• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 8
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 12
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Toroidal algebra representations and equivariant elliptic surfaces

DeHority, Samuel Patrick January 2024 (has links)
We study the equivariant cohomology of moduli spaces of objects in the derived category of elliptic surfaces in order to find new examples of infinite dimensional quantum integrable systems and their geometric representation theoretic interpretation in enumerative geometry. This problem is related to a program to understand the cohomological and K-theoretic Hall algebras of holomorphic symplectic surfaces and to understand how it related to the Donaldson-Thomas theory of threefolds fibered in those surfaces. We use the theory of noncommutative deformations of Poisson surfaces and especially van den Berg’s noncommutative P1 bundles as well as Rains’s analysis of moduli theory for quasi-ruled noncommutative surfaces as well as the theory of Bridgeland stability conditions and their relative versions to understand equivariant deformations and birational transformations of Hilbert schemes of points on equivariant elliptic surfaces. The moduli spaces are closely related to elliptic versions of classical integrable systems. We also use these moduli spaces to construct vertex algebra representations of extensions of toroidal extended affine algebras on their equivariant cohomology, building on work of Eswara-Rao–Moody–Yokonuma, of Billig, and of Chen–Li–Tan on vertex representations of toroidal algebras, full toroidal algebras, and toroidal extended affine algebras. Using Fourier-Mukai transforms and their relative action on families of dg-categories we study the relationship between automorphisms of toroidal extended affine algebras and families of derived equivalences on dg categories, in particular finding a relativistic (difference) generalization of the Laumon-Rothstein deformation of the Fourier-Mukai duality. Finally, using the above analysis we extend the construction of Maulik–Okounkov’s stable envelopes to moduli of framed torsionfree sheaves on noncommutative surfaces in some cases and use this to study coproducts on associated algebras assigned to elliptic surfaces with applications to understanding new representation theoretic structures in the Donaldson-Thomas theory of local curves.
42

Solutions à courbure constante de modèles sigma supersymétriques

Lafrance, Marie 12 1900 (has links)
No description available.
43

Some Descriptions Of The Envelopes Of Holomorphy Of Domains in Cn

Gupta, Purvi 03 1900 (has links) (PDF)
It is well known that there exist domains Ω in Cn,n ≥ 2, such that all holomorphic functions in Ω continue analytically beyond the boundary. We wish to study this remarkable phenomenon. The first chapter seeks to motivate this theme by offering some well-known extension results on domains in Cn having many symmetries. One important result, in this regard, is Hartogs’ theorem on the extension of functions holomorphic in a certain neighbourhood of (D x {0} U (∂D x D), D being the open unit disc in C. To understand the nature of analytic continuation in greater detail, in Chapter 2, we make rigorous the notions of ‘extensions’ and ‘envelopes of holomorphy’ of a domain. For this, we use methods similar to those used in univariate complex analysis to construct the natural domains of definitions of functions like the logarithm. Further, to comprehend the geometry of these abstractly-defined extensions, we again try to deal with some explicit domains in Cn; but this time we allow our domains to have fewer symmetries. The subject of Chapter 3 is a folk result generalizing Hartogs’ theorem to the extension of functions holomorphic in a neighbourhood of S U (∂D x D), where S is the graph of a D-valued function Φ, continuous in D and holomorphic in D. This problem can be posed in higher dimensions and we give its proof in this generality. In Chapter 4, we study Chirka and Rosay’s proof of Chirka’s generalization (in C2) of the above-mentioned result. Here, Φ is merely a continuous function from D to itself. Chapter 5 — a departure from our theme of Hartogs-Chirka type of configurations — is a summary of the key ideas behind a ‘non-standard’ proof of the so-called Hartogs phenomenon (i.e., holomorphic functions in any connected neighbourhood of the boundary of a domain Ω Cn , n ≥ 2, extend to the whole of Ω). This proof, given by Merker and Porten, uses tools from Morse theory to tame the boundary geometry of Ω, hence making it possible to use analytic discs to achieve analytic continuation locally. We return to Chirka’s extension theorem, but this time in higher dimensions, in Chapter 6. We see one possible generalization (by Bharali) of this result involving Φ where is a subclass of C (D; Dn), n ≥ 2. Finally, in Chapter 7, we consider Hartogs-Chirka type configurations involving graphs of multifunctions given by “Weierstrass pseudopolynomials”. We will consider pseudopolynomials with coefficients belonging to two different subclasses of C(D; C), and show that functions holomorphic around these new configurations extend holomorphically to D2 .
44

Trace de Dixmier d'opérateurs de Hankel / Dixmier trace of Hankel operators

Tytgat, Romaric 02 December 2013 (has links)
Nous nous intéressons aux opérateurs de Hankel $H_{bar{f}}$ de symbole anti holomorphe $bar{f}$ et regardons l'espace de Dixmier $mathcal{D}^{p}$ associé ($pgeq1$), c'est à dire l'ensemble des $f$ tel que $|H_{bar{f}}|^{p}$ soit dans l'idéal de Macaev $mathcal{S}^{+}_{1}$. Notre approche est de voir l'espace de Dixmier comme une certaine limite des classes de Schatten. Quand $f in mathcal{D}^{p}$, nous étudions $Tr_{omega}(|$H_{bar{f}}$|^{p})$ la trace de Dixmier de $|H_{bar{f}}|^{p}$. Nous redémontrons certains résultats classiques quand $f$ est holomorphe sur le disque alors que nous donnons de nouveaux résultats quand $f$ est entière. Nous utilisons notre méthode pour étudier l'espace de Dixmier du petit opérateur de Hankel, des opérateurs de Toeplitz $T_{varphi}$ ($varphi$ définie sur le disque ou sur le plan complexe tout entier) ainsi que pour l'opérateur de composition. / We study Hankel operators $H_{bar{f}}$ with anti holomorphic symbol $bar{f}$ and we are interested to the Dixmier space $mathcal{D}^{p}$ ($pgeq1$), the set of functions $f$ such that $|H_{bar{f}}|^{p} in mathcal{S}^{+}_{1}$ the Macaev ideal. We look Dixmier space as a limit of Schatten class. When $f in mathcal{D}^{p}$, we study $Tr_{omega}(|$H_{bar{f}}$|^{p})$ the Dixmier trace of $|H_{bar{f}}|^{p}$. We have different results when $f$ is an entire or a holomorphic function of the unit disk in the complex plan. We study also the Dixmier space of the little Hankel operator, Toeplitz operator and composition operator.
45

Operators on wighted spaces of holomorphic functions

Beltrán Meneu, María José 24 March 2014 (has links)
The Ph.D. Thesis ¿Operators on weighted spaces of holomorphic functions¿ presented here treats different areas of functional analysis such as spaces of holomorphic functions, infinite dimensional holomorphy and dynamics of operators. After a first chapter that introduces the notation, definitions and the basic results we will use throughout the thesis, the text is divided into two parts. A first one, consisting of Chapters 1 and 2, focused on a study of weighted (LB)-spaces of entire functions on Banach spaces, and a second one, corresponding to Chapters 3 and 4, where we consider differentiation and integration operators acting on different classes of weighted spaces of entire functions to study its dynamical behaviour. In what follows, we give a brief description of the different chapters: In Chapter 1, given a decreasing sequence of continuous radial weights on a Banach space X, we consider the weighted inductive limits of spaces of entire functions VH(X) and VH0(X). Weighted spaces of holomorphic functions appear naturally in the study of growth conditions of holomorphic functions and have been investigated by many authors since the work of Williams in 1967, Rubel and Shields in 1970 and Shields and Williams in 1971. We determine conditions on the family of weights to ensure that the corresponding weighted space is an algebra or has polynomial Schauder decompositions. We study Hörmander algebras of entire functions defined on a Banach space and we give a description of them in terms of sequence spaces. We also focus on algebra homomorphisms between these spaces and obtain a Banach-Stone type theorem for a particular decreasing family of weights. Finally, we study the spectra of these weighted algebras, endowing them with an analytic structure, and we prove that each function f ¿ VH(X) extends naturally to an analytic function defined on the spectrum. Given an algebra homomorphism, we also investigate how the mapping induced between the spectra acts on the corresponding analytic structures and we show how in this setting composition operators have a different behavior from that for holomorphic functions of bounded type. This research is related to recent work by Carando, García, Maestre and Sevilla-Peris. The results included in this chapter are published by Beltrán in [14]. Chapter 2 is devoted to study the predual of VH(X) in order to linearize this space of entire functions. We apply Mujica¿s completeness theorem for (LB)-spaces to find a predual and to prove that VH(X) is regular and complete. We also study conditions to ensure that the equality VH0(X) = VH(X) holds. At this point, we will see some differences between the finite and the infinite dimensional cases. Finally, we give conditions which ensure that a function f defined in a subset A of X, with values in another Banach space E, and admitting certain weak extensions in a space of holomorphic functions can be holomorphically extended in the corresponding space of vector-valued functions. Most of the results obtained have been published by the author in [13]. The rest of the thesis is devoted to study the dynamical behaviour of the following three operators on weighted spaces of entire functions: the differentiation operator Df(z) = f (z), the integration operator Jf(z) = z 0 f(¿)d¿ and the Hardy operator Hf(z) = 1 z z 0 f(¿)d¿, z ¿ C. In Chapter 3 we focus on the dynamics of these operators on a wide class of weighted Banach spaces of entire functions defined by means of integrals and supremum norms: the weighted spaces of entire functions Bp,q(v), 1 ¿ p ¿ ¿, and 1 ¿ q ¿ ¿. For q = ¿ they are known as generalized weighted Bergman spaces of entire functions, denoted by Hv(C) and H0 v (C) if, in addition, p = ¿. We analyze when they are hypercyclic, chaotic, power bounded, mean ergodic or uniformly mean ergodic; thus complementing also work by Bonet and Ricker about mean ergodic multiplication operators. Moreover, for weights satisfying some conditions, we estimate the norm of the operators and study their spectrum. Special emphasis is made on exponential weights. The content of this chapter is published in [17] and [15]. For differential operators ¿(D) : Bp,q(v) ¿ Bp,q(v), whenever D : Bp,q(v) ¿ Bp,q(v) is continuous and ¿ is an entire function, we study hypercyclicity and chaos. The chapter ends with an example provided by A. Peris of a hypercyclic and uniformly mean ergodic operator. To our knowledge, this is the first example of an operator with these two properties. We thank him for giving us permission to include it in our thesis. The last chapter is devoted to the study of the dynamics of the differentiation and the integration operators on weighted inductive and projective limits of spaces of entire functions. We give sufficient conditions so that D and J are continuous on these spaces and we characterize when the differentiation operator is hypercyclic, topologically mixing or chaotic on projective limits. Finally, the dynamics of these operators is investigated in the Hörmander algebras Ap(C) and A0 p(C). The results concerning this topic are included by Bonet, Fernández and the author in [16]. / Beltrán Meneu, MJ. (2014). Operators on wighted spaces of holomorphic functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/36578 / Premios Extraordinarios de tesis doctorales
46

Analyse complexe et problèmes de Dirichlet dans le plan : équation de Weinstein et autres conductivités non-bornées / Complex analysis and some Dirichlet problems in the plane : Weinstein's equation and conductivity equation with unbounded coefficients

Chaabi, Slah 02 December 2013 (has links)
L'équation de Weinstein est une équation régissant les Potentiels à Symétrie Axiale (PSA) qui est $L_m[u]=Delta u+(m/x)partial_x u=0$, $minmathbb{C}$. On généralise des résultats connus pour $min mathbb{R}$ au cas $minmathbb{C}$. On donne des expressions de solutions fondamentales des opérateurs $L_m[u]$ et leurs estimations, on démontre une formule de Green pour les PSA dans le demi-plan droit $mathbb{H}^+$ pour Re $m< 1$. On prouve un nouveau théorème de décomposition des PSA dans des anneaux quelconques pour $minmathbb{C}$ et dans une géométrie annulaire particulière utilisant les coordonnées bipolaires, on prouve qu'une famille de solutions des PSA en termes de fonctions de Legendre Associées de 1re et 2de espèce est complète, on montre lorsque $min mathbb{R}$ que celle-ci est une base de Riesz.Dans la 2e partie, par une méthode qui est due à A. S. Fokas, on donne des formules des PSA dans un disque de $mathbb{H}^+$, avec $minmathbb{Z}$. Ces représentations sont obtenues par la résolution d'un problème de Riemann-Hilbert sur $mathbb{C}$ ou sur une surface de Riemann à deux feuillets.Dans la 3e partie, on étudie les fonctions pseudo-holomorphes, {it i. e.} les solutions de l'équation $overline{partial} w=alphaoverline{w}$, $alphain L^r$, $2leq r<infty$. Une nouvelle extension de la régularité du principe de similarité et une réciproque de celui-ci qui conduit à un paramétrage analytique de ces fonctions dans le cas critique $r=2$ ont été obtenues. On résoud un problème de Dirichlet à données $L^p$ pondérées sur des domaines lisses pour des équations du type conductivité à coefficient dont le log appartient à l'espace de Sobolev $W^{1,2}$. / The Weinstein equation with complex coefficients is the equation governing axisymmetric potentials (PSA) which can be written as $L_m[u]=Delta u+left(m/xright)partial_x u =0$, where $minmathbb{C}$. We generalize results known for $minmathbb{R}$ to $minmathbb{C}$. We give explicit expressions of fundamental solutions for Weinstein operators and their estimates near singularities, then we prove a Green's formula for PSA in the right half-plane $mathbb{H}^+$ for Re $m<1$. We establish a new decomposition theorem for the PSA in any annular domains for $minmathbb{C}$. In particular, using bipolar coordinates, we prove for annuli that a family of solutions for PSA equation in terms of associated Legendre functions of first and second kind is complete. For $minmathbb{R}$, we show that this family is even a Riesz basis in some non-concentric circular annulus. In the second part, basing on a method due to A. S. Fokas, we give formulas for PSA in a circular domain of $mathbb{H}^+$ when $m$ is an integer. These representations are obtained by solving a Riemann-Hilbert problem on the complex plane or on a Riemann surface with two sheets according to the parity of $m$.In the last part, we study the pseudo-holomorphic functions, i.e. solutions of the complex equation $overline{partial} w=alpha overline{w}$, with $alphain L^r$, $2leq r<infty$. We extend the Bers similarity principle and a converse of this principle to the critical regularity case $r=2$. We establish well-posedness of Dirichlet problem in smooth domains with weighted $L^p$ boundary data for 2-D isotropic conductivity equations whose coefficients have logarithm in the Sobolev space $W^{1,2}$.
47

Opérateurs et semi-groupes d’opérateurs sur des espaces de fonctions holomorphes : Applications à la théorie de l’universalité / Operators and operator semigroups on spaces of holomorphic functions : applications to the theory of universality

Célariès, Benjamin 21 June 2019 (has links)
Les travaux de cette thèse relèvent du domaine de la théorie des opérateurs, et se situent à l'interface de l'analyse complexe, de la théorie des semi-groupes et de la théorie de l'universalité. Le premier résultat principal de cette thèse relève de l'étude des opérateurs de composition sur des espaces de fonctions holomorphes : nous déterminons le spectre d'un opérateur de composition par un symbole de Koenigs sur l'espace des fonctions holomorphes sur le disque unité, et en déduisons des informations sur la forme générale du spectre des opérateurs de composition par un symbole de Koenigs sur des espaces de Banach de fonctions holomorphes. L'outil principal que nous développons pour notre étude est une description des projections spectrales associées à ces opérateurs. Le second résultat principal de cette thèse relève de la théorie de l'universalité : nous étendons aux semi-groupes d'opérateurs la notion d'opérateur universel, et établissons l'existence d'un semi-groupe universel pour les semi-groupes quasi-contractifs en exhibant un semi-groupe sur un espace de fonctions holomorphes. Nous élargissons ensuite ce résultats aux semi-groupes d'opérateurs concaves / The works in this thesis address topics from operator theory and involves ideas and notions arising from complex analysis, the theory of operator semigroups and the theory of universality. The first main result of this thesis relates to the study of composition operators on spaces of holomorphic functions: we compute the spectrum of an operator of composition by a Koenigs's symbol acting on the space of holomorphic functions on the open unit disk, and derive from it the general description of the spectrum of composition operators on Banach spaces of holomorphic functions. The key tool we develop in this study is a description of spectral projections associated with such operators.The second main result of this thesis relates to the thoery of universality: we extend to operator semigroups the notion of universality. Then, we prove the existence of a universal semigroup for quasi-contractive operators semigroups. We then show a similar result for concave semigroups
48

Ergodic properties of operators on spaces of functions

Rodríguez Arenas, Alberto 26 March 2020 (has links)
[ES] El objetivo de esta tesis es estudiar las propiedades ergódicas (acotación en potencias, ergodicidad media y ergodicidad media uniforme) de operadores definidos en varios espacios de funciones. En un espacio Hausdorff localmente convexo E, un operador T\in\L(E) es llamado acotado en potencias si el conjunto de sus iteradas es equicontinuo. Las medias de Cesàro de T son T_[n] = 1/n (T+T^2+...+ T^m), n\in\N. El operador T se dice ergódico en media si la sucesión (T_[n])_n converge puntualmente y se dice uniformemente ergódico en media si la sucesión converge uniformemente en conjuntos acotados. En el Capítulo 1 se estudia el operador de multiplicación cuando está definido sobre espacios ponderados de funciones continuas y sobre sus límites inductivos y proyectivos. Trabajamos sobre un espacio topológico Hausdorff, normal y localmente compacto X. Dada una función continua phi, el operador de multiplicacion se define como M_ phi: f -> phi f. Una función continua v se llama peso si es estrictamente positiva. Los espacios (de Banach) ponderados de funciones continuas son C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty}, C_v ^0 :={f\in C(X) : vf se anula en el infinito}, con la norma ||.||_v. En las Secciones 1.3 y 1.4 se centra la atención en límites indutivos y proyectivos de los espacios de la Sección 1.2. Si V=(v_n)_n es una familia decreciente de pesos, entonces los limites inductivos ponderados de funciones continuas son VC=ind _n C_v_n y V_0C=ind _n C^0_v_n. Si A=(a_n)_n es una familia creciente de pesos, los límites proyectivos ponderados de funciones continuas son CA=proj_n C_a_n y CA_0=proj _n C^0_a_n. El comportamiento es diferente para los límites de los C_v_n (resp. C_a_n) del de los límites de los C^0_v_n (resp. C^0_a_n). En la Sección 1.5 se determinan completamente el espectro y el espectro de Waelbroeck del operador de multiplicación. En la última Sección 1.6 se compara la topología del conjunto de multiplicadores entre límites proyectivos con la inducida por la topología de operadores de convergencia uniforme en acotados. El Capítulo 2 se centra en estudiar espacios ponderados de sucesiones y sus límites inductivos y proyectivos. Una sucesión v=(v(i))_i \in \C^\N se llama peso si es estrictamente positiva. Los espacios de Banach ponderados de sucesiones considerados son l_p(v), 1<= p<= infty y c_0(v). Dada una matriz de K\"othe A=(a_n)_n, el espacio escalonado de orden 1<= p<= infty se define como proj _n l _p (a_n) y proj _n c_0 (a_n). El espacio co-escalonado de orden 1<= p<= infty se define, para una familia decreciente de pesos V=(v_n)_n, como ind_n l _p (v_n) y ind_n c_0 (v_n). En las Secciones 2.2 y 2.3 se estudian las propiedades ergódicas y espectrales del operador de multiplicación. En la Sección 2.4 se caracteriza cuándo el operador de multiplicación es acotado o compacto, de manera similar a la continuidad. En la Sección 2.5, como en la Sección 1.6, la topología del conjunto de multiplicadores entre espacios escalonados se compara con la inducida por la topología de operadores de convergencia uniforme en acotados. También se estudia la topología del conjunto de operadores acotados. En la última Sección 2.6, los resultados de las secciones anteriores se aplican a los espacios de series de potencias, como casos particulares de los espacios escalonados. El Capítulo 3 trata el operador de composición dado por una aplicación holomorfa del disco unidad abierto complejo en sí mismo, considerado entre diferentes espacios de Banach de funciones holomorfas. Si phi : \D - > \D es holomorfa, el operador de composición es C_phi: f ->f o phi. En la Sección 3.2 se dan condiciones necesarias y suficientes para las propiedades ergódicas del operador de composición definido en un espacio de Banach de funciones holomorfas general asumiendo una o varias propiedades dadas. Los resultados de la Sección 3.2 se aplican en la Sección 3.3 a espacios cl� / [CA] L'objectiu d'aquesta tesi és estudiar les propietats ergòdiques (fitació en potències, ergodicitat mitjana i ergodicitat mitjana uniforme) d'operadors definits en diversos espais de funcions. En un espai Hausdorff localment convex E, un operador T\in\L(E) s'anomena fitat en potències si el conjunt de les seues iterades és equicontinu. Les mitjanes de Cesàro de T són T_[n] = 1/n (T+T^2+...+ T^m), n\in\N. L'operador T és ergòdic en mitjana si la successió (T_[n])_n convergeix puntualment i és uniformement ergòdic en mitjana si la successió convergeix uniformement en conjunts fitats. Al Capítol 1 s'estudia l'operador de multiplicació quan està definit sobre espais ponderats de funcions contínues i sobre els seus límits inductius i projectius. Treballem sobre un espai topològic Hausdorff, normal i localment compacte X. Donada una funció contínua phi, l'operador de multiplicació es defineix com a M_ phi: f -> phi f. Una funció contínua v s'anomena pes si és estrictament positiva. Els espais (de Banach) ponderats de funcions contínues són C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty}, C_v ^0 :={f\in C(X) : vf s'anul·la a l'infinit}, amb la norma ||.||_v. A les Seccions 1.3 i 1.4 es para atenció als límits inductius i projectius dels espais de la Secció 1.2. Si $V=(v_n)_n$ és una família decreixent de pesos, aleshores els límits inductius ponderats de funcions contínues són VC=ind _n C_v_n y V_0C=ind _n C^0_v_n. Si A=(a_n)_n és una família creixent de pesos, aleshores els límits projectius ponderats de funcions contínues CA=proj_n C_a_n y CA_0=proj _n C^0_a_n. El comportament és diferent per als límits dels C_v_n (resp. C_a_n) del dels límits dels C^0_v_n (resp. C^0_a_n). A la Secció 1.5 es determinen completament l'espectre i l'espectre de Waelbroeck de l'operador de multiplicació. A la darrera Secció 1.6 es compara la topologia del conjunt de multiplicadors entre límits projectius amb la induïda per la topologia d'operadors de convergència uniforme en fitats. Al Capítol 2 es dedica a l'estudi d'espais ponderats de successions i els seus límits inductius i projectius. Una successió v=(v(i))_i \in \C^\N s'anomena pes si és estrictament positiva. Els espais de Banach ponderats de successions considerats l_p(v), 1<= p<= infty i c_0(v). Donada una matriu de Köthe A=(a_n)_n, l'espai esglaonat d'ordre 1<= p<= infty es defineix com a proj _n l _p (a_n) y proj _n c_0 (a_n). L'espai co-esglaonat d'ordre 1<= p<= infty es defineix, per a una família decreixent de pesos V=(v_n)_n, com a ind_n l _p (v_n) i ind_n c_0 (v_n). A les Seccions 2.2 i 2.3 s'estudien les propietats ergòdiques i espectrals de l'operador de multiplicació. A la Secció 2.4 es caracteritza quan l'operador de multiplicació és fitat o compacte, d'un mode similar a la continuïtat. A la Secció 2.5, com a la Secció 1.6, la topologia del conjunt de multiplicadors entre espais esglaonats es compara amb la induïda per la topologia d'operadors de convergència uniforme en fitats. També s'estudia la topologia del conjunt d'operadors fitats. A la darrera Secció 2.6, els resultats de les seccions anteriors s'apliquen als espais de sèries de potències, com casos particulars dels espais esglaonats. El Capítol 3 estudia l'operador de composició donat per una aplicació holomorfa del disc unitat obert complex en sí mateix, considerat entre dife\-rents espais de Banach de funcions holomorfes. Si phi : \D - > \D és holomorfa, aleshores l'operador de composició és C_phi: f ->f o phi. A la Secció 3.2 es donen condicions necessàries i suficients per a les propietats ergòdiques de l'operador de composició definit en un espai de Banach de funcions holomorfes general assumint una o més propietats donades. Els resultats de la Secció 3.2 s'apliquen a la Secció 3.3 per a espais clàssics de funcions holomorfes. / [EN] The aim of this thesis is to study the ergodic properties of some operators defined on several spaces of functions. In a locally convex Hausdorff space E, an operator T\in L(E) is called power bounded if the set of its iterates is equicontinuous. The Cesàro means of T are T_[n] = 1/n (T+T^2+...+ T^m), n\in\N. The operator T is called mean ergodic if the sequence (T_[n])_n converges pointwise and it is called uniformly mean ergodic if the sequence converges uniformly on bounded sets. In Chapter 1, the multiplication operator is studied when defined on weighted spaces of continuous functions and their inductive and projective limits. We work with a Hausdorff, normal, locally compact topological space X. Given a continuous function phi (a symbol), the multiplication operator is M_ phi: f -> phi f. A continuous function v is a weight if it is strictly positive. The (Banach) weighted spaces of continuous functions are C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty}, C_v ^0 :={f\in C(X) : vf vanishes at infinity}, with the norm ||.||_v. The Sections 1.3 and 1.4 are devoted to inductive and projective limits of the spaces in Section 1.2. If V=(v_n)_n is a decreasing family of weights, the weighted inductive limits of continuous functions are VC=ind _n C_v_n and V_0C=ind _n C^0_v_n. If A=(a_n)_n is an increasing family of weights, the weighted projective limits of continuous functions are CA=proj_n C_a_n and CA_0=proj _n C^0_a_n. The behaviour is different for the limits of the C_v_n (resp. C_a_n) and the limits of the C^0_v_n (resp. C^0_a_n). In Section 1.5 the spectrum and the Waelbroeck spectrum are completely determined. In the final Section 1.6 the topology of the set of multipliers between projective limits is compared with the one induced by the operator topology of uniform convergence on bounded sets. The work of Chapter 2 is devoted to weighted sequence spaces and their inductive and projective limits. A sequence v=(v(i))_i \in \C^\N is called a weight if it is strictly positive. The weighted Banach spaces of sequences considered are l_p(v), 1<= p<= infty and c_0(v). Given A=(a_n)_n, a Köthe matrix, the echelon space of order 1<= p<= infty is defined by proj _n l _p (a_n) and proj _n c_0 (a_n). The co-echelon space of order 1<= p<= infty is defined, for a decreasing family of weights V=(v_n)_n, by ind_n l _p (v_n) and ind_n c_0 (v_n). In the Sections 2.2 and 2.3 ergodic and spectral properties of the multiplication operator are studied. In Section 2.4 it is characterized when the multiplication operator is bounded or compact, in similar terms than continuity. In Section 2.5, as in Section 1.6, the topology of the set of multipliers between echelon spaces is compared with the one induced by the operator topology of uniform convergence on bounded sets. Also the topology of the set of bounded multiplication operators is studied. In the final Section 2.6, the results of the previous sections are applied to the power series spaces, as particular cases of echelon spaces. Chapter 3 deals with the composition operator given by a holomorphic self-map of the complex open unit disc, when considered between different Banach spaces of holomorphic functions. If phi : \D - > \D is holomorphic, the composition operator is C_phi: f ->f o phi. In Section 3.2 necessary and sufficient conditions are given for ergodic properties of a composition operator defined on a general Banach space of holomorphic functions under the assumption of one or many of given properties. The results of Section 3.2 are applied in Section 3.3 to classical spaces of holomorphic functions, particularly, weighted Bergman spaces of infinite type H_v and H_v^0, Bloch spaces B_p and B_p ^0, Bergman spaces A^p and Hardy spaces H^p. / Rodríguez Arenas, A. (2020). Ergodic properties of operators on spaces of functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/139519
49

Hyperholomorphic structures and corresponding explicit orthogonal function systems in 3D and 4D / Hyperholomorphe Strukturen und entsprechende explizite orthogonale Funktionensysteme in 3D und 4D

Le, Thu Hoai 22 August 2014 (has links) (PDF)
Die Reichhaltigkeit und breite Anwendbarkeit der Theorie der holomorphen Funktionen in der komplexen Ebene ist stark motivierend eine ähnliche Theorie für höhere Dimensionen zu entwickeln. Viele Forscher waren und sind in diese Aufgaben involviert, insbesondere in der Entwicklung der Quaternionenanalysis. In den letzten Jahren wurde die Quaternionenanalysis bereits erfolgreich auf eine Vielzahl von Problemen der mathematischen Physik angewandt. Das Ziel der Dissertation besteht darin, holomorphe Strukturen in höheren Dimensionen zu studieren. Zunächst wird ein neues Holomorphiekonzept vorgelegt, was auf der Theorie rechtsinvertierbarer Operatoren basiert und nicht auf Verallgemeinerungen des Cauchy-Riemann-Systems wie üblich. Dieser Begriff umfasst die meisten der gut bekannten holomorphen Strukturen in höheren Dimensionen. Unter anderem sind die üblichen Modelle für reelle und komplexe quaternionenwertige Funktionen sowie Clifford-algebra-wertige Funktionen enthalten. Außerdem werden holomorphe Funktionen mittels einer geeignete Formel vom Taylor-Typ durch spezielle Funktionen lokal approximiert. Um globale Approximationen für holomorphe Funktionen zu erhalten, werden im zweiten Teil der Arbeit verschiedene Systeme holomorpher Basisfunktionen in drei und vier Dimensionen mittels geeigneter Fourier-Entwicklungen explizit konstruiert. Das Konzept der Holomorphie ist verbunden mit der Lösung verallgemeinerter Cauchy-Riemann Systeme, deren Funktionswerte reellen Quaternionen bzw. reduzierte Quaternionen sind. In expliziter Form werden orthogonale holomorphe Funktionensysteme konstruiert, die Lösungen des Riesz-Systems bzw. des Moisil-Teodorescu Systems über zylindrischen Gebieten im R3, sowie Lösungen des Riesz-Systems in Kugeln des R4 sind. Um konkrete Anwendungen auf Randwertprobleme realisieren zu können wird eine orthogonale Zerlegung eines Rechts-Quasi-Hilbert-Moduls komplex-quaternionischer Funktionen unter gegebenen Bedingungen studiert. Die Ergebnisse werden auf die Behandlung von Maxwell-Gleichungen mit zeitvariabler elektrischer Dielektrizitätskonstante und magnetischer Permeabilität angewandt. / The richness and widely applicability of the theory of holomorphic functions in complex analysis requires to perform a similar theory in higher dimensions. It has been developed by many researchers so far, especially in quaternionic analysis. Over the last years, it has been successfully applied to a vast array of problems in mathematical physics. The aim of this thesis is to study the structure of holomorphy in higher dimensions. First, a new concept of holomorphy is introduced based on the theory of right invertible operators, and not by means of an analogue of the Cauchy-Riemann operator as usual. This notion covers most of the well-known holomorphic structures in higher dimensions including real, complex, quaternionic, Clifford analysis, among others. In addition, from our operators a local approximation of a holomorphic function is attained by the Taylor type formula. In order to obtain the global approximation for holomorphic functions, the second part of the thesis deals with the construction of different systems of basis holomorphic functions in three and four dimensions by means of Fourier analysis. The concept of holomorphy is related to the null-solutions of generalized Cauchy-Riemann systems, which take either values in the reduced quaternions or real quaternions. We obtain several explicit orthogonal holomorphic function systems: solutions to the Riesz and Moisil-Teodorescu systems over cylindrical domains in R3, and solutions to the Riesz system over spherical domains in R4. Having in mind concrete applications to boundary value problems, we investigate an orthogonal decomposition of complex-quaternionic functions over a right quasi-Hilbert module under given conditions. It is then applied to the treatment of Maxwell’s equations with electric permittivity and magnetic permeability depending on the time variable.
50

Hyperholomorphic structures and corresponding explicit orthogonal function systems in 3D and 4D

Le, Thu Hoai 20 June 2014 (has links)
Die Reichhaltigkeit und breite Anwendbarkeit der Theorie der holomorphen Funktionen in der komplexen Ebene ist stark motivierend eine ähnliche Theorie für höhere Dimensionen zu entwickeln. Viele Forscher waren und sind in diese Aufgaben involviert, insbesondere in der Entwicklung der Quaternionenanalysis. In den letzten Jahren wurde die Quaternionenanalysis bereits erfolgreich auf eine Vielzahl von Problemen der mathematischen Physik angewandt. Das Ziel der Dissertation besteht darin, holomorphe Strukturen in höheren Dimensionen zu studieren. Zunächst wird ein neues Holomorphiekonzept vorgelegt, was auf der Theorie rechtsinvertierbarer Operatoren basiert und nicht auf Verallgemeinerungen des Cauchy-Riemann-Systems wie üblich. Dieser Begriff umfasst die meisten der gut bekannten holomorphen Strukturen in höheren Dimensionen. Unter anderem sind die üblichen Modelle für reelle und komplexe quaternionenwertige Funktionen sowie Clifford-algebra-wertige Funktionen enthalten. Außerdem werden holomorphe Funktionen mittels einer geeignete Formel vom Taylor-Typ durch spezielle Funktionen lokal approximiert. Um globale Approximationen für holomorphe Funktionen zu erhalten, werden im zweiten Teil der Arbeit verschiedene Systeme holomorpher Basisfunktionen in drei und vier Dimensionen mittels geeigneter Fourier-Entwicklungen explizit konstruiert. Das Konzept der Holomorphie ist verbunden mit der Lösung verallgemeinerter Cauchy-Riemann Systeme, deren Funktionswerte reellen Quaternionen bzw. reduzierte Quaternionen sind. In expliziter Form werden orthogonale holomorphe Funktionensysteme konstruiert, die Lösungen des Riesz-Systems bzw. des Moisil-Teodorescu Systems über zylindrischen Gebieten im R3, sowie Lösungen des Riesz-Systems in Kugeln des R4 sind. Um konkrete Anwendungen auf Randwertprobleme realisieren zu können wird eine orthogonale Zerlegung eines Rechts-Quasi-Hilbert-Moduls komplex-quaternionischer Funktionen unter gegebenen Bedingungen studiert. Die Ergebnisse werden auf die Behandlung von Maxwell-Gleichungen mit zeitvariabler elektrischer Dielektrizitätskonstante und magnetischer Permeabilität angewandt. / The richness and widely applicability of the theory of holomorphic functions in complex analysis requires to perform a similar theory in higher dimensions. It has been developed by many researchers so far, especially in quaternionic analysis. Over the last years, it has been successfully applied to a vast array of problems in mathematical physics. The aim of this thesis is to study the structure of holomorphy in higher dimensions. First, a new concept of holomorphy is introduced based on the theory of right invertible operators, and not by means of an analogue of the Cauchy-Riemann operator as usual. This notion covers most of the well-known holomorphic structures in higher dimensions including real, complex, quaternionic, Clifford analysis, among others. In addition, from our operators a local approximation of a holomorphic function is attained by the Taylor type formula. In order to obtain the global approximation for holomorphic functions, the second part of the thesis deals with the construction of different systems of basis holomorphic functions in three and four dimensions by means of Fourier analysis. The concept of holomorphy is related to the null-solutions of generalized Cauchy-Riemann systems, which take either values in the reduced quaternions or real quaternions. We obtain several explicit orthogonal holomorphic function systems: solutions to the Riesz and Moisil-Teodorescu systems over cylindrical domains in R3, and solutions to the Riesz system over spherical domains in R4. Having in mind concrete applications to boundary value problems, we investigate an orthogonal decomposition of complex-quaternionic functions over a right quasi-Hilbert module under given conditions. It is then applied to the treatment of Maxwell’s equations with electric permittivity and magnetic permeability depending on the time variable.

Page generated in 0.1084 seconds