• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 4
  • 1
  • Tagged with
  • 18
  • 18
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aplicações harmonicas, holomorfas e metricas(1,2)-simpleticas em variedades bandeira / Harmonic maps, holomorphic maps and (1-2)-sympletic metrics on flag manifolds

Bressan, João Paulo, 1983- 03 June 2007 (has links)
Orientador: Caio Jose Colleti Negreiros / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T09:41:20Z (GMT). No. of bitstreams: 1 Bressan_JoaoPaulo_M.pdf: 1270495 bytes, checksum: 690edfeed4929635ff181ad3063aaadb (MD5) Previous issue date: 2007 / Resumo: O objetivo deste trabalho é estudar a relação existente entre holomorfia e harmonicidade de aplicações f : M 2 (IF; J; ds2? ), onde M 2 é uma superfície de Riemann compacta, orientável e IF é a variedade bandeira maximal. Para isto, apresentamos parte da teoria geral de aplicações harmônicas e holomorfas, necessária para demonstrar o teorema de Lichnerowicz. Uma de suas conseqüências é uma ferramenta importante neste estudo, pois fornece o seguinte critério: se f é J-holomorfa e ds2? é (1,2)-simplética, então f é harmônica. Portanto, também estamos interessados em descrever as métricas (1,2)-simpléticas nas variedades bandeira. Primeiramente, no caso geométrico, estudamos a variedade bandeira complexa maximal de subespaços encaixados IF(n). Posteriormente, este estudo é generalizado para outras variedades bandeiras maximais IF, definidas através de álgebras de Lie semi-simples complexas. Ainda, demonstramos o teorema de Burstall-Salamon, que fornece propriedades da estrutura quase complexa invariante J através de um torneio ?J associado. Finalmente, exibimos as equações de Cauchy-Riemann e de Euler-Lagrange para estas aplicações, e apresentamos exemplos de famílias de funções equi-harmônicas / Abstract: The goal of this work is to study the relationship bettwen holomorphicity and harmonicity of maps f: M 2 (IF; J; ds2? ), where M 2 is a compact, orientable Riemann surface and IF is the full-flag manifold. With this pourpose, we present part of the general holomorphic/harmonic maps theory, which is necessary to prove the Lichnerowicz theorem.It states like consequence a criterion, which is an important tool in this study: if f is J-holomorphic and ds2? é (1,2)-symplectic, then f is harmonic. Therefore, we are interested in to describe (1,2)-symplectc metrics on the flag manifold.Firstly, in the geometrical case, we study the complex full-flag manifold IF(n). Later, we generalize this study to other full-flag manifolds IF, which is defined through complex semisimple Lie algebras. Also, we prove the Burstall-Salamon theorem, which gives some properties of the almost complex structure J through an associated tournament ?J. Finally, we show-up the Cauchy-Riemann equations and the Euler-Lagrange equations to this maps, and present examples of families of equi-harmonic maps / Mestrado / Mestre em Matemática
12

A Propriedade de aproximação em espaços de funções holomorfas em domínios de Riemann / The approximation property for spaces of holomorphic functions in Riemann domain

Louza Júnior, Nelson Dantas, 1981- 21 August 2018 (has links)
Orientador: Jorge Tulio Mujica Ascui / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T09:37:21Z (GMT). No. of bitstreams: 1 LouzaJunior_NelsonDantas_D.pdf: 1346087 bytes, checksum: e224997e97008b256844e2bba2ebc7a3 (MD5) Previous issue date: 2012 / Resumo: Neste trabalho estabelecemos condições para que o predual do espaço H(?) de aplicações holomorfas em domínios de Riemann tenha a propriedade de aproximação e a propriedade de aproximação limitada. Para tal utilizamos fundamentalmente uma extensão do Teorema de Linearização de Mazet. Provamos que se E é um espaço localmente convexo com uma base de Schauder equicontínua, então o predual G(U) tem a propriedade de aproximação limitada para cada aberto equilibrado U C E. Provamos também que se E é um espaço de Fréchet separável com a propriedade de aproximação limitada, então G(? ) tem a propriedade de aproximação para cada domínio de Riemann (?; p) sobre E. Além disso, demonstramos que se (?; p) é um domínio de Riemann sobre um espaço (DFC) E, então E tem a propriedade de aproximação se, e só se G(?) tem a propriedade de aproximação se, e só se (H(?); Tc) tem a propriedade de aproximação / Abstract: In this work we establish conditions for the predual of the space H(?) of holomorphic mappings in a Riemann domains , to have the approximation property and the bounded approximation property. For this we use essentially an extension of Mazet linearization theorem. We also prove tha if E is a locally convex space with an equicontinuos Schauder basis, then the predual G(U) has the bounded approximation property for each balanced open subset U of E. We obtain that if E is a separable Fréchet space with the bounded approximation property, then G(?) has the approximation property for each Riemann domains (?; p) over E. Moreover, we prove that if (?; p) is a Riemann domains over a (DFC)-space E, then E has the approximation property if only if G(? ) has the approximation property, if only if (H(?); Tc) has the approximation property / Doutorado / Matematica / Doutor em Matemática
13

Familias normais de aplicações holomorfas em espaços de dimensão infinita / Normal families of holomorphic mappings on infinite dimensional spaces

Takatsuka, Paula 15 February 2006 (has links)
Orientador: Jorge Tulio Mujica Ascui / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-07T16:44:31Z (GMT). No. of bitstreams: 1 Takatsuka_Paula_D.pdf: 3540981 bytes, checksum: 643e40ac81900cf042cfe1cfb3737b0d (MD5) Previous issue date: 2006 / Resumo: Este trabalho estende teoremas clássicos da teoria de funções holomorfas de uma variável complexa para espaços localmente convexos de dimensão infinita. Serão dadas várias caracterizações de famílias normais, n¿ao apenas com relação à topologia compacto-aberta, mas também para outras topologias naturais no espaço de aplicações holomorfas. Teoremas de tipo Montel e de tipo Schottky, bem como outros resultados correlatos, ser¿ao estabelecidos em dimensão infinita para as diferentes topologias. Teoremas de limita¸c¿ao universal sobre famílias de funções holomorfas que omitem dois valores distintos ser¿ao formulados para espaços de Banach / Abstract: The present work extends some classical theorems from the theory of holomorphic functions of one complex variable to infinite dimensional locally convex spaces. Several characterizations of normal families are given, not only for the compact-open topology, but also for other natural topologies on spaces of holomorphic mappings. Montel-type and Schottky-type theorems and various related results are established in infinite dimension for these different topologies. Universal boundedness theorems concerning families of holomorphic functions which omit two distinct values are formulated for Banach spaces / Doutorado / Mestre em Matemática
14

Dynamical Properties of Families of Holomorphic Mappings

Pal, Ratna January 2015 (has links) (PDF)
Thesis Abstract In the first part of the thesis, we study some dynamical properties of skew products of H´enon maps of C2 that are fibered over a compact metric space M . The problem reduces to understanding the dynamical behavior of the composition of a pseudo-random sequence of H´enon mappings. In analogy with the dynamics of the iterates of a single H´enon map, it is possible to construct fibered Green functions that satisfy suitable invariance properties and the corresponding stable and unstable currents. Further, it is shown that the successive pullbacks of a suitable current by the skew H´enon maps converge to a multiple of the fibered stable current. Second part of the thesis generalizes most of the above-mentioned results for a com- pletely random sequence of H´enon maps. In addition, for this random system of H´enon maps, we introduce the notion of average Green functions and average Green currents which carry many typical features of the classical Green functions and Green currents. Third part consists of some results about the global dynamics of a special class of skew maps. To prove these results, we use the knowledge of dynamical behavior of pseudo- random sequence of H´enon maps widely. We show that the global skew map is strongly mixing for a class of invariant measures and also provide a lower bound on the topological entropy of the skew product. We conclude the thesis by studying another class of maps which are skew products of holomorphic endomorphisms of Pk fibered over a compact base. We define the fibered Fatou components and show that they are pseudoconvex and Kobayashi hyperbolic. 1
15

Rigidity And Regularity Of Holomorphic Mappings

Balakumar, G P 07 1900 (has links) (PDF)
We deal with two themes that are illustrative of the rigidity and regularity of holomorphic mappings. The first one concerns the regularity of continuous CR mappings between smooth pseudo convex, finite type hypersurfaces which is a well studied subject for it is linked with the problem of studying the boundary behaviour of proper holomorphic mappings between domains bounded by such hypersurfaces. More specifically, we study the regularity of Lipschitz CR mappings from an h-extendible(or semi-regular) hypersurface in Cn .Under various assumptions on the target hypersurface, it is shown that such mappings must be smooth. A rigidity result for proper holomorphic mappings from strongly pseudo convex domains is also proved. The second theme dealt with, is the classification upto biholomorphic equivalence of model domains with abelian automorphism group in C3 .It is shown that every model domain i.e.,a hyperbolic rigid polynomial domainin C3 of finite type, with abelian automorphism group is equivalent to a domain that is balanced with respect to some weight.
16

On The Structure of Proper Holomorphic Mappings

Jaikrishnan, J January 2014 (has links) (PDF)
The aim of this dissertation is to give explicit descriptions of the set of proper holomorphic mappings between two complex manifolds with reasonable restrictions on the domain and target spaces. Without any restrictions, this problem is intractable even when posed for do-mains in . We give partial results for special classes of manifolds. We study, broadly, two types of structure results: Descriptive. The first result of this thesis is a structure theorem for finite proper holomorphic mappings between products of connected, hyperbolic open subsets of compact Riemann surfaces. A special case of our result follows from the techniques used in a classical result due to Remmert and Stein, adapted to the above setting. However, the presence of factors that have no boundary or boundaries that consist of a discrete set of points necessitates the use of techniques that are quite divergent from those used by Remmert and Stein. We make use of a finiteness theorem of Imayoshi to deal with these factors. Rigidity. A famous theorem of H. Alexander proves the non-existence of non-injective proper holomorphic self-maps of the unit ball in . ,n >1. Several extensions of this result for various classes of domains have been established since the appearance of Alexander’s result, and it is conjectured that the result is true for all bounded domains in . , n > 1, whose boundary is C2-smooth. This conjecture is still very far from being settled. Our first rigidity result establishes the non-existence of non-injective proper holomorphic self-maps of bounded, balanced pseudo convex domains of finite type (in the sense of D’Angelo) in ,n >1. This generalizes a result in 2, by Coupet, Pan and Sukhov, to higher dimensions. As in Coupet–Pan–Sukhov, the aforementioned domains need not have real-analytic boundaries. However, in higher dimensions, several aspects of their argument do not work. Instead, we exploit the circular symmetry and a recent result in complex dynamics by Opshtein. Our next rigidity result is for bounded symmetric domains. We prove that a proper holomorphic map between two non-planar bounded symmetric domains of the same dimension, one of them being irreducible, is a biholomorphism. Our methods allow us to give a single, all-encompassing argument that unifies the various special cases in which this result is known. Furthermore, our proof of this result does not rely on the fine structure (in the sense of Wolf et al.) of bounded symmetric domains. Thus, we are able to apply our techniques to more general classes of domains. We illustrate this by proving a rigidity result for certain convex balanced domains whose automorphism groups are assumed to only be non-compact. For bounded symmetric domains, our key tool is that of Jordan triple systems, which is used to describe the boundary geometry.
17

Aplicações tau(p;q)-somantes e sigma (p)-nucleares / Tau(p;q)-summing and sigma(p)-nuclear mappings

Mujica, Ximena 17 February 2006 (has links)
Orientador: Mario Carvalho de Matos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T01:05:18Z (GMT). No. of bitstreams: 1 Mujica_Ximena_D.pdf: 1094334 bytes, checksum: c72f7c14d8c66006d65d81bf2ca3fcfa (MD5) Previous issue date: 2006 / Resumo: Neste trabalho estendemos os conceitos de operadores t-somantes e s-nucleares apresentados por Pietsch em seu livro Operator Ideals, para aplicações multilineares, polinômios e funções holomorfas, estabelecendo uma relação de dualidade entre os mesmos. Apresentamos também um teorema de dominação para aplicações e polinômios t (p; q)-somantes, mostrando a sua relação com as aplicações e polinômios semi-integrais, bem como um teorema de fatoração para aplicações e polinômios s (p)-nucleares / Abstract: In this work we extend the concepts of t-summing and s-nuclear operators presented by Pietsch in his book Operator Ideals, to multilinear mappings, polynomials and holomorphic functions, thus establishing a duality relation between them. We also present a domination theorem for t(p; q)-summing mappings and polynomials, showing their relation with semi-integral mappings and polynomials, as well as a factorization theorem for s(p)-nuclear mappings and polynomials / Doutorado / Analise Funcional / Doutor em Matemática
18

D-bar and Dirac Type Operators on Classical and Quantum Domains

McBride, Matthew Scott 29 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / I study d-bar and Dirac operators on classical and quantum domains subject to the APS boundary conditions, APS like boundary conditions, and other types of global boundary conditions. Moreover, the inverse or inverse modulo compact operators to these operators are computed. These inverses/parametrices are also shown to be bounded and are also shown to be compact, if possible. Also the index of some of the d-bar operators are computed when it doesn't have trivial index. Finally a certain type of limit statement can be said between the classical and quantum d-bar operators on specialized complex domains.

Page generated in 0.0693 seconds