• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • Tagged with
  • 14
  • 9
  • 8
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Controlling a Hydraulic System using Reinforcement Learning : Implementation and validation of a DQN-agent on a hydraulic Multi-Chamber cylinder system

Berglund, David, Larsson, Niklas January 2021 (has links)
One of the largest energy losses in an excavator is the compensation loss. In a hydraulic load sensing system where one pump supplies multiple actuators, these compensation losses are inevitable. To minimize the compensation losses the use of a multi chamber cylinder can be used, which can control the load pressure by activate its chambers in different combinations and in turn minimize the compensation losses.  For this proposed architecture, the control of the multi chamber cylinder systems is not trivial. The possible states of the system, due to the number of combinations, makes conventional control, like a rule based strategy, unfeasible. Therefore, is the reinforcement learning a promising approach to find an optimal control.  A hydraulic system was modeled and validated against a physical one, as a base for the reinforcement learning to learn in simulation environment. A satisfactory model was achieved, accurately modeled the static behavior of the system but lacks some dynamics.  A Deep Q-Network agent was used which successfully managed to select optimal combinations for given loads when implemented in the physical test rig, even though the simulation model was not perfect.
12

Hardware-in-the-Loop Simulation of Aircraft Actuator

Braun, Robert January 2009 (has links)
<p>Advanced computer simulations will play a more and more important role in future aircraft development and aeronautic research. Hardware-in-the-loop simulations enable examination of single components without the need of a full-scale model of the system. This project investigates the possibility of conducting hardware-in-the-loop simulations using a hydraulic test rig utilizing modern computer equipment. Controllers and models have been built in Simulink and Hopsan. Most hydraulic and mechanical components used in Hopsan have also been translated from Fortran to C and compiled into shared libraries (.dll). This provides an easy way of importing Hopsan models in LabVIEW, which is used to control the test rig. The results have been compared between Hopsan and LabVIEW, and no major differences in the results could be found. Importing Hopsan components to LabVIEW can potentially enable powerful features not available in Hopsan, such as hardware-in-the-loop simulations, multi-core processing and advanced plotting tools. It does however require fast computer systems to achieve real-time speed. The results of this project can provide interesting starting points in the development of the next generation of Hopsan.</p>
13

Hardware-in-the-Loop Simulation of Aircraft Actuator

Braun, Robert January 2009 (has links)
Advanced computer simulations will play a more and more important role in future aircraft development and aeronautic research. Hardware-in-the-loop simulations enable examination of single components without the need of a full-scale model of the system. This project investigates the possibility of conducting hardware-in-the-loop simulations using a hydraulic test rig utilizing modern computer equipment. Controllers and models have been built in Simulink and Hopsan. Most hydraulic and mechanical components used in Hopsan have also been translated from Fortran to C and compiled into shared libraries (.dll). This provides an easy way of importing Hopsan models in LabVIEW, which is used to control the test rig. The results have been compared between Hopsan and LabVIEW, and no major differences in the results could be found. Importing Hopsan components to LabVIEW can potentially enable powerful features not available in Hopsan, such as hardware-in-the-loop simulations, multi-core processing and advanced plotting tools. It does however require fast computer systems to achieve real-time speed. The results of this project can provide interesting starting points in the development of the next generation of Hopsan.
14

Simulation and Testing of Energy Efficient Hydromechanical Drivlines for Construction Equipment

Larsson, Viktor, Larsson, L. Viktor January 2014 (has links)
Increased oil prices and environmental issues have increased a need of loweringthe emissions from and the fuel consumption in heavy construction machines. Anatural solution to these issues is a lowered input power through downsizing ofthe engine. This implies a demand on higher transmission efficiency, in order tominimize the intrusion on vehicle performance. More specifically, alternatives tothe conventional torque converter found in heavier applications today, must beinvestigated. One important part of this is the task of controlling the transmissionwithout jeopardising the advantages associated with the torque converter, such asrobustness and controllability.In this thesis, an alternative transmission concept for a backhoe loader is investigated.The studied concept is referred to as a 2-mode Jarchow power-splittransmission, where a mechanical path is added to a hydrostatic transmission inorder to increase transmission efficiency. The concept is evaluated in computerbased simulations as well as in hardware-in-the-loop simulations, where a physicalhydrostatic transmission is exposed for the loads caused by the vehicle duringvarying conditions. The loads are in turn simulated according to developed modelsof the mechanical parts of the vehicle drive line.In total, the investigated concept can be used instead of the torque converterconcept, if the hydrostatic transmission is properly controlled. The results alsoshow that there is a high possibility that the combustion engine in the backhoeloader can be downsized from 64 kW to 55 kW, which would further increase thefuel savings and reduce the emissions.

Page generated in 0.0304 seconds