• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 12
  • 11
  • 4
  • 1
  • Tagged with
  • 51
  • 51
  • 13
  • 12
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A quasi-Hopf structure in marginally deformed N=4 Super Yang-Mills Theory

Dlamini, Siphesihle Hector January 2020 (has links)
The N= 4 Super Yang-Mills theory in four dimensions admits deformations and the exactly marginal deformations of its SU(3) R-symmetry sub-sector are known as Leigh-Strassler. Leigh-Strassler deformations break the N= 4 supersymmetry down to N= 1 while preserving conformal symmetry. With exactly marginal deformations only the F-terms are deformed thus Leigh-Strassler deformations only affect the superpotential in the Lagrangian. In this thesis we study the symmetry of the marginally deformed N= 4 SYM and demonstrate that its algebraic structure can be understood in terms of quasi-Hopf algebras. Quasi-Hopf algebras have a notion of twisting due to Drinfeld which makes them a natural mathematical language with which to treat deformations. Furthermore the deformation of the N= 4 SYM superpotential is automated by the definition of a suitable star product. / Thesis (PhD)--University of Pretoria, 2020. / NiTheP / Physics / PhD / Unrestricted
32

Heisenberg Categorification and Wreath Deligne Category

Nyobe Likeng, Samuel Aristide 05 October 2020 (has links)
We define a faithful linear monoidal functor from the partition category, and hence from Deligne's category Rep(S_t), to the additive Karoubi envelope of the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions. We then generalize the above results to any group G, the case where G is the trivial group corresponding to the case mentioned above. Thus, to every group G we associate a linear monoidal category Par(G) that we call a group partition category. We give explicit bases for the morphism spaces and also an efficient presentation of the category in terms of generators and relations. We then define an embedding of Par(G) into the group Heisenberg category associated to G. This embedding intertwines the natural actions of both categories on modules for wreath products of G. Finally, we prove that the additive Karoubi envelope of Par(G) is equivalent to a wreath product interpolating category introduced by Knop, thereby giving a simple concrete description of that category.
33

Bialgebra cyclic homology with eoefficients

Kaygun, Atabey 02 March 2005 (has links)
No description available.
34

Algèbres de Hopf combinatoires / Combinatorial Hopf algebras

Maurice, Rémi 09 December 2013 (has links)
Cette thèse se situe dans le domaine de la combinatoire algébrique. Autrement dit, l'idée est d'utiliser des structures algébriques, en l'occurence des algèbres de Hopf combinatoires, pour mieux étudier et comprendre les objets combinatoires ainsi que des algorithmes de composition et de décomposition agissant sur ces objets. Ce travail de recherche repose sur la construction et l'étude de structure algébrique sur des objets combinatoires généralisant les permutations. Après avoir rappelé le contexte et les notations des différents objets intervenant dans cette recherche, nous proposons dans la seconde partie l'étude de l'algèbre de Hopf introduite par Aguiar et Orellana indexée par les permutations de blocs uniformes. En se focalisant sur une description de ces objets via d'autres bien connus, les permutations et les partitions d'ensembles, nous proposons une réalisation polynomiale et une étude plus simple de cette algèbre. La troisième partie étudie une deuxième généralisation en interprétant les permutations comme des matrices. Nous définissons et étudions alors des familles de matrices carrées sur lesquelles nous définissons des algorithmes de composition et de décomposition. La quatrième partie traite des matrices à signes alternants. Après avoir définie l'algèbre de Hopf sur ces matrices, nous étudions des statistiques et le comportement de la structure algébrique vis-à-vis de ces statistiques. Tous ces chapitres s'appuient fortement sur l'exploration informatique, et fait l'objet d'une implémentation utilisant le logiciel Sage. Ce dernier chapitre est consacré à la découverte et la manipulation de structures algébriques sur Sage. Nous terminons en expliquant les améliorations apportées pour l'étude de structure algébrique au travers du logiciel Sage / This thesis is in the field of algebraic combinatorics. In other words, the idea is to use algebraic structures, in this case of combinatorial Hopf algebras, to better study and understand the combinatorial objects and algorithms for composition and decomposition about these objects. This research is based on the construction and study of algebraic structure of combinatorial objects generalizing permutations. After recalling the background and notations of various objects involved in this research, we propose, in the second part, the study of the Hopf algebra introduced by Aguiar and Orellana based on uniform block permutations. By focusing on a description of these objects via well-known objects, permutations and set partitions, we propose a polynomial realization and an easier study of this algebra. The third section considers a second generalization interpreting permutations as matrices. We define and then study the families of square matrices on which we define algorithms for composition and decomposition. The fourth part deals with alternating sign matrices. Having defined the Hopf algebra of these matrices, we study the statistics and the behavior of the algebraic structure with these statistics. All these chapters rely heavily on computer exploration, and is the subject of an implementation using Sage software. This last chapter is dedicated to the discovery and manipulation of algebraic structures on Sage. We conclude by explaining the improvements to the study of algebraic structure through the Sage software
35

Combinatoire algébrique des arbres / Algebraic combinatorics on trees

Giraudo, Samuele 08 December 2011 (has links)
Cette thèse se situe dans le domaine de la combinatoire algébrique et porte sur la construction de plusieurs structures combinatoires et algébriques sur différentes espèces d'arbres. Après avoir défini un analogue du monoïde plaxique dont les classes d'équivalence sont indexées par les couples d'arbres binaires jumeaux, nous proposons un analogue de la correspondance de Robinson-Schensted dans ce contexte. À partir de ce monoïde, nous construisons une sous-algèbre de Hopf de l'algèbre de Hopf des fonctions quasi-symétriques libres dont les bases sont indexées par les couples d'arbres binaires jumeaux. Ensuite, nous proposons un foncteur combinatoire de la catégorie des monoïdes vers la catégorie des opérades ensemblistes. En utilisant ce foncteur, nous construisons plusieurs opérades qui mettent en jeu divers objets combinatoires. Par le biais d'une construction qui à une opérade associe une algèbre de Hopf non commutative, nous obtenons à partir de l'une des opérades obtenue par notre construction, une algèbre de Hopf basée sur les forêts ordonnées d'arbres plans enracinés. Nous proposons une réalisation polynomiale de cette dernière. Finalement, nous établissons certaines propriétés vérifiées par les arbres binaires équilibrés dans le treillis de Tamari. Nous montrons que l'ensemble des arbres binaires équilibrés y est clos par intervalle et que les intervalles d'arbres binaires équilibrés ont la forme d'hypercubes. Dans l'objectif de dénombrer ces intervalles, nous introduisons une nouvelle sorte de grammaires d'arbres, les grammaires synchrones. Celles-ci permettent d'obtenir une équation fonctionnelle de point fixe pour la série génératrice des arbres qu'elles engendrent / This thesis comes within the scope of algebraic combinatorics and deals with the construction of several combinatorial and algebraic structures on different tree species. After defining an analogue of the plactic monoid whose equivalence classes are indexed by pairs of twin binary trees, we propose in this context an analogue of the Robinson-Schensted correspondence. From this monoid, we construct a Hopf subalgebra of the Hopf algebra of free quasi-symmetric functions whose bases are indexed by pairs of twin binary trees.Then, we propose a combinatorial functor from the category of monoids to the category of set-operads. Using this functor, we construct several operads that involve various combinatorial objects. Through a construction that brings a noncommutative Hopf algebra from an operad, we obtain from one of the operads obtained by our construction, a Hopf algebra based on ordered forests of planar rooted trees. We propose a polynomial realization of the latter.Finally, we establish some properties satisfied by balanced binary trees in the Tamari lattice. We show that the set of balanced binary trees is closed by interval and that the intervals of balanced binary trees have the shape of hypercubes. To enumerate these intervals, we introduce a new kind of tree grammars, namely the synchronous grammars. They allow to obtain a fixed-point functional equation for the generating series of the generated trees
36

Two theorems related to group schemes

Jones, James Hunter, 1982- 21 February 2011 (has links)
After presenting some preliminary information, this paper presents two proofs regarding group schemes. The first relates the category of affine group schemes to the category of commutative Hopf algebras. The second shows that a commutative group scheme of finite order is in fact killed by its order. / text
37

Hopf and Frobenius algebras in conformal field theory

Stigner, Carl January 2012 (has links)
There are several reasons to be interested in conformal field theories in two dimensions. Apart from arising in various physical applications, ranging from statistical mechanics to string theory, conformal field theory is a class of quantum field theories that is interesting on its own. First of all there is a large amount of symmetries. In addition, many of the interesting theories satisfy a finiteness condition, that together with the symmetries allows for a fully non-perturbative treatment, and even for a complete solution in a mathematically rigorous manner. One of the crucial tools which make such a treatment possible is provided by category theory. This thesis contains results relevant for two different classes of conformal field theory. We partly treat rational conformal field theory, but also derive results that aim at a better understanding of logarithmic conformal field theory. For rational conformal field theory, we generalize the proof that the construction of correlators, via three-dimensional topological field theory, satisfies the consistency conditions to oriented world sheets with defect lines. We also derive a classifying algebra for defects. This is a semisimple commutative associative algebra over the complex numbers whose one-dimensional representations are in bijection with the topological defect lines of the theory. Then we relax the semisimplicity condition of rational conformal field theory and consider a larger class of categories, containing non-semisimple ones, that is relevant for logarithmic conformal field theory. We obtain, for any finite-dimensional factorizable ribbon Hopf algebra H, a family of symmetric commutative Frobenius algebras in the category of bimodules over H. For any such Frobenius algebra, which can be constructed as a coend, we associate to any Riemann surface a morphism in the bimodule category. We prove that this morphism is invariant under a projective action of the mapping class group ofthe Riemann surface. This suggests to regard these morphisms as candidates for correlators of bulk fields of a full conformal field theories whose chiral data are described by the category of left-modules over H.
38

Algèbres de Hopf d'arbres et structures pré-Lie / Hopf algebras of trees and pre-Lie structures

Saïdi, Abdellatif 17 December 2011 (has links)
Nous étudions dans cette thèse l’algèbre de Hopf H associée à l’opérade pré-Lie. L’espace des éléments primitifs du dual gradué est muni d’une structure pré-Lie à gauche notée ⊲ définie par l’insertion d’un arbre dans un autre. Nous retrouvons la relation de dérivation entre le produit pré-Lie ⊲ et le produit pré-Lie de greffe → sur les éléments primitifs du dual gradué de l’algèbre de Hopf de Connes Kreimer HCK. Nous mettons en évidence un coproduit sur le produit tensoriel H ⊗HCK, qui en fait une algèbre de Hopf dont le dual gradué est isomorphe à l’algèbre enveloppante du produit semi-direct des deux algèbres de Lie considérées. Nous montrons que l’espace engendré par les arbres enracinés qui ont au moins une arête, muni du produit d’insertion, est une algèbre pré-Lie (non libre) engendrée par deux éléments. Nous mettons en évidence deux familles de relations. De plus nous montrons un résultat similaire pour l’algèbre pré-Lie associée à l’opérade NAP. Finalement on introduit les opérades à débit constant et on montre que l’opérade pré-Lie s’obtient comme déformation de l’opérade NAP dans ce cadre. / We investigate in this thesis the Hopf algebra structure on the vector space H spanned by the rooted forests, associated with the pre-Lie operad. The space of primitive elements of the graded dual of this Hopf algebra is endowed with a left pre-Lie product denoted by ⊲, defined in terms of insertion of a tree inside another. In this thesis we retrieve the “derivation” relation between the pre-Lie structure ⊲ and the left pre-Lie product → on the space of primitive elements of the graded dual H0CK of the Connes-Kreimer Hopf algebra HCK, defined by grafting. We also exhibit a coproduct on the tensor product H⊗HCK, making it a Hopf algebra the graded dual of which is isomorphic to the enveloping algebra of the semidirect product of the two (pre-)Lie algebras considered. We prove that the span of the rooted trees with at least one edge endowed with the pre-Lie product ⊲ is generated by two elements. It is not free : we exhibit two families of relations. Moreover we prove a similar result for the pre-Lie algebra associated with the NAP operad. Finally, we introduce current preserving operads and prove that the pre-Lie operad can be obtained as a deformation of the NAP operad in this framework.
39

Combinatoire algébrique liée aux ordres sur les permutations / Algebraic combinatorics on orders of permutations

Pons, Viviane 07 October 2013 (has links)
Cette thèse se situe dans le domaine de la combinatoire algébrique et porte sur l'étude et les applications de trois ordres sur les permutations : les deux ordres faibles (gauche et droit) et l'ordre fort ou de Bruhat. Dans un premier temps, nous étudions l'action du groupe symétrique sur les polynômes multivariés. En particulier, les opérateurs de emph{différences divisées} permettent de définir des bases de l'anneau des polynômes qui généralisent les fonctions de Schur aussi bien du point de vue de leur construction que de leur interprétation géométrique. Nous étudions plus particulièrement la base des polynômes de Grothendieck introduite par Lascoux et Schützenberger. Lascoux a montré qu'un certain produit de polynômes peut s'interpréter comme un produit d'opérateurs de différences divisées. En développant ce produit, nous ré-obtenons un résultat de Lenart et Postnikov et prouvons de plus que le produit s'interprète comme une somme sur un intervalle de l'ordre de Bruhat. Nous présentons aussi l'implantation que nous avons réalisée sur Sage des polynômes multivariés. Cette implantation permet de travailler formellement dans différentes bases et d'effecteur des changements de bases. Elle utilise l'action des différences divisées sur les vecteurs d'exposants des polynômes multivariés. Les bases implantées contiennent en particulier les polynômes de Schubert, les polynômes de Grothendieck et les polynômes clés (ou caractères de Demazure).Dans un second temps, nous étudions le emph{treillis de Tamari} sur les arbres binaires. Celui-ci s'obtient comme un quotient de l'ordre faible sur les permutations : à chaque arbre est associé un intervalle de l'ordre faible formé par ses extensions linéaires. Nous montrons qu'un objet plus général, les intervalles-posets, permet de représenter l'ensemble des intervalles du treillis de Tamari. Grâce à ces objets, nous obtenons une formule récursive donnant pour chaque arbre binaire le nombre d'arbres plus petits ou égaux dans le treillis de Tamari. Nous donnons aussi une nouvelle preuve que la fonction génératrice des intervalles de Tamari vérifie une certaine équation fonctionnelle décrite par Chapoton. Enfin, nous généralisons ces résultats aux treillis de $m$-Tamari. Cette famille de treillis introduite par Bergeron et Préville-Ratelle était décrite uniquement sur les chemins. Nous en donnons une interprétation sur une famille d'arbres binaires en bijection avec les arbres $m+1$-aires. Nous utilisons cette description pour généraliser les résultats obtenus dans le cas du treillis de Tamari classique. Ainsi, nous obtenons une formule comptant le nombre d'éléments plus petits ou égaux qu'un élément donné ainsi qu'une nouvelle preuve de l'équation fonctionnelle des intervalles de $m$-Tamari. Pour finir, nous décrivons des structures algébriques $m$ qui généralisent les algèbres de Hopf $FQSym$ et $PBT$ sur les permutations et les arbres binaires / This thesis comes within the scope of algebraic combinatorics and studies problems related to three orders on permutations: the two said weak orders (right and left) and the strong order or Bruhat order.We first look at the action of the symmetric group on multivariate polynomials. By using the emph{divided differences} operators, one can obtain some generalisations of the Schur function and form bases of non symmetric multivariate polynomials. This construction is similar to the one of Schur functions and also allows for geometric interpretations. We study more specifically the Grothendieck polynomials which were introduced by Lascoux and Schützenberger. Lascoux proved that a product of these polynomials can be interpreted in terms of a product of divided differences. By developing this product, we reobtain a result of Lenart and Postnikov and also prove that it can be interpreted as a sum over an interval of the Bruhat order. We also present our implementation of multivariate polynomials in Sage. This program allows for formal computation on different bases and also implements many changes of bases. It is based on the action of the divided differences operators. The bases include Schubert polynomials, Grothendieck polynomials and Key polynomials. In a second part, we study the emph{Tamari lattice} on binary trees. This lattice can be obtained as a quotient of the weak order. Each tree is associated with the interval of its linear extensions. We introduce a new object called, emph{interval-posets} of Tamari and show that they are in bijection with the intervals of the Tamari lattice. Using these objects, we give the recursive formula counting the number of elements smaller than or equal to a given tree. We also give a new proof that the generating function of the intervals of the Tamari lattice satisfies some functional equation given by Chapoton. Our final contributions deals with the $m$-Tamari lattices. This family of lattices is a generalization of the classical Tamari lattice. It was introduced by Bergeron and Préville-Ratelle and was only known in terms of paths. We give the description of this order in terms of some family of binary trees, in bijection with $m+1$-ary trees. Thus, we generalize our previous results and obtain a recursive formula counting the number of elements smaller than or equal to a given one and a new proof of the functional equation. We finish with the description of some new $"m"$ Hopf algebras which are generalizations of the known $FQSym$ on permutations and $PBT$ on binary trees
40

Construção de uma teoria quântica dos campos topológica a partir do invariante de Kuperberg / Construction of a Topological Quantum Field Theory from the Kuperberg Invariant

Silva, Anderson Alves da 28 September 2015 (has links)
Resumo Neste trabalho apresentamos, em detalhes, a construção de uma teoria quântica dos campos topológica (TQCT). Podemos definir uma TQCT como um funtor simétrico monoidal da categoria dos cobordismos para a categoria dos espaços vetoriais. Em duas dimensões podemos encontrar uma descrição completa da categoria dos cobordismos e classificar todas as TQCT\'s. Em três dimensões é possível estender alguns invariantes para 3-variedades e construir uma TQCT 3D. Nossa construção é baseada no invariante para 3-variedades de Kuperberg, o qual envolve diagramas de Heegaard e álgebras de Hopf. Começamos com a apresentação do invariante de Kuperberg definido para toda variedade 3D compacta, orientável e sem bordo. Para cada álgebra de Hopf de dimensão finita constrói-se um invariante. Por fim, apresentamos a TQCT associada com o invariante de Kuperberg. Isto é feito usando-se o fato de que o invariante de Kuperberg é definido como uma soma de pesos locais tal qual uma função de partição. A TQCT decorre dos operadores advindos de variedades com bordo. / Abstract In this work we present in detail a construction of a topological quantum field theory (TQFT). We can define a TQFT as a symmetric monoidal functor from cobordism categories to category of vector spaces. In two dimension, we can give a complete description of cobordism categories and classify all TQFT\'s. In three dimension it is possible to extend some specific 3-manifold invariants and to construct a TQFT 3D. Our construction is based on the Kuperberg 3-manifold invariant which involves Heegaard diagrams and Hopf algebras. We start with the presentation of the Kuperberg invariant defined for every orientable compact 3-manifold without boundary. For each finite-dimensional Hopf algebra we can construct a invariant. Finally we presente the TQFT associated with the Kuperberg invariant. This is made using the fact that the Kuperberg invariant is defined like a sum of local weights in the same way as a partition function. The TQFT is constructed from the operators given by manifolds with boundary.

Page generated in 0.1053 seconds