Spelling suggestions: "subject:"holonomy groups"" "subject:"aolonomy groups""
1 |
The application of the theory of fibre bundles to differential geometryWest, Alan January 1955 (has links)
No description available.
|
2 |
Holonomy of Cartan connectionsArmstrong, Michael Stuart January 2006 (has links)
This thesis looks into the holonomy algebras of Tractor/Cartan connections for both projective and conformal structures. Using a splitting formula and a cone construction in the Einstein case, it classifies all reductive, non-irreducible holonomy groups for conformal structures (thus fully solving the question in the definite signature case). The thesis then analyses the geometric consequences of of holonomy reduction for the projective Tractor connection. A general, Ricci-flat, cone construction pertains in the projective case, and this thesis fully classifies the irreducibly acting holonomy algebras by analysing which holonomy families admit a torsion-free Ricci-flat affine connection, and constructing cones with these properties.
|
3 |
Representations of SU(3) and geometric phases for three-state systems /Byrd, Mark Steven, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 80-85). Available also in a digital version from Dissertation Abstracts.
|
4 |
The holonomy group and the differential geometry of fibred Riemannian spaces /Cheng, Koun-Ping. January 1982 (has links)
The holonomy group arising from a linear connection and differential homotopy is a classical subject in geometry. The notion was generalized first by Y. Muto ({10}) by considering horizontal subspaces in a fibred space which by construction is a differential manifold over a base space with another manifold as the fibre. He called this generalized group the restricted holonomy group Hl('o)((')M). Unlike the case of frame bundles the horizontal subspaces in a fibred space do not in general obey the right invariant rule. Hence it is not hard to imagine that Hl('o)((')M) is larger than linear holonomy groups. It may not even form a Lie group and for years the structure of this group was left unknown simply because the number of elements concerned is too large to handle. / One of the intentions here is to clarify and determine the structure of Hl('o)((')M) by setting certain conditions. Then by use of Palais' theorem about transformation groups, Nijenhuis' method for dealing with linear holonomy groups, and the standard technique of computing line integrals, the structure of Hl('o)((')M) is determined in Chapter One under certain conditions. Some properties concerning the isometric immersion from one fibred Riemannian space into another are also discussed in Chapter Two. / As far as I know, the work in this thesis is original, except where the text indicates the contrary: In particular, Chapter One is purely expository.
|
5 |
A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometryLeeb, Bernhard. January 1900 (has links)
Thesis (doctoral)--Rheinische Friedrich-Wilhelms-Universität Bonn, 2000. / Includes bibliographical references (p. 41-42).
|
6 |
The holonomy group and the differential geometry of fibred Riemannian spaces /Cheng, Koun-Ping. January 1982 (has links)
No description available.
|
7 |
Roulement de variétés différentielles de dimensions quelconques / Rolling Manifolds of Arbitrary DimensionsMortada, Amina 18 November 2014 (has links)
Nous étudions dans cette thèse le roulement sans glissement et sans pivotement de deux variétés lisses M et Ṁ l'une sur l'autre de dimensions et n et ṅ respectivement. L'objectif principal est de chercher des conditions nécessaires et suffisantes de la commandabilité du système commandé défini par le roulement. Dans le premier chapitre, on présente les motivations et le plan de la thèse ainsi les notations utilisées le long des chapitres. Dans le deuxième chapitre, on caractérise l'espace d'état du roulement quand M et Ṁ sont des variétés Riemanniennes lorsque n n'est pas nécessairement égal à ṅ et du développement quand M et Ṁ sont des variétés affines munies des connexions affines avec n = ṅ Ainsi, on donne les relèvements et les distributions correspondant aux deux notions précédentes. Le troisième chapitre contient quelques résultats de la commandabilité du système de roulement des variétés Riemanniennes. Plus précisément, on présente les conditions nécessaires de la non-commandabilité du roulement d'une variété Riemannienne 3-dimensionnelle sur une autre 2-dimensionnelle.Le chapitre 4 porte sur le roulement d'une variété Riemannienne de dimension 2 sur une autre de dimension 3. On trouve que la dimension d'une orbite non-ouverte quelconque de l'espace d'état appartient à {2,5,6,7}. Les aspects géométriques de deux variétés sont liés principalement avec le fait que la variété de dimension 3 contient une sous-variété totalement géodésique de dimension 2.Dans le dernier chapitre, on introduit et étudie un concept d'holonomie horizontale associé à un triplet (M,∇,Δ ) avec M variété différentielle connexe, ∇ connection affine complète sur M et Δ distribution complètement commandable. Si H^∇est le groupe d'holonomie associé à Ṁ on considère alors son sous-groupe obtenu uniquement en considérant le transport ∇- parallèle par rapport aux lacets dans M tangents à la distribution Δ On le note H_Δ^∇et on l’appelle groupe d'holonomie horizontal. On prouve que le groupe d'holonomie horizontal H_Δ^∇ est un sous-groupe de Lie de GL(n). Puis, on démontre par un exemple que la fermeture du groupe d'holonomie horizontal restreint (H_Δ^∇ )^0 n'est pas nécessairement égal à H_Δ^∇. A cette fin, on utilise le modèle du roulement avec M un groupe de Carnot homogène munie d'une connexion de Levi-Civita associée à une métrique Riemannienne sur l'espace Euclidien R^n munie de la connexion Euclidienne. / In this thesis, we study the rolling motion without spinning nor slipping of a smooth manifolds M and Ṁ against another of dimensions n and ṅ respectively. The purpose is to find the necessary and sufficient conditions for the controllability issue of the system of rolling. We start by a French review of the principal results of the thesis is included in the introduction. In Chapter 1, we present the motivations of the subject thesis, the structure of the contents and the notations used along the manuscript. The second chapter contain a characterization of the state space of rolling manifolds when M and Ṁ are Riemannian manifolds with n and ṅ are not necessarily equal and of the development of manifolds when M and Ṁ are affine manifolds of dimension n = ṅ equipped with affine connections. We also state the definitions of the lifts and the distributions with respect to the previous notions. The controllability results of the rolling system of Riemannian manifolds is included in Chapter 3. We give all the necessary conditions of the non-controllability of rolling of 3-dimensional Riemannian manifold against 2-dimensional Riemannian manifold. Chapter 4 deals with the rolling of a 2-dimensional Riemannian manifold against a 3-dimensional Riemannian manifold. We prove that the dimension of an arbitrary non-open orbit of the state space belongs to {2,5,6,7}. The geometrical aspects of the two manifolds depend on the existence of a 2-dimensional totally geodesic submanifold in the 3-dimensional manifold. The last chapter introduces and addresses the issue of horizontal holonomy associated to a triple (M,∇,Δ) with M smooth connected manifold, ∇ complete affine connection M and Δ completely controlable distribution over M. If H_Δ^∇. denotes the holonomy group associated with (M,∇) one considers its subgroup obtained by considering only the ∇- parallel transport with respect to loops of M tangent to the distribution Δ This subgroup is denoted by H_Δ^∇ and we call it horizontal holonomy group. We prove that the horizontal holonomy group H_Δ^∇ is a Lie subgroup of GL(n). Then, we show by means of an example that the closure of a restricted horizontal holonomy group on a Riemannian manifold is not necessarily equal to the holonomy group of the Riemannian manifold. To this end, we use the rolling problem of M taken as a step 2 homogeneous Carnot group equipped with the Levi-Civita connection associated to a Riemannian metric onto the Euclidean space R^n equipped with the Euclidean connection.
|
8 |
Contributions to the geometry of Lorentzian manifolds with special holonomySchliebner, Daniel 02 April 2015 (has links)
In dieser Arbeit studieren wir Lorentz-Mannigfaltigkeiten mit spezieller Holonomie, d.h. ihre Holonomiedarstellung wirkt schwach-irreduzibel aber nicht irreduzibel. Aufgrund der schwachen Irreduzibilität lässt die Darstellung einen ausgearteten Unterraum invariant und damit also auch eine lichtartige Linie. Geometrisch hat dies zur Folge, dass wir zwei parallele Unterbündel (die Linie und ihr orthogonales Komplement) des Tangentialbündels erhalten. Diese Arbeit nutzt diese und weitere Objekte um zu beweisen, dass kompakte Lorentzmannigfaltigkeiten mit Abelscher Holonomie geodätisch vollständig sind. Zudem werden Lorentzmannigfaltigkeiten mit spezieller Holonomie und nicht-negativer Ricci-Krümung auf den Blättern der Blätterung, induziert durch das orthogonale Komplement der parellelen Linie, und maximaler erster Bettizahl untersucht. Schließlich werden vollständige Ricci-flache Lorentzmannigfaltigkeiten mit vorgegebener voller Holonomie konstruiert. / In the present thesis we study dimensional Lorentzian manifolds with special holonomy, i.e. such that their holonomy representation acts indecomposably but non-irreducibly. Being indecomposable, their holonomy group leaves invariant a degenerate subspace and thus a light-like line. Geometrically, this means that, since being holonomy invariant, this line gives rise to parallel subbundles of the tangent bundle. The thesis uses these and other objects to prove that Lorentian manifolds with Abelian holonomy are geodesically complete. Moreover, we study Lorentzian manifolds with special holonomy and non-negative Ricci curvature on the leaves of the foliation induced by the orthogonal complement of the parallel light-like line whose first Betti number is maximal. Finally, we provide examples of geodesically complete and Ricci-flat Lorentzian manifolds with special holonomy and prescribed full holonomy group.
|
Page generated in 0.0631 seconds