité de Nanoparticules IndividuellesBrasiliense, Vitor 11 December 2017 (has links)
Dans ce travail, plusieurs méthodes opto-électrochimiques ont été développées et appliquées à l’étude de systèmes chimiques à l’échelle de l’objet individuel. Du coté optique,l’holographie et la spectroscopie visible ont été associées à la super localisation pour pousser l’applicabilité de ces techniques au-delà de la limité imposée par la diffraction.Des techniques nanoélectrochimiques, comme les impacts stochastiques et l’utilisation de nanoelectrodes, complètent cette étude en renseignant sur la réactivité et sur les étapes de transfert d’électrons. Ces études couplées caractérisent ainsi les phénomènes chimiques de façon bien plus complète. Il est montré que cette caractérisation à la fois chimique et optique est en fait essentielle pour pouvoir comprendre le fonctionnement des systèmes nano chimiques in loco.En démarrant par des réactions modèle, comme l’oxydation de l’argent, la complexité des systèmes étudiés est progressivement augmentée, éclairant des phénomènes de transport,d’agrégation, ainsi que des transformation redox et de catalyse sur des matériaux complexes et mal définis tel que les oxydes de métaux de transition (cobalt) / A number of coupled optical and electrochemical single particle techniques are employed for investigating a variety of chemical systems at the level of individual objects.On the optical side, holography and visible spectroscopy are imbued with superlocalization principles pushing the applicability of these techniques down to sub-diffraction levels. Nanoelectrochemical techniques such as stochastic impacts and nanoelectrodes are used to complement this information, providing a much more complete characterization of the phenomena.It is shown that this dual optical and electrochemical single particle characterizationis actually crucial to understand complex nano chemical systems in loco. Starting frommodel reactions, such as Ag oxidation, the complexity of the studied phenomena and systems is progressively increased, as light is shed on transport phenomena, aggregation,as well as redox transformations and catalysis on complicated materials such as ill-defined transition metal (cobalt) oxides
|
260 |
GPPZ and the Holographic Triforce against ScalarsVaduret, Jean-François January 2019 (has links)
We use gauge-invariant cosmological perturbation theory to compute one-point functions of active and inert scalar fields of the GPPZ RG-flow in AdS5. Linearized Einstein equations are computed and made gauge-invariant for D-dimensional Euclidean domain-wall geometry. We briefly review the procedure of holographic renormalization for the GPPZ RG-flow in AdS5 to get different one-point functions. The source-dependant vev of the operator dual to the ∆ = 3 active scalar field in the GPPZ solution is computed and agrees with literature. We also find the source-dependant one-point function of the operator dual to the ∆ = 3 inert scalar.
|
Page generated in 0.0339 seconds