Spelling suggestions: "subject:"deligne"" "subject:"delignes""
1 |
Représentation de Weil d'une paire duale de groupes de similitudes / Weil representation of dual pairs of similitude groups over a finite fieldGaborieau, Alice 01 October 2015 (has links)
Soit F une extension finie du corps des nombres p-adiques, de corps résiduel Fq. Pour un groupe réductif G sur F, les conjectures de Langlands prédisent une classification des représentations lisses irréductibles de G(F) en termes du groupe dual G^. En particulier, la donnée d’un homomorphisme de groupes duaux de H^ vers G^ doit se traduire par un transfert des représentations de H(F) vers G(F). Pour H = SO2n+1, et G = GL2n, l’injection canonique de H^ vers G^ fournit un transfert des représentations de H(F) vers G(F) qui a été obtenu récemment (pour les représentations génériques) par Jiang et Soudry.Cependant, leurs méthodes utilisent des arguments globaux et l’objet de ce travail consiste à décrire explicitement ce transfert, dans le cas particulier où n = 2 (le cas n = 1 étant déjà connu), et pour des représentations génériques de niveau zéro, lesquelles proviennent essentiellement de représentations du groupe réductif fini SO5 sur le corps résiduel de F. Pour cela, l’isomorphisme entre SO5 et PGSp4 et l’isogénie entre GL4 et GSO6 suggèrent que l’on peut réaliser un transfert entre les représentations de SO5 et celles de GL4 au moyen d’une correspondance de Howe. Nous présentons ici une généralisation des travaux de Srinivasan, qui nous permet d’obtenir la projection uniforme de la représentation de Weil associée à une paire duale de groupes de similitudes lorsque q est assez grand. / Let F be a p-adic field, and let k be its residue field. According to Langlands' conjectures, smooth irreducible representations of a reductive group G defined over F should be classified in terms of the dual groupe G^. In particular, given a homomorphism from H^ to G^, there should be a lift from the representations of H(F) to the representations of G(F). When H = SO2n+1 and G = GL2n, the canonical injection from H^ to G^ should induce a lift from representations of SO2n+1 to representations of GL2n, and this was studied by Jiang and Soudry.However, the arguments used by Jiang and Soudry are of global nature and the aim of this work is to describe explicitly this lift, when n = 2 (the case n = 1 is already known), for level zero generic representations, which are essentially determined by parameters over the finite residue field. Here the isomorphism between SO5 and PGSp4, as well as the isogeny between GL4 and GSO6 suggest that the lift could be realised by a sort of Howe correspondence.In this work, we generalize a result of Srinivasan and give the uniform projection of the Weil representation associated to a dual pair of similitude groups over Fq, when q is big enough.
|
2 |
Reconstruction of deligne classes and cocyclesDemircioglu, Aydin January 2007 (has links)
In der vorliegenden Arbeit verallgemeinern wir im Wesentlichen zwei Theoreme von
Mackaay-Picken und Picken (2002, 2004). Im ihrem Artikel zeigen Mackaay und Picken,dass es eine bijektive Korrespodenz zwischen Deligne 2-Klassen $xi in check{H}^2(M, mathcal{D}^2)$ und Holonomie Abbildungen von der zweiten dünnen Homotopiegruppe $pi_2^2(M)$ in die abelsche Gruppe $U(1)$ gibt. Im zweiten Artikel wird eine Verallgemeinerung dieses Theorems bewiesen: Picken zeigt, dass es eine Bijektion gibt zwischen Deligne 2-Kozykeln und gewissen 2-dimensionalen topologischen Quantenfeldtheorien.
In dieser Arbeit zeigen wir, dass diese beiden Theoreme in allen Dimensionen gelten.Wir betrachten zunächst den Holonomie Fall und können mittels simplizialen Methoden nachweisen, dass die Gruppe der glatten Deligne $d$-Klassen isomorph ist zu der Gruppe der glatten Holonomie Abbildungen von der $d$-ten dünnen Homotopiegruppe $pi_d^d(M)$ nach $U(1)$, sofern $M$ eine $(d-1)$-zusammenhängende Mannigfaltigkeit ist.
Wir vergleichen dieses Resultat mit einem Satz von Gajer (1999). Gajer zeigte, dass jede Deligne $d$-Klasse durch eine andere Klasse von Holonomie-Abbildungen
rekonstruiert werden kann, die aber nicht nur Holonomien entlang von Sphären, sondern auch entlang von allgemeinen $d$-Mannigfaltigkeiten in $M$ enthält. Dieser Zugang benötigt dann aber nicht, dass $M$ hoch-zusammenhängend ist. Wir zeigen, dass im Falle von flachen Deligne $d$-Klassen unser Rekonstruktionstheorem sich von Gajers unterscheidet, sofern $M$ nicht als $(d-1)$, sondern nur als $(d-2)$-zusammenhängend angenommen wird. Stiefel Mannigfaltigkeiten besitzen genau diese Eigenschaft, und wendet man unser Theorem auf diese an und vergleicht das Resultat mit dem von Gajer, so zeigt sich, dass es zuviele Deligne Klassen rekonstruiert. Dies bedeutet, dass unser Rekonstruktionsthreorem ohne die Zusatzbedingungen an die Mannigfaltigkeit M nicht auskommt, d.h. unsere Rekonstruktion benötigt zwar weniger Informationen über die Holonomie entlang von d-dimensionalen Mannigfaltigkeiten, aber dafür muss M auch $(d-1)$-zusammenhängend angenommen werden.
Wir zeigen dann, dass auch das zweite Theorem verallgemeinert werden kann: Indem wir das Konzept einer Picken topologischen Quantenfeldtheorie in beliebigen Dimensionen einführen, können wir nachweisen, dass jeder Deligne $d$-Kozykel eine solche $d$-dimensionale Feldtheorie mit zwei besonderen Eigenschaften, der
dünnen Invarianz und der Glattheit, induziert. Wir beweisen, dass jede $d$-dimensionale topologische Quantenfeldtheorie nach Picken mit diesen zwei Eigenschaften auch eine Deligne $d$-Klasse definiert und prüfen nach, dass diese Konstruktion sowohl surjektiv als auch injektiv ist. Demzufolge sind beide Gruppen isomorph. / In this thesis we mainly generalize two theorems from Mackaay-Picken and Picken
(2002, 2004). In the first paper, Mackaay and Picken show that there is a bijective correspondence between Deligne 2-classes $xi in check{H}^2(M,mathcal{D}^2)$ and holonomy maps from the second thin-homotopy group $pi_2^2(M)$ to $U(1)$. In the second one, a generalization of this theorem to manifolds with boundaries is given: Picken shows that there is a bijection
between Deligne 2-cocycles and a certain variant of 2-dimensional topological quantum field theories.
In this thesis we show that these two theorems hold in every dimension. We consider first the holonomy case, and by using simplicial methods we can prove that the group of smooth Deligne $d$-classes is isomorphic to the group of smooth holonomy maps from the $d^{th}$ thin-homotopy group $pi_d^d(M)$ to $U(1)$, if $M$ is $(d-1)$-connected.
We contrast this with a result of Gajer (1999). Gajer showed that Deligne $d$-classes can be reconstructed by a different class of holonomy maps, which not only include holonomies along spheres, but also along general $d$-manifolds in $M$. This approach does not require the manifold $M$ to be $(d-1)$-connected.
We show that in the case of flat Deligne $d$-classes, our result differs from Gajers, if $M$ is not $(d-1)$-connected, but only $(d-2)$-connected. Stiefel manifolds do have this property, and if one applies our theorem to these and compare the result with that of Gajers theorem, it is revealed that our theorem
reconstructs too many Deligne classes. This means, that our reconstruction
theorem cannot live without the extra assumption on the manifold $M$, that is our reconstruction needs less informations about the holonomy of $d$-manifolds in $M$ at the price of assuming $M$ to be $(d-1)$-connected.
We continue to show, that also the second theorem can be generalized: By introducing the concept of Picken-type topological quantum field theory in arbitrary dimensions, we can show that every Deligne $d$-cocycle induces such a $d$-dimensional field theory with two special properties, namely thin-invariance and smoothness. We show that any $d$-dimensional topological quantum field theory with these two properties gives rise to a Deligne $d$-cocycle and verify that this construction is surjective and injective, that is both groups are isomorphic.
|
3 |
Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification / Cohomology of Coxeter varieties for linear groups : endomorphisms algebra, compactificationNguyen, Tuong-Huy 11 December 2015 (has links)
Les variétés de Deligne-Lusztig associées à un élément de Coxeter, dites variétés de Coxeter et notées $YY(dot{c})$, sont des variétés candidates à réaliser l'équivalence dérivée demandée dans la conjecture de Broué. Cette conjecture implique qu'une telle variété doit avoir une cohomologie disjointe et donne également la description de l'algèbre d'endomorphismes associée. Dans le cas des groupes linéaires, nous décrivons la cohomologie des variétés de Coxeter et en déduisons que celles-ci vérifient bien les propriétés impliquées par la conjecture de Broué. Pour ce faire, nous montrons qu'il est possible d'appliquer un résultat de og transitivitéfg permettant de se ramener à des variétés de Coxeter og plus petitesfg et nous utilisons ensuite un résultat établi par Lusztig sur des variétés notées $XX(c)$, obtenues comme des quotients des variétés $YY(dot{c})$ par des groupes finis. Enfin, dans une dernière partie, la description de la cohomologie des variétés de Coxeter nous permet d'obtenir un lien entre la cohomologie de la compactification $overline{YY}(dot{c})$ et celle de la compactification $overline{XX}(c)$. / Deligne-Lusztig varieties associated to Coxeter elements, or more simply Coxeter Varieties denoted by $YY(dot{c})$, are good candidates to realize the derived equivalence needed for the Broué's conjecture. The conjecture implies that the varieties should have disjoint cohomology as well as gives a description of the endomorphisms algebra.For linear groups, we describe the cohomology of the Coxeter varieties and hence show that it agrees with the conditions implied by Broué's conjecture. To do so, we prove it is possible to apply a og transitivityfg result allowing us to restrict to og smallerfg Coxeter varieties. Then, we apply a result obtained by Lusztig on varieties $XX(c)$, which are quotient varieties of $YY(dot{c})$ by some finite groups.In the last part of the thesis, we use the description of the cohomology of Coxeter varieties to connect the cohomology of the compactification $overline{YY}(dot{c})$ and the cohomology of the compactification $overline{XX}(c)$.
|
4 |
Les fibrations de Grothendieck et l’algèbre homotopique / Grothendieck fibrations and homotopical algebraBalzin, Eduard 20 June 2016 (has links)
Cette thèse est consacrée à l'étude des familles de catégories munies d'une structure homotopique. Les résultats principaux compris dans cette oeuvre sont : i. Une généralisation de la structure de modèles de Reedy, qui dans ce travail est construite pour les sections d'une famille convenable des catégories de modèles sur une catégorie de Reedy. À la différence des considérations précédentes, par exemple celles de Hirschowitz-Simpson, nous exigeons aussi peu de propriétés de la famille que possible, pour que notre résultat puisse être appliqué dans les situations où les foncteurs de transition ne sont pas linéaires. ii. Une extension du formalisme de Segal pour les structures algébriques, dans le territoire des catégories monoïdales sur une catégorie d'opérateurs au sens de Barwick. Pour ce faire, nous présentons les structures monoidales comme certaines opfibrations de Grotendieck, et introduisons les sections dérivées des opfibrations en utilisant les remplacements simpliciaux de Bousfield-Kan. Notre résultat concernant la structure de Reedy nous permet alors de travailler avec les sections dérivées. iii. Une preuve d'un certain résultat de la descente homotopique, qui donne des conditions suffisantes pour que le foncteur d'image inverse soit une équivalence entre catégories de sections dérivées au sens adapté. L'on montre ce résultat pour les foncteurs qui satisfont une propriété technique du genre ``Théorème A de Quillen'', les foncteurs que nous appelons résolutions. Un exemple d'une résolution est donné par un foncteur de la catégorie des arbres planaires stables de Kontsevich-Soibelman, au groupoïde fondamental stratifié de l'espace de Ran du $2$-disque / This thesis is devoted to the study of families of categories equipped with a homotopical structure. The principal results comprising this work are:i. A generalisation of the Reedy model structure, which, in this work, is constructed for sections of a suitable family of model categories over a Reedy category. Unlike previous considerations, such as Hirschowitz-Simpson, we require as little as possible from the family, so that our result may be applied in situations when the transition functors in the family are non-linear in nature. ii. An extension of Segal formalism for algebraic structures to the setting of monoidal categories over an operator category in the sense of Barwick. We do this by treating monoidal structures using the language of Grothendieck opfibrations, and introduce derived sections of the latter using the simplicial replacements of Bousfield-Kan. Our Reedy structure result then permits to work with derived sections. iii. A proof of a certain homotopy descent result, which gives sufficient conditions on when an inverse image functor is an equivalence between suitable categories of derived sections. We show this result for functors which satisfy a technical ``Quillen Theorem A''-type property, called resolutions. One example of a resolution is given by a functor from the category of planar marked trees of Kontsevich-Soibelman, to the stratified fundamental groupoid of the Ran space of the $2$-disc. An application of the homotopy descent result to this functor gives us a new proof of Deligne conjecture, providing an alternative to the use of operads
|
5 |
Equivalence singulière à la Morita et la cohomologie de Hochschild singulière / Singular equivalence of Morita type and singular Hochschild cohomologyWang, Zhengfang 07 December 2016 (has links)
L’objet de cette thèse est l’étude des catégories singulières des k-algèbres associatives surun anneau commutatif k. On développe la théorie de Morita pour les catégories singulières. Plus précisément, on propose une définition d’équivalence singulière à la Morita avec niveau, qui généralise la notion d’équivalence stable à la Morita introduite par Michel Broué. On montre qu’une équivalence dérivée de type standard induit une équivalence singulière à la Morita avec niveau. La deuxième partie de cette thèse est l’étude de la cohomologie de Hochschild singulière HH_sg(A,A) c’est-à-dire, l’espace des morphismes de A vers A[i] dans la catégorie singulière Dsg(A Aop) pour tous les nombres entiers i. Similaire à la cohomologie de Hochschild HH_(A,A), on montre que la cohomologie de Hochschild singulière HH_sg(A,A) est une algèbre de Gerstenhaber et donne une interprétation pour le crochet de Lie sur HH_sg(A,A) du point de vue de la théorie de PROP. On peut associer un complexe de cochaînes, qu’on appelle complexe de cochaînes de Hochschild singulières, C_sg(A,A) qui calcule la cohomologie de Hochschild singulière HH_sg(A,A). Alors on étudie une structure algébrique supérieure (e.g. l’algèbre de B1) sur C_sg(A,A) et propose une version singulière d’une conjecture de Deligne. L’objet de la troisième partie de cette thèse est de montrer que la structure d’algèbre de Gerstenhaber sur la cohomologie de Hochschild singulière est invariante par équivalences dérivées et équivalences singulières à la Morita avec niveau. L’idée de cette démonstration est analogue à l’approche développée par Keller lorsqu’il démontre que la structure d’algèbre de Gerstenhaber sur la cohomologie de Hochschild est invariante par équivalences dérivées. Similaire à la démonstration par Keller, on réalise HH_sg(A,A) avec le crochet de Lie comme une algèbre de Lie graduée du groupe algébrique gradué associé au groupe de Picard singulière sgDPic(A). / In this thesis, we are concerned with some aspects of singular categories of unitalassociative k-algebras over a commutative ring k. First, we develop a Morita theory for singular categories. Analogous to the classical Morita theory, we propose a definition of singular equivalence of Morita type with level. This follows and generalizes a definition of stable equivalence of Morita type introduced by Michel Broué. A derived equivalence of standard type induces a singular equivalence of Morita type with level. Second, we study the Hom-space from A to A[i] in the singular category Dsg(AkAop) of the enveloping algebra AkAop, where A is an associative k-projective k-algebra and i is any integer. Recall that the i-th Hochschild cohomology group HHi(A,A) can be realized as the Hom-space from A to A[i] in the bounded derived category Db(A k Aop). From this motivation, we call HomDsg(AkAop)(A,A[i]) the i-th singular Hochschild cohomology group and denote this group by HHi sg(A,A). Analogous to the Hochschild cohomology ring HH_(A,A), we prove that there is a Gerstenhaber algebra structure on the singular Hochschild ring HH_sg(A,A) and provide an interpretation of the Lie bracket from the point of view of PROP theory. We also associate a cochain complex, which we call singular Hochschild cochain complex, C_sg(A,A) to the singular Hochschild cohomology. Thenwe study the higher algebraic structures (e.g. B1-algebra) on C_sg(A,A) and propose asingular version of the Deligne conjecture. Following Keller’s approach which was developed for derived equivalences, we establish the invariance of the Gerstenhaber algebra structure which we defined on the singular Hochschild cohomology under singular equivalence of Morita type with level. In this proof, we define the singular derived Picard group sgDPic(A) of an associative algebra A and develop what we call a singular infinitesimal deformation theory. Then we realize HH_sg(A,A) as the graded Lie algebra of the ‘graded algebraic group’ associated to sgDPic(A).
|
6 |
Heisenberg Categorification and Wreath Deligne CategoryNyobe Likeng, Samuel Aristide 05 October 2020 (has links)
We define a faithful linear monoidal functor from the partition category, and hence from Deligne's category Rep(S_t), to the additive Karoubi envelope of the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions.
We then generalize the above results to any group G, the case where G is the trivial group corresponding to the case mentioned above. Thus, to every group G we associate a linear monoidal category Par(G) that we call a group partition category. We give explicit bases for the morphism spaces and also an efficient presentation of the category in terms of generators and relations. We then define an embedding of Par(G) into the group Heisenberg category associated to G. This embedding intertwines the natural actions of both categories on modules for wreath products of G. Finally, we prove that the additive Karoubi envelope of Par(G) is equivalent to a wreath product interpolating category introduced by Knop, thereby giving a simple concrete description of that category.
|
7 |
A study on the pro-p outer Galois representations associated to once-punctured CM elliptic curves for ordinary primes / 通常素数に対する一点抜き虚数乗法付き楕円曲線に付随する副p外Galois表現の研究Ishii, Shun 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24389号 / 理博第4888号 / 新制||理||1699(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 玉川 安騎男, 教授 並河 良典, 教授 望月 新一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
8 |
Modèles topologiques de type cohomologique en théorie quantique des champs.Thuillier, Frank 31 October 2012 (has links) (PDF)
Nous présentons dans ce travail deux exemples de modèles topologiques faisant appel à la cohomologie : - dans le premier exemple nous montrons comment obtenir des invariants topologiques, tels que ceux de Donaldson, de Mumford, de Mathaï-Quillen ou de gravité topologique, en utilisant la cohomologie équivariante. Nous présentons une méthode universelle permettant d'obtenir de tels invariants topologiques en se basant sur une approche de type BRST. Nous rappelons qu'il existe différents " schémas " caractérisant une théorie équivariante et nous montrons comment le schéma de Kalkman permet une construction optimisée des invariants. - dans le second exemple nous étudions les théories abéliennes de Chern-Simons. Nous montrons comment une approche basée sur la cohomologie de Deligne-Beilinson permet de traiter ces théories sur des variétés fermées de dimension trois. Nous montrons comment la structure de ces espaces de cohomologie induit canoniquement la quantification de la constante de couplage et des charges, tout en fournissant les informations nécessaires et suffisantes pour obtenir via l'intégration fonctionnelle les invariants de liens usuellement obtenus à partir de procédures de chirurgie sur la sphère. Cette méthode admet un prolongement naturel qui permet de traiter plus généralement les variétés de dimension 4n+3.
|
9 |
Two theorems related to group schemesJones, James Hunter, 1982- 21 February 2011 (has links)
After presenting some preliminary information, this paper presents two proofs regarding group schemes. The first relates the category of affine group schemes to the category of commutative Hopf algebras. The second shows that a commutative group scheme of finite order is in fact killed by its order. / text
|
10 |
La tour de Teichmüller--GrothendieckZOONEKYND, Vincent 22 June 2001 (has links) (PDF)
Nous commençons par développer la notion de groupe fondamental d'un champ algébrique, à l'aide de sa catégorie de revêtements étales. Cette définition coïncide avec celle, en termes de schémas simpliciaux, de T. Oda. Nous montrons aussi qu'elle permet de retrouver le groupe fondamental profini de l'orbifold analytique associé puis établissons une suite exacte reliant groupe fondamental géométrique et algébrique d'un champ algébrique sur un corps. Dans un deuxième chapitre, après avoir défini les notions d'espace tangent et de diviseur à croisements normaux dans le cadre des champs algébriques, nous généralisons celle de point base tangentiel, bien connue pour les schémas de carcatéristique nulle, aux champs algébriques en caractéristique quelconque. Dans un troisième chapitre, nous montrons que les strates ouvertes de la stratification de l'espace de modules de courbes stables de genre $g$ à $n$ points marqués peuvent se décrire à l'aide des espaces de modules de courbes lisses de dimension inférieure. Nous expliquons aussi comment un graphe en rubans permet de décrire un point-base tangenciel sur ces espaces de modules. Dans un dernier chapitre, nous détaillons certains liens entre la tour des groupoïdes fondamentaux des espaces de modules de courbes lisses relatifs aux points-bases tangenciels précédemment construits et le groupoïde de Lyubashenko, en y construisant certains chemins (torsion, tressage) et en établissant certaines relations entre ces chemins. Dans deux appendices, nous détaillons les notions de champ algébrique et de 2-catégorie.
|
Page generated in 0.024 seconds