Spelling suggestions: "subject:"hybridelectric"" "subject:"bioelectric""
181 |
An Ultracapacitor - Battery Energy Storage System for Hybrid Electric VehiclesStienecker, Adam W. 12 October 2005 (has links)
No description available.
|
182 |
Integrated Energy Management and Autonomous Driving System: A Driving Simulation StudyBruck, Lucas Ribeiro January 2022 (has links)
In searching for more efficient vehicles with lower carbon emissions, researchers have invested enormous time and resources in designing new materials, components, systems, and control methods. The result is not only an immense volume of publications and patents but also a true electrification revolution in the transportation sector. Although the advancements are remarkable, much is still to be developed. Energy management systems are often designed to fulfil drive cycles that represent just a fraction of the actual use of the vehicles, disregarding essential factors such as driving conditions that may vary in real life. Furthermore, control algorithms should not ignore one of the most relevant driving aspects, comfort. Driving should be a pleasant activity since we spend much time of our lives performing this task.
This research proposes a novel algorithm for managing energy consumption in electrified vehicles, the regen-based equivalent consumption minimization strategy (R-ECMS). Its suitability for solving the power-split problem is evaluated. Experiments emulating labelling schedules are conducted considering an example application. Robustness to different drive cycles and flexibility of the algorithm to various modes of operation are assessed. Furthermore, the method is integrated into an autonomous longitudinal control. The function leverages vehicle dynamics and journey mapping to assure energy efficiency and adequate drivability. Finally, the tests are conducted using human-driven cycles leveraging driving simulation technology. That allows for including driver subjective feelings in the design
and assessing the algorithm's performance in realistic driving conditions. / Thesis / Doctor of Philosophy (PhD)
|
183 |
Primary flight control design for a 4-seat electric aircraft / Primär flygkontrolldesign för ett 4-sits elektriskt flygplanLachaume, Cyril January 2021 (has links)
This thesis work is part of a design process which aims to develop a four-seathybrid-electric aircraft at Smartflyer (Grenchen, Switzerland). In that scope,various mechanisms of the plane had to be developed, including the systemactuating the control surfaces. The objective of this thesis work is to designthe primary flight controls which will be implemented in the first prototypebuilt at Smartflyer.Firstly, the work investigates the calculation of the aerodynamic loads appliedto the control surfaces through the use of three different methods which areanalytical calculations, VLM analysis and CFD simulation. Then, the workconsists in defining the kinematic mechanisms of the flight control to handlethe deflection of the horizontal stabiliser, the ailerons and the rudder. Lastly,the calculation of the forces to which are submitted the components of theflight control is conducted. This step allows to determine the pilot controlforces and ensures to take into account the ergonomic aspect during the designphase. The results of this work highlight the limits of the different methodsused and serves as a basis for a future sizing work and detailed conception. / Detta uppsatsarbete är en del av en designprocess som syftar till att utvecklaett fyrsitsigt hybridelektriskt flygplan vid Smartflyer (Grenchen, Schweiz). Idetta omfång måste olika mekanismer i planet utvecklas, inklusive systemetsom manövrerar kontrollytorna. Syftet med detta uppsatsarbete är att utformade primära flygkontrollerna som kommer att implementeras i den första prototypensom byggdes på Smartflyer.För det första undersöker arbetet beräkningen av de aerodynamiska belastningarnasom appliceras på kontrollytorna genom användning av tre olika metodersom är analytiska beräkningar, VLM-analys och CFD-simulering. Därefter bestårarbetet i att definiera de kinematiska mekanismerna för flygkontrollen föratt hantera avböjningen av den horisontella stabilisatorn, kranarna och rodret.Slutligen genomförs beräkningen av de krafter till vilka komponenterna i flygkontrollenöverförs. Detta steg gör det möjligt att bestämma pilotstyrkrafternaoch säkerställer att man tar hänsyn till den ergonomiska aspekten under designfasen.Resultaten av detta arbete belyser gränserna för de olika metodersom används och tjänar som grund för ett framtida storleksarbete och detaljeraduppfattning.
|
184 |
Double-Rotor Switched Reluctance Machine for Integrated Electro-Mechanical Transmission in Hybrid Electric VehiclesYang, Yinye 03 March 2015 (has links)
<p>The world transportation sector has been relying on the oil industry for more than a hundred years, accounting for the largest oil consumption and one third of the greenhouse gas emissions. However, with the boosting demand, escalating national energy security concerns and emerging environmental issues, reducing and displacing petroleum fuel in transportation sector has become an urging global target. As a result, hybrid electric vehicles evolve as one solution to displace petroleum fuel by utilizing vehicle onboard electrical systems, achieving higher fuel economy and less emissions by vehicle electrification and hybridization.</p> <p>However, since hybrid electric vehicles add additional electrical components and systems to realize better fuel economy, the system complexity increases and thus the cost increases. Hence, it is an objective of this thesis research to focus on the integrations and optimizations, aiming to simplify and optimize the hybrid power-trains in both system level and component level.</p> <p>This thesis contributes to a novel integrated electro-mechanical hybrid transmission that is potentially more compact and more operational flexible with fewer components compared to the GM Allison Two-Mode hybrid transmission. Comprehensive commercialized power-train transmissions are reviewed and analyzed to serve as background information for comparison. It also contributes to a family of double-rotor switched reluctance machines that are more integrated and suitable for hybrid electric vehicle applications. A prototype double-rotor switched reluctance machine has been built and tested for concept proving. Detailed machine design process is reported with the emphasis on design novelties. Finite element analysis and optimization techniques are applied and the accuracy is confirmed by the experiments. In addition, methods of machine loss analysis, thermal analysis and drive analysis are established; manufacturing and testing procedures are documented in detail that can be used for future machine designs guidance.</p> / Doctor of Philosophy (PhD)
|
185 |
HEV Energy Management Considering Diesel Engine Fueling Control and Air Path TransientsHuo, Yi 07 1900 (has links)
This thesis mainly focuses on parallel hybrid electric vehicle energy management problems considering fueling control and air path dynamics of a diesel engine. It aims to explore the concealed fuel-saving potentials in conventional energy management strategies, by employing detailed engine models. The contributions of this study lie on the following aspects: 1) Fueling control consists of fuel injection mass and timing control. By properly selecting combinations of fueling control variables and torque split ratio, engine efficiency is increased and the HEV fuel consumption is further reduced. 2) A transient engine model considering air path dynamics is applied to more accurately predict engine torque. A model predictive control based energy management strategy is developed and solved by dynamic programming. The fuel efficiency is improved, comparing the proposed strategy to those that ignore the engine transients. 3) A novel adaptive control-step learning model predictive control scheme is proposed and implemented in HEV energy management design. It reveals a trade-off between control accuracy and computational efficiency for the MPC based strategies, and demonstrates a good adaptability to the variation of driving cycle while maintaining low computational burden. 4) Two methods are presented to deal with the conjunction between consecutive functions in the piece-wise linearization for the energy management problem. One of them shows a fairly close performance with the original nonlinear method, but much less computing time. / Thesis / Doctor of Philosophy (PhD)
|
186 |
Development of a Control System for a P4 Parallel-Through-The-Road Hybrid Electric VehicleHaußmann, Mike January 2019 (has links)
This thesis outlines the development of a control system for a P4-P0 Parallel-Through-The-Road Hybrid Electric Vehicle. This project was part of the EcoCAR Mobility Challenge, an Advanced Vehicle Technology Competition, sponsored by the U.S. Department of Energy, MathWorks and General Motors. The McMaster Engineering EcoCAR team is participating in its second iteration, re-engineering a 2019 Chevrolet Blazer to suit a car-sharing service located within the Greater Toronto Hamilton Area. The proposed architecture uses a 1.5L Engine together with a Belted Alternator Starter motor connected to the traditional low voltage system. The rear axle is electrified containing an Electric Machine, a power oriented Battery Pack and team-designed gear reduction as well as a clutch. The whole rear powertrain is operating at high voltage and has no connection to the traditional low voltage system. Fuel economy improvements up to 12% can be expected while maintaining stock performance targets.
A vehicle simulation model was built to accompany the vehicle design process. This includes a mathematical representation of all powertrain components, the development of energy management algorithms, the design of the Hybrid Supervisory Controller structure, and validating and discussing gathered results. Furthermore, all necessary controllers were chosen and communication within them was established by designing the serial data architecture.
The developed energy management algorithm is customized to utilize the strengths of all components and this specific architecture. A simple rule-based algorithm is used to operate the engine as close as possible to its most fuel efficient operation point at any time. The P4 and P0 motor are used to apply supportive torque to the engine or load the engine with a negative torque. In that way the energy can be regenerated inside the powertrain and charge sustaining operation
v
can be achieved. Fuel economy and performance targets are used to discuss the assumed performance of the vehicle once re-engineered. The set targets range from city and highway fuel economy to IVM – 60 mph acceleration time.
Overall the developed control system suits a car-sharing service with its ability to adapt to the occurring driving situations ensuring a close to optimal operation for any known or unknown driving situation. It focuses on modularity, simplicity and functionality to allow a working implementation in future years of the EcoCAR Mobility Challenge. / Thesis / Master of Applied Science (MASc) / During the re-engineering of a Hybrid Electric Vehicle different expectations must be considered, for example set government fuel economy regulations, defined performance targets, novelty in innovation, stakeholder expectations as well as the used vehicle platform and the available components. The re-engineering process will be done according to the vehicle development process of the EcoCAR Mobility Challenge. Summarized expectations are the use of this vehicle inside a car-sharing service for the Greater Toronto Hamilton Area targeting “Millennials” while focusing on fuel economy improvements and a low cost of ownership.
The research shown in this thesis is set by the requirements derived from the expectations mentioned above. One point of interest is achieving a working control system able to operate close to an optimal state to maximize fuel efficiency and ensuring stock vehicle performance targets. Therefore, the control system has to use the electrification components in an intelligent way. Defining what intelligent control of the engine and the electrification components was one of the main challenges.
This thesis outlines how developing a control system for a Hybrid Electric Vehicle can be realized while ensuring that all included interests are met. The object of this research contains choosing the necessary controllers, building a sufficient vehicle simulation model, developing the energy management algorithm, validating the model performance and evaluating the gathered results.
|
187 |
18/12 Switched Reluctance Motor Design For A Mild-Hybrid Electric Powertrain ApplicationMak, Christopher January 2020 (has links)
A novel belt alternator starter (BAS) is proposed to replace the starter and alternator in a hybrid electric vehicle. The BAS designed utilizes an 18 rotor, 12 stator pole switched reluctance machine (SRM) configuration, with concentrated bar windings wound in parallel. Through iteration of various machine geometry parameters, the SRM can meet the torque and speeds demands over standardized drive cycles described by the US Environmental Protection Agency. / With the depletion of oil wells and changing global climate, a large emphasis is placed on the research, development and adoption of electric vehicles (EVs) to replace vehicles driven by internal combustion engines (ICEs). However the global supply chain is still not ready for such a large demand in EVs; therefore hybrid electric vehicles (HEVs) aim to ease the transition between ICEs and EVs.
The research outlined in this thesis investigates the design of a 18 stator, 12 rotor pole (18/12) configuration switched reluctance machine (SRM) utilizing novel technologies for use as a belt alternator starter (BAS) motor in an HEV. Background research on current trends and technologies for electric motors and vehicles is performed before evaluating initial geometry for the motor core to be designed. Initial geometry is brought into JMAG to develop an electromagnetic model and begin the geometry optimization. The 18/12 design process highlights how changes to motor parameters from a geometry and winding standpoint will affect motor performance. After the motor core geometry yields suitable performance, a mechanical design is proposed encompassing the rotary assembly, cooling as well as solutions for mounting. / Thesis / Master of Applied Science (MASc) / Hybrid electric vehicles are becoming more prevalent as stricter restrictions are placed on fuel economy and emissions targets. Full electric vehicles on the other hand have not yet become the standard form of transportation due to the limits on range and infrastructure. Because of this, automotive manufacturers are researching and developing new methods in which they can meet these restrictions and limitations. Switched reluctance motors aim to be a solution to meet these demands while forging a new path by alleviating the demand on rare earth metals for the motor core. In this thesis, a design is proposed to fill an existing role in vehicle electrification best suited for a belted alternator starter.
|
188 |
Implementation of Design Failure Modes and Effects Analysis for Hybrid Vehicle SystemsShoults, Lucas Wayne 07 July 2016 (has links)
An increase emphasis has been placed on the automotive industry to develop advanced technology vehicles which meet increasing strict government regulations and standards for emissions and fuel economy while maintaining the safety, performance, and consumer appeal of the vehicle. In response to these requirements, hybrid and electric vehicle technologies have become more complex as the necessity for vehicles with an overall better environmental impact. Modern engineers must understand the current methods used to analyze and evaluate risk with the new hybrid technologies to ensure the continued customer satisfaction and safety while meeting new government and agency standards.
The primary goal of this work is to maintain consistent definitions, standards, and protocols for risk analysis using design failure modes and effects analysis. Throughout the entire automotive sector there exist standards for risk analysis and methods for analysis, however these models can be difficult to relate to the atmosphere under which educational competitions occur. The motor system case study within this work aims to allow the process for DFMEA to be simple and easily implemented and understood when it is appropriate to start. After defining the model, an electric motor system for hybrid vehicle is analyzed for mechanical and inverter system risks. The end result being a 32% reduction in motor system risk due to recommended actions for mitigating top motor systems risks for future motor system design and implementation, all to meet customer requirements. This work aims to provide an additional tool that when implemented will accelerate the next generation of automotive engineers. / Master of Science
|
189 |
Application of Functional Safety Standards to the Electrification of a Vehicle PowertrainNeblett, Alexander Mark Hattier 02 August 2018 (has links)
With the introduction of electronic control units to automotive vehicles, system complexity has increased. With this change in complexity, new standards have been created to ensure safety at the system level for these vehicles. Furthermore, vehicles have become increasingly complex with the push for electrification of automotive vehicles, which has resulted in the creation of hybrid electric and battery electric vehicles.
The goal of this thesis is to provide an example of a hazard and operability analysis as well as a hazard and risk analysis for a hybrid electric vehicle. Additionally, the safety standards developed do not align well with educational prototype vehicles because the standards are designed for corporations. The hybrid vehicle supervisory controller example within this thesis demonstrates how to define a system and then perform system-level analytical techniques to identify potential failures and associated requirements. Ultimately, through this analysis suggestions are made on how best to reduce system complexity and improve system safety of a student built prototype vehicle. / Master of Science / With the introduction of electronic control units to automotive vehicles, system complexity has increased. With this change in complexity, new standards have been created to ensure safety at the system level for these vehicles. Furthermore, vehicles have become increasingly complex with the push for electrification of automotive vehicles, which has resulted in the creation of hybrid electric and battery electric vehicles.
There are different ways for corporations to demonstrate adherence to these standards, however it is more difficult for student design projects to follow the same standards. Through the application of hazard and operability analysis and hazard and risk analysis on the hybrid vehicle supervisory controller, an example is provided for future students to follow the guidelines established by the safety standards. The end result is to develop system requirements to improve the safety of the prototype vehicle with the added benefit of making design changes to reduce the complexity of the student project.
|
190 |
Design Optimization of a Regional Transport Aircraft with Hybrid Electric Distributed Propulsion SystemsRajkumar, Vishnu Ganesh 03 August 2018 (has links)
In recent years, there has been a growing shift in the world towards sustainability. For civil aviation, this is reflected in the goals of several organizations including NASA and ACARE as significantly increased fuel efficiency along with reduced harmful emissions in the atmosphere. Achieving the goals necessitates the advent of novel and radical aircraft technologies, NASA's X-57, is one such concept using distributed electric propulsion (DEP) technology.
Although practical implementation of DEP is achievable due to the scale invariance of highly efficient electric motors, the current battery technology restricts its adoption for commercial transport aircraft. A Hybrid Electric Distributed Propulsion (HEDiP) system offers a promising alternative to the all-electric system. It leverages the benefits of DEP when coupled with a hybrid electric system. One of the areas needing improvement in HEDiP aircraft design is the fast and accurate estimation of wing aerodynamic characteristics in the presence of multiple propellers. A VLM based estimation technique was developed to address this requirement.
This research is primarily motivated by the need to have mature conceptual design methods for HEDiP aircraft. Therefore, the overall research objective is to develop an effective conceptual design capability based on a proven multidisciplinary design optimization (MDO) framework, and to demonstrate the resulting capability by applying it to the conceptual design of a regional transport aircraft (RTA) with HEDiP systems. / Master of Science / Recent years have seen a growing movement to steer the world towards sustainability. For civil aviation, this is reflected in the goals of key organizations, such as NASA and ACARE, to significantly improve fuel efficiency, reduce harmful emissions, and decrease direct heat release in the atmosphere. Achieving such goals requires novel technologies along with radical aircraft concepts driven by efficiency maximization as well as using energy sources other than fossil fuel. NASA’s all-electric X-57 is one such concept using the Distributed Electric Propulsion (DEP) technology with multiple electric motors and propellers placed on the wing. However, today’s all-electric aircraft suffer from the heavy weight penalty associated with batteries to power electric motors. In the near term, a Hybrid Electric Distributed Propulsion (HEDiP) system offers a promising alternative. HEDiP combines distributed propulsion (DiP) technology powered by a mix of two energy sources, battery and fossil fuel. The overall goal of the present study is to investigate potential benefits of HEDiP systems for the design of optimal regional transport aircraft (RTA).
To perform this study, the aerodynamics module of the Pacelab Aircraft Preliminary Design (APD) software system was modified to account for changes in wing aerodynamics due to the interaction with multiple propellers. This required the development of the Wing Aerodynamic Simulation with Propeller Effects (WASPE) code. In addition, a Wing Propeller Configuration Optimization (WIPCO) code was developed to optimize the placement of propellers based on location, number, and direction of rotation. The updated APD was applied to develop the HERMiT 2E series of RTA. The results demonstrated the anticipated benefits of HEDiP technologies over conventional aircraft, and provided a better understanding of the sensitivity of RTA designs to battery technology and level of hybridization, i.e., power split between batteries and fossil fuels. The HERMiT 6E/I was then designed to quantify the benefits of HEDiP systems over a baseline Twin Otter aircraft. The results showed that a comparable performance could be obtained with more than 50% saving in mission energy costs for a small weight penalty. The HERMiT 6E/I also requires only about 38% of the mission fuel borne by the baseline. This means a correspondingly lower direct atmospheric heat release, reduction in carbon dioxide and NOx emissions along with reduced energy consumptions.
|
Page generated in 0.0346 seconds