Spelling suggestions: "subject:"hydrogel"" "subject:"hrydrogel""
171 |
Caractérisation et électro-actionnement du PEDOT : PSS en liquide pour son utilisation comme revêtement antisalissure en milieu marin / Characterization and electro-activity of PEDOT : PSS for marine anti-biofouling coatings.Duc, Caroline 10 May 2017 (has links)
Les surfaces manufacturées par l’homme sont facilement colonisées par des micro-organismes, qui limitent leurs performances. Ici, nous caractérisons en milieu aqueux, le polymère électro-actif poly(3,4-éthylènedioxythiophène):polystyrène sulfonate, afin d’évaluer son aptitude à limiter l’encrassement biologique en milieu marin. Premièrement, nous nous intéressons à l’évolution de sa mouillabilité et de ses propriétés mécaniques en fonction de sa composition chimique quand il est vieilli ou stimulé électriquement. Nos mesures d’angle de contact sur 6 mois révèlent que, indépendamment du taux de réticulant couramment utilisé pour stabiliser le polymère, son interface change grandement avec le temps et les conditions de caractérisation ou de stockage (influence de l’humidité et de la température). Puis, via des études de microscopie en champ proche, nous quantifions son taux d’hydratation et son élasticité lorsqu’il est immergé. Semblable aux hydrogels, il peut absorber jusqu’à 10 fois son volume et présente un module d’Young inférieur à 1 MPa. Mais le réticulant impacte sévèrement ces propriétés sans assurer une excellente stabilité de l’interface. Enfin, siège de phénomènes d’électromouillage, le polymère subit des variations de 30° de son angle de contact sans présenter d’actionnement mécanique dans nos conditions de test. Deuxièmement, nous étudions l’adhésion de bactéries marines TC8 (Pseudoalteromonas lipolytica) sur le polymère pour évaluer ses propriétés antisalissure en fonction du taux de réticulant. Activable, facilement structurable à l’échelle micrométrique et limitant l’adhésion des bactéries, le PEDOT:PSS est un candidat intéressant pour les revêtements marins. / Manmade surfaces often experience rapid fouling by a wide range of micro-organisms which impact their performances. Here, we characterize in aqueous solution, the electro-active polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate in order to assess its ability to limit biofouling in marine environment. Firstly, we evaluate the evolution of its wettability and mechanical properties as a function of chemical composition when samples are left to age or are stimulated electrically. Our contact angle measurements performed over 6 months reveal that the polymer interface changes drastically with time and conditions in which the polymer is characterized or stored (influence of the relative humidity and the temperature) regardless of the concentration of cross-linker added to stabilize it and with. Using atomic force microscopy, we quantify the swelling and elastic modulus of the immersed polymer. Like hydrogels, the native polymer is able to absorb 10 times its volume and its Young modulus is smaller than 1MPa. However, the cross-linker addition alters these properties without insuring a good stability of the interface. Applying an electric field as a way to modulate PEDOT:PSS properties is also investigated. We demonstrate a 30° modulation of its contact angle by electrowetting, but no mechanical actuation can be measured under our test conditions. Secondly, we study its anti-biofouling properties as a function of crosslinker concentration. Tests using the marine bacteria TC8 (Pseudoalteromonas lipolytica) show that this polymer limits bacterial adhesion. Electro-active, easily micropatterned and anti-adhesive, PEDOT:PSS could be interesting for marine coatings.
|
172 |
Mitochondria-targeted therapy for metastatic melanomaKloepping, Kyle Christohper 15 December 2015 (has links)
Melanoma incidence is increasing faster than any other cancer in the world today. Disease detected early can be cured by surgery, but once melanoma progresses to the metastatic stage it is lethal, with an overall median survival of less than one year. The poor prognosis for late stage melanoma patients is attributed to the intrinsic resistance of melanoma to all Federal Drug Administration approved melanoma therapies. Therefore, there is a critical need for novel treatment approaches that circumvent melanoma therapy resistance. Emerging evidence suggests that differences in melanoma metabolism relative to non-malignant cells represents a potential target for therapeutic intervention. The research presented here demonstrates the potential for using triphenylphosphonium-based compounds as a new therapeutic platform for metastatic melanoma that is designed to take advantage of these metabolic differences. In vitro experiments demonstrate that triphenylphosphonium-based compounds modified with an aliphatic side chain target melanoma cell mitochondria and promote melanoma cell death via mitochondria metabolism inhibition and subsequent reactive oxygen species production. Increased reactive oxygen species production results in decreased glutathione levels and an oxidized cellular state. There is also a structure-activity relationship between side chain length, metabolic disruption, and melanoma cell cytotoxicity. Further, results demonstrate that traditional in vivo triphenylphosphonium drug administration routes such as oral gavage, intraperitoneal injection, and intravenous injection do not result in significant tumor accumulation of triphenylphosphonium drugs. However, the use of a thermosensitive hydrogel delivery system localizes triphenylphosphonium drugs directly at the melanoma tumor site and decreases melanoma tumor growth rate. These results suggest that a hydrogel-based triphenlyphosphonium delivery system could potentially be a therapeutic strategy that circumvents melanoma resistance mechanisms in order to provide durable therapy for an increasing number of metastatic melanoma patients worldwide.
|
173 |
Three-dimensional microengineered hydrogels as a novel assay for electrophysiological investigation of biomimetic neural culturesJanuary 2013 (has links)
Microstructural and electrophysiological properties of neural tissue are substantially influenced by the immediate extracellular environment wtihin the nervous system. These properties are also arguably the most clinically-relevant and sensitive measures of nerve health. However, the neurological architecture, physiology, and surrounding extracellular matrix are hard to mimic in vitro, and an increasing need for culture platforms that reproduce these complex features has led to the development of 3D cultures and microscale engineered tissues for functional assays. Using a dual hydrogel construct and explants from rat embryonic dorsal root ganglia, we present an in vitro platform for culturing spatially-controlled 3D neurite growth that supports both intracellular and extracellular electrophysiological recordings. Specifically, these 3D neural cultures in hydrogel exhibit both structural and functional characteristics that closely mimic those of sensory peripheral nervous tissue found in vivo. However, the 3D hydrogel constructs allow incorporation of other cell types, fabrication in any geometry, and simultaneous electrical stimulation and probing, providing a viable assay for systematic culture, manipulation, and testing of biomimetic neural growth in any mechanistic study necessitating physiologically-relevant readouts. / acase@tulane.edu
|
174 |
Correlation of ligand density with cell behavior on bioactive hydrogel layers / Korrelation der Ligandendichte mit Zellverhalten auf bioaktivierten HydrogelschichtenBeer, Meike Vanessa January 2011 (has links) (PDF)
Diese Arbeit beschäftigte sich mit der Quantifizierung von Zelladhäsion vermittelnden Liganden in und auf dünnen Hydrogelschichten, die zur Oberflächenmodifizierung auf Biomaterialien aufgebracht wurden. Das bereits etablierte und gut charakterisierte inerte NCO-sP(EO-stat-PO) Hydrogelsystem, das eine einfache und reproduzierbare Bioaktivierung mit Peptiden erlaubt, wurde als Basis für diese Arbeit verwendet. Diese Hydrogele können auf zwei Weisen funktionalisiert werden. Liganden können entweder mit der Prepolymerlösung vor der Beschichtung gemischt (Einmischmethode) oder frische Hydrogelschichten mit einer Ligandenlösung inkubiert werden (Inkubationsmethode). Der erste Teil dieser in drei Hauptteile unterteilten Arbeit, beschäftigte sich mit der Konzentrationsbestimmung der Liganden in der gesamten Tiefe der Hydrogelschicht, während sich der zweite Teil auf die oberflächensensitive Quantifizierung von Zelladhäsion vermittelnden Molekülen an der biologischen Grenzfläche konzentrierte. Die Ergebnisse wurden mit Zelladhäsionskinetiken verglichen. Der dritte Teil dieser Arbeit beschäftigte sich mit der biochemischen als auch strukturellen Nachahmung der komplexen Extrazellulärmatrix (ECM). Das ECM Protein Fibronektin (FN) wurde über Zucker-Lektin Anbindung präsentiert und Zellverhalten auf diesen biomimetischen Oberflächen untersucht. Ebenfalls wurde Zellverhalten in einer dreidimensionalen Faserumgebung mit identischer Oberflächenchemie wie in den beiden ersten Teilen dieser Arbeit untersucht und mit der Peptidkonzentration korreliert. Insgesamt, war die Hauptfragestellung in dieser Arbeit ‘Wie viel?’, d.h. einerseits die Ermittlung der maximalen, als auch der für Zelladhäsion optimalen Ligandendichte. Im ersten praktischen Teil der vorliegenden Arbeit (Klassische Quantifizierung) wurden Liganden in der gesamten Hydrogelschicht, als auch speziell in oberen Bereichen der Schichten quantifiziert. Die Untersuchung der Hydrogelschichten in Wellplatten und auf Glas funktionalisiert mit GRGDS und 125I-YRGDS erfolgte in Kapitel 3 mittels Radioaktivmessung. Wurden Hydrogelschichten mittels Inkubationsmethode funktionalisiert, konnte eine Sättigung mit Liganden bei etwa 600 µg/mL ermittelt werden. Mittels Einmischmethode funktionalisierte Hydrogele erreichten keine maximale Ligandenkonzentration in den Schichten, mit dem Verhältnis 2/1 als maximales verwendetes Verhältnis. Höhere Liganden zu Prepolymer Verhältnisse als 2/1 wurden jedoch nicht verwendet, um eine ausreichende Vernetzung der Hydrogele nicht zu gefährden. Zur Detektion mittels Röntgenphotoelektronenspektroskopie (XPS) und Flugzeit-Sekundärionen-Massen-spektrometrie (TOF-SIMS) (Kapitel 4) wurden eine fluorierte Aminosäure und ein iodiertes Peptid mit den Prepolymeren in molaren Verhältnissen von 1/2, 1/1 und 2/1 gemischt. Beide Methoden ermittelten eine maximale Ligandenkonzentration bei Verhältnissen von 1/1. Zusätzliche Liganden (2/1) führten zu keiner vermehrten Anbindung. Wesentlich im Zusammenhang mit der Ligandenquantifizierung auf Biomaterialien ist, diese an der Oberfläche, die für Zellen zugänglich ist, durchzuführen. Im zweiten Teil dieser Arbeit (Oberflächensensitive Quantifizierung) kamen daher Methoden zum Einsatz, die Liganden ausschließlich auf der Oberfläche quantifizierten. Zur Detektion mit Oberflächenplasmon-resonanz (SPR) und akustischer Oberflächenwellentechnologie (SAW) in Kapitel 5 musste die Standardbeschichtung der Hydrogele von Glas und Silikon auf Cystamin funktionalisierte Goldoberflächen übertragen werden. Mittels Ellipsometrie und Rasterkraftmikroskopie (AFM) konnte nur eine dünne und inhomogene Hydrogelbeschichtung nachgewiesen werden. Dennoch zeigten SPR und SAW die Unterbindung von Serum und Streptavidin (SA) Adsorption auf nicht funktionalisierten Schichten, jedoch eine spezifische und konzentrationsabhängige SA Bindung auf Hydrogelschichten, die mit Biocytin und GRGDSK-biotin funktionalisiert wurden. Die Ligandenquantifizierung mittels Enzymgekoppeltem Immunadsorptionstest (ELISA) und Enzymgekoppelten Lektinadsorptionstest (ELLA) (Kapitel 6) wurde auf Hydrogelschichten in Wellplatten und auf Glas angewendet, die mit verschiedenen Liganden mittels Inkubation und Einmischung funktionalisiert wurden. Das Modellmolekül Biocytin, das biotinylierte Peptid GRGDSK-biotin, das ECM Protein Fibronektin (FN), als auch die Modellzucker N-Acetyl-glukosamin (GlcNAc) und N-Acetyllaktosamin (LacNAc) konnten spezifisch in verschiedenen Konzentrationen nachgewiesen werden. Beispielhaft seien hier Schichten auf Glas genannt, die mittels Einmischmethode mit GRGDSK-biotin funktionalisiert wurden, da diese zum Vergleich in Kapitel 8 herangezogen wurden. Auf diesen Oberflächen wurde eine maximale Peptidkonzentration auf der Oberfläche bei einem Peptid zu Prepolymer Verhältnis von 1/5 ermittelt. Neben diesen verschiedenen Quantifzierungsmethoden ist die in vitro Analyse mit Zellen nicht zu vernachlässigen (Kapitel 7). Hierzu wurden Hydrogele auf Glas aufgebracht und mit GRGDS mittels Einmischmethode funktionalisiert. Durch Zählen adhärenter primärer humaner dermaler Fibroblasten (HDF) auf Mikroskopbildern wurde eine maximale Zelladhäsion bei dem Peptid zu Prepolymer Verhältnis von 1/5 festgestellt. Hingegen wurde ein Verhältnis von 1/2 für optimale Zelladhäsion ermittelt, wenn Zellen zur Quantifizierung von den Hydrogelen abgelöst und im CASY® Zellzähler quantifiziert wurden. Zusätzlich wurde die Zellvitalität durch Messung intrazellulärer Enzymaktivitäten gemessen, jedoch konnte kein Zusammenhang zwischen Zellvitalität und GRGDS Konzentration hergestellt werden. Adhärente HDFs waren in allen Fällen vital, unabhängig von der Ligandenkonzentration auf der Oberfläche. Auch die Mausfibroblasten Zelllinie NIH L929 wurde auf Hydrogelen mit verschiedenen GRGDS zu Prepolymer Verhältnissen durch Zählen adhärenter Zellen auf Mikroskopbildern untersucht. Diese im Verhältnis zu HDFs wesentlich kleineren Mauszellen benötigten höhere GRGDS Konzentrationen (2/1) für maximale Zelladhäsion. Nach der Ligandenquantifizierung in Kapitel 3 bis 7, wurden diese Ergebnisse in Kapitel 8 miteinander verglichen. Hierzu wurden Messungen auf Hydrogelschichten verwendet, die mittels Einmischmethode funktionalisiert wurden. Während die Quantifizierung mittels Radioaktivmessung in der gesamten Tiefe der Hydrogelschichten keine maximale Ligandenkonzentration ermitteln konnte, war in den oberen Bereichen der Schicht ein Maximum an Liganden bei 1/1 festzustellen (XPS, TOF-SIMS). SPR und SAW wurden zum Vergleich nicht herangezogen, da die Beschichtung auf Gold erst optimiert werden muss. Oberflächensensitive Quantifizierung mittels ELISA und Zelladhäsion, die lediglich die sterisch zugänglichen Liganden auf einer Oberfläche nachweisen, ergaben übereinstimmend eine optimale Ligandenkonzentration für SA Bindung und Zelladhäsion bei einem Peptid zu Prepolymer Verhältnis von 1/5. Dies unterstreicht, wie wichtig der Vergleich der Methoden, als auch die Verwendung von oberflächensensitiven Methoden ist. Der dritten Teil dieser Arbeit beschäftigte sich mit der biochemischen und strukturellen Nachahmung der komplexen extrazellulären Umgebung (Advanced ECM engineering), ein wichtiger Aspekt in der Biomaterialforschung, da zum größten Teil zwei-dimensionale Biomaterialien zum Einsatz kommen, die direkt mit Liganden kovalent funktionalisiert werden. Die ECM ist jedoch um ein Vielfaches komplexer und die bestmögliche Nachahmung ist Voraussetzung für eine bessere Akzeptanz durch Zellen und Gewebe. In Kapitel 9 wurde eine Möglichkeit aufgezeigt, das ECM Protein FN nicht-kovalent über Zucker-Lektinbindungen zu immobilisieren. Ein Schichtaufbau von Hydrogel, dem darauf durch Mikrokontakt-druckverfahren (MCP) kovalent gebundenen Zucker Poly-N-Acetyllaktosamin (polyLacNAc) und den darauf nicht-kovalent gebundenen Galektin His6CGL2 und FN, konnte mit Fluoreszenzfärbung elegant nachgewiesen werden. Optimale Konzentrationen für den Schichtaufbau wurden mittels ELLA/ELISA auf Hydrogelschichten ermittelt, die durch Inkubation mit dem Zucker funktionalisiert wurden. Nur der komplette Schichtaufbau konnte zufriedenstellende HDF Adhäsion vermitteln und im Vergleich zu Zellkulturpolystyrol (TCPS) Oberflächen konnten HDFs auf dem biomimetischen Schichtaufbau schneller adhärieren und spreiten. Zudem wurde die Umorganisierung von auf Glas adsorbiertem FN, auf NCO-sP(EO-stat-PO) kovalent gebundenem FN und biomimetisch über polyLAcNAc-His6CGL2 gebundenem FN durch HDFs verglichen. Nur auf den biomimetischen Oberflächen schien eine Umorganisation durch die Zellen möglich, wie sie auch in der ECM zu finden ist. Diese biomimetische und flexible Präsentation eines Proteins erwies sich als vielversprechende Möglichkeit eine biomimetischere Oberfläche für Zellen zu schaffen, die eine optimale Biokompatibilität ermöglichen könnte. Auch die strukturelle Nachahmung der ECM ist eine vielversprechende Strategie zum Nachbau der ECM. In Kapitel 10 wurde ein Einschrittverfahren zur Herstellung synthetischer, bioaktiver und degradierbarer Faserkonstrukte durch Elektrospinnen zur Nachahmung der ECM präsentiert. In diesem System wurden durch Zugabe von NCO-sP(EO-stat-PO) als reaktives Additiv zu Poly(D,L-laktid-co-Glycolid) (PLGA) Fasern hergestellt, die mit einer ultradünnen, inerten Hydrogelschicht versehen waren. Es konnte gezeigt werden, dass durch die Verwendung von NCO-sP(EO-stat-PO) als Additiv die Adsorption von Rinderserumalbumin (BSA) im Vergleich zu PLGA um 99,2% reduziert, die Adhäsion von HDFs verhindert und die Adhäsion von humanen mesenchymalen Stammzellen (MSC) minimiert werden konnten. Spezifische Bioaktivierung wurde durch Zugabe von Peptidsequenzen zur Spinlösung erreicht, welche kovalent in die Hydrogelschicht eingebunden werden konnten und kontrollierte Zell-Faser Interaktionen ermöglichten, Um die spezifische Zelladhäsion an solchen inerten Fasern zu erzielen, wurde GRGDS kovalent auf der Faseroberfläche gebunden. Dies erfolgte durch Zugabe des Peptids zur Polymerlösung vor dem Elektrospinnen. Als Negativkontrolle wurde die Peptidsequenz GRGES an die Faseroberfläche gebunden, welche durch Zellen nicht erkannt wird. Während die Verhinderung unspezifischer Proteinadsorption für die Peptidmodifizierten Fasern erhalten blieb, konnten HDFs lediglich auf den mit GRGDS Peptid modifizierten Fasern adhärieren, proliferieren und nach zwei Wochen eine konfluente Zellschicht aus vitalen Zellen bilden. Zusätzlich konnten MSCs auf GRGDS funktionalisierten Fasern adhärieren. Liganden konnten auf Fasern quantifiziert werden, indem die ELISA Technik aus Kapitel 6 auf Faseroberflächen transferiert wurde. Um das Potential der biochemischen und strukturellen Nachbildung der ECM aufzuzeigen, wurden beide Ansätze miteinander kombiniert. Die Immobilisierung von polyLacNAc auf die Hydrogelfasern durch Inkubation und der Schichtaufbau mit His6CGL2 und FN resultierte in HDF Adhäsion. / This thesis concerned the quantification of cell adhesion molecules (CAM) in and on thin hydrogel films as surface modification of biomaterials. The established and well characterized, per se inert NCO-sP(EO-stat-PO) hydrogel system which allows the easy and reproducible bioactivation with peptides was used as basis for this thesis. Two methods can be used to functionalize the coatings. Ligands can either be mixed into the prepolymer solution in prior to layer formation (mix-in method), or freshly prepared coatings can be incubated with ligand solution (incubation method). Divided into three major parts, the first part of the thesis dealt with the concentration of ligands in the bulk hydrogel, whereas the second part of the thesis focused on the surface sensitive quantification of CAMs at the biointerface. The results were correlated with cell adhesion kinetics. The third part of this thesis investigated the biochemical and the structural mimicry of the extracellular matrix (ECM). ECM proteins were presented via sugar-lectin mediated binding and cell behavior on these surfaces was analyzed. Cell behavior on three-dimensional fibers with identical surface chemistry as the coatings in the previous sections of the thesis was analyzed and correlated with the amount of peptide used for bioactivation. Overall, the main question of this work was ‘How much?’ regarding maximal as well as optimal ligand concentrations for controlled cell-hydrogel interactions. The focus in the first practical part of this thesis was to analyze the amount of ligands in NCO-sP(EO-stat-PO) hydrogels using classical quantification methods. Coatings in 96-well plates as well as on glass were functionalized with GRGDS and 125I-YRGDS for radioisotopic detection (Chapter 3). Using the incubation method for functionalization, a maximal ligand binding using peptide concentrations of 600 µg/mL could be determined. When functionalization was introduced via the mix-in method, a clear tendency for higher ligand concentrations with increasing ligand to prepolymer ratio was observed, but no maximal ligand binding could be detected with a ligand to prepolymer ratio of 2/1 being the highest ratio investigated. This ratio of 2/1 was not exceeded to ensure that complete crosslinking of the hydrogel was not affected. In Chapter 4, a fluorinated amino acid and an iodinated peptide were immobilized to the hydrogels using the mix-in method and were detected by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In these measurements, maximal ligand binding was detected for a ligand to prepolymer ratio of 1/1. Higher ligand to prepolymer ratios did not result in any significant increase in ligand concentrations in the surface near regions of the crosslinked hydrogels. To address the question of how many ligands were actually accessible for cell interaction at the interface, surface sensitive quantification methods were applied in the second part of this thesis. For the quantification with surface plasmon resonance (SPR) and surface acoustic wave technology (SAW) (Chapter 5), the hydrogel coating procedure needed to be transferred onto cystamine functionalized gold surfaces. Characterization with ellipsometry and atomic force microscopy (AFM) revealed inhomogeneous cystamine binding to the activated surfaces, which resulted in inhomogeneous coatings. Nevertheless, it could be shown that SPR as well as SAW were suitable methods for the surface sensitive quantification of the ligand concentration on NCO-sP(EO-stat-PO) hydrogels. Non-functionalized coatings resisted non-specific serum as well as streptavidin (SA) adsorption. Coatings functionalized with biocytin and GRGDSK-biotin introduced specific SA binding that was dependent on the biotin concentration at the surface. Additionally, enzyme linked immunosorbent assay (ELISA) and enzyme linked lectin assay (ELLA) (Chapter 6) were applied to coatings in 96-well plates and on glass. Coatings were functionalized with the model molecule biocytin, the biotinylated peptide GRGDSK-biotin, the ECM protein fibronectin (FN), as well as the carbohydrates N-acetylglucosamine (GlcNAc) and N-acetyllactosamine (LacNAc). All ligands could be successfully detected with antibodies or SA via ELISA or ELLA. Maximal GRGDSK-biotin binding to the hydrogel coatings on glass was achieved at a peptide to prepolymer ratio of 1/5, which was used as reference value in Chapter 8. Last but not least, cell adhesion (Chapter 7) was quantified depending on the GRGDS concentration on hydrogel coatings on glass. Maximal adhesion of primary human dermal fibroblast (HDF) was observed at GRGDS to prepolymer ratios of 1/5, when adherent cells were counted on life cell images. Quantification of adherent cells using the CASY® cell counter revealed maximal HDF adhesion at molar ligand to prepolymer ratios of 1/2. However, cell vitality detected by intracellular enzyme activities was not dependent on the GRGDS concentration. Cells which managed to adhere were vital regardless of the amount of ligands present. Additionally, adhesion of fibroblasts from the murine cell line NIH L929 was analyzed by counting on life cell images. These cells, being much smaller than the HDF cells, needed higher GRGDS to prepolymer ratios (2/1) for proper cell adhesion. All quantification methods applied to analyze hydrogels which were functionalized by the mix-in method in Chapter 3, 4, 6 and 7, were compared in Chapter 8. Radiodetection gave information about the ligand concentrations throughout the whole hydrogel and no maximal amount of ligands could be detected when increasing the peptide to prepolymer ratio. In contrast, XPS and TOF-SIMS which only penetrated the surface near regions of the coating, a maximal ligand binding to the hydrogel was detected for 1/1 ratios. SPR and SAW were not included in this comparison, as the coatings on gold need to be optimized first. The two surface sensitive quantification methods (ELISA and HDF adhesion) could give information about the quantity of peptide which was sterically available for SA or cell binding. With these methods, maximal SA and cell binding was detected at ratios of 1/5. These results underline the importance of carefully compare the different methods. Beside ligand quantification on hydrogels, the third part of this thesis was concerned with the biochemical and structural mimicry of the ECM by advanced ECM engineering to design biomimetic biomaterials that are better accepted by cells and tissue. The subject of Chapter 9 was the biomimetic and flexible presentation of the ECM protein FN. FN was attached via sugar-lectin mediated binding to NCO-sP(EO-stat-PO) hydrogels. The build-up of the covalently immobilized sugar poly-N-acetyllactosamine (polyLacNAc), the subsequent non-covalent binding of the fungal galectin His6CGL2, and FN could be elegantly proven by fluorescent staining on coatings which were functionalized with the sugar by micro contact printing (MCP). Further experiments were carried out on build-ups, where polyLacNAc was immobilized on the hydrogel by incubation. Optimal parameters for the layer build-up were determined by ELLA/ELISA. Only the complete build-up induced proper adhesion of HDFs. Compared to tissue culture polystyrene (TCPS), cells adhered and spread faster on the biomimetic surfaces. The flexible presentation of FN allowed HDFs to rearrange homogenously immobilized FN into fibrillar structures, which seemed not to be possible when FN was adsorbed on glass or covalently bound directly to the hydrogel coatings. This new approach of a flexible and biomimetic presentation of an ECM protein allows new ways to design biomaterials with best possible cell-material interactions. The work described in Chapter 10 focused on the structural mimicry of the fibrous ECM structures by electrospinning of synthetic, bioactive, and degradable fibers. Poly(D,L-lactide-co-glycolide) (PLGA) and NCO-sP(EO-stat-PO) were electrospun out of one solution in an easy one-step preparation resulting in fibers with an ultrathin inert hydrogel layer at the surface. By adding GRGDS to the solution prior to electrospinning, specifically interacting fibers could be obtained. In comparison to PLGA, the adsorption of bovine serum albumin (BSA) could be reduced by 99.2%. As a control, the non-active peptide GRGES was immobilized to the fiber. These fibers did not allow cell adhesion, showing that the integrity of the hydrogel coated fibers was not affected by the immobilization of peptides. HDF adhesion was obtained by functionalization with GRGDS, leading to the adhesion, spreading, and proliferation of HDFs. Also mesenchymal stem cells (MSC) could adhere to GRGDS functionalized fibers. Additionally, for ligand quantification, the ELISA technique was successfully transferred to fiber substrates. To highlight the potential of the approaches for the biochemical and structural mimicry of the ECM, the sugar polyLacNAc was immobilized on the PLGA/sP(EO-stat-PO) fibers followed by the subsequent layer build-up with His6CGL2 and FN. These fibers triggered HDF adhesion.
|
175 |
SpaceOAR hydrogel optimization and management for rectal sparing in prostate cancer patientsPaetkau, D. Owen 27 September 2019 (has links)
External beam radiation therapy for prostate cancer can result in urinary, sexual, and rectal side effects, often impairing quality of life. A polyethylene glycol-based product, SpaceOAR hydrogel (SOH), implanted into the connective tissue between prostate gland and rectum can significantly reduce the dose received by the rectum and hence risk of rectal toxicity. The optimal way to manage the hydrogel and rectal structures for plan optimization is therefore of interest.
A retrospective planning study was completed with 13 patients to examine optimal
planning and treatment methods. Computerized tomography (CT) scans were taken
pre- and post-SOH implant. Six hypofractionated (60 Gy in 20 fractions) treatment
plans were produced per patient using either a structure of rectum plus the hydrogel,
termed composite rectum wall (CRW), or rectal wall (RW) as the inverse optimization
structure and intensity modulated radiotherapy (IMRT) or volumetric modulated arc
therapy (VMAT) as the treatment technique. Dose-volume histogram metrics were
compared between plans to determine which optimization structure and treatment
technique offered the maximum rectal dose sparing. RW structures offered a statistically
significant decrease in rectal dose over CRW structures, whereas the treatment
technique (IMRT vs VMAT) did not significantly affect the rectal dose. However,
there was improvement seen in bladder and penile bulb dose when VMAT was used
as a treatment technique over IMRT. Overall, treatment plans using the RW optimization
structure offered the lowest rectal dose while VMAT treatment technique offered the lowest bladder and penile bulb dose. These treatment techniques and optimization structures have now been implemented at BC Cancer - Victoria based on this retrospective study.
SOH implant has been shown not to be equally effective in all patients. Determining
a priori patients in which the implant will offer most benefit allows for effective
management of SOH resources. Several factors have been shown to be correlated to
reduction in rectal dose including distance between rectum and planning treatment
volume (PTV), volume of rectum in the PTV and change in rectum volume pre- to
post-SOH. Several of these factors along with other pre-SOH CT metrics were found
via multiple linear regression models to predict reduction of rectal dose using data from 21 patients who received SOH implant. Two high rectal dose metrics were modeled, change in the relative volume receiving 55 Gy and change in the partial high dose integral, integrating over the dose-volume histogram (DVH) from 55 Gy to 60 Gy. Models were also produced to predict pre-SOH RV55Gy. These models offered R-squared between 0.57 and 0.87 with statistical significance in each model. Applying a 3.5% lower limit on pre-SOH RV55Gy removed one third of patients as implant candidates. This may offer a clinically useful tool in deciding which patients should receive SOH implant given limited resources. Predictive models, nomograms and a workflow diagram were produced for clinical management of SOH implant. / Graduate
|
176 |
Estudo da gelificação do produto de digestão de ECM descelularizada para uso em engenharia de tecidos / Gelation study of extracellular matrix digestion products for tissue engineeringMonteiro Lobato, Gabriela Matheus 26 April 2019 (has links)
Os implantes utilizados para regeneração tecidual ainda falham na tentativa de mimetizar as propriedades da matriz extracelular (ECM), o que compromete a viabilidade e aplicabilidade do material. Além disso, permanece o desafio de desenvolver um método de aplicação minimamente invasivo para evitar danos teciduais adicionais (Badylak et al., 2015; Crapo et al., 2011; Xing et al., 2014). Assim, o objetivo do projeto é desenvolver um hidrogel injetável composto de ECM de pericárdio, tendão e osso bovino enzimaticamente digerida e reticulada com glutaraldeído, ésteres ativados de NHS e derivados de polietilenoglicol (PEG). O protocolo de digestão foi modificado de Willians (Williams et al., 2015), utilizando tripsina, pepsina e colagenase. A quantificação de GAGs e peptídeos mostrou que, independentemente do substrato e enzima utilizados, o processo em etapas gerou uma maior concentração de estruturas em relação ao processo contínuo. Adicionalmente, a análise de dicroísmo circular mostrou que o processo em etapas preservou mais estruturas secundárias. O perfil proteico das ECMs foi analisado como descrito em Flores (Flores et al., 2016), e foi verificado que ele é altamente diverso e tecido - específico. A ECM do pericárdio possui 94 tipos diferentes de proteínas, seguidas pela ECM do tendão (48) e pela ECM óssea (35), sendo o colágeno α1 (1) e o colágeno α2 (1) presentes em todas elas. Além disso, os produtos digeridos ECMp aumentaram a proliferação e diferenciação de células-tronco mesenquimais da medula óssea a osteoblastos maduros. A cinética do processo de gelificação, bem como as propriedades mecânicas do gel são dependentes do tipo de agente reticulante, assim como da concentração da gelatina. Este novo material é altamente personalizável e adaptável à aplicação biológica desejada. / The implants used for tissue regeneration still fail to mimic properties of extracellular matrix. It compromises the material viability and applicability. Furthermore, the challenge to manufacture a minimally invasive delivery system for it to avoid extra tissue damage still remains (Badylak et al., 2015; Crapo et al., 2011; Xing et al., 2014). Thus, the project goal is to develop an injectable hydrogel composed of pericardium, tendon and bovine bone ECM enzymatically digested and crosslinked with glutaraldehye, activated esters of NHS and polyethylene glycol (PEG) derivatives. The digestion protocol was modified from Willians (Williams et al., 2015), using trypsin, pepsin and collagenase as lytic enzymes. GAGs and peptides quantification showed that regardless of the substrate and enzyme, the stepwise process yields a higher amount of GAGs and peptides in comparison with the continuous process. In addition, circular dicroism analysis showed that the stepwise process preserves more secondary structures of proteins. ECMs protein profile was analyzed as in Flores (Flores et al., 2016) and verified that it is the highly diverse and tissue-specific. Pericardium ECM has 94 different types of proteins, followed by tendon ECM (48) and bones ECM (35), being collagen α1(1) and collagen α2(1) present in all of them. Furthermore, the ECMp digested products enhanced bone marrow mesenchymal stem cells proliferation and differentiation in mature osteoblast. The kinetics of the gelification process, as well as mechanical properties of the gel is dependent of the type of crosslinker and concentration of gelatin. This new material is highly customizable and adaptable to the biological application.
|
177 |
Multifunctional Hyaluronic Acid / Poly(glycidol) Hydrogels for Cartilage Regeneration Using Mesenchymal Stromal Cells / Multifunktionale Hyaluronsäure / Poly(glycidol) Hydrogele für die Knorpelregeneration mit Mesenchymalen StromazellenBöck, Thomas January 2018 (has links) (PDF)
Improved treatment options for the degenerative joint disease osteoarthritis (OA) are of major interest, since OA is one of the main sources of disability, pain, and socioeconomic burden worldwide [202]. According to epidemiological data, already 27 million people suffer from OA in the US [23]. Moreover, the WHO expects OA to be the fourth most common cause of disability in 2020 [203], illustrating the need for effective and long-lasting therapy options of severe cartilage defects. Despite numerous clinically available products for the treatment of cartilage defects [62], the development of more cartilage-specific materials is still at the beginning.
Hyaluronic acid (HA) is a major component of the cartilaginous extracellular matrix (ECM) and inherently creates a cell-friendly niche by providing cell attachment and migration sites. Furthermore, it is known that the functional groups of HA are well suited for chemical modification. These characteristics render HA an attractive material for hydrogel-based tissue engineering approaches. Poly(glycidol) (PG) as chemical crosslinker basically features similar chemical characteristics as the widely used poly(ethylene glycol) (PEG), but provides additional side groups at each repeating unit that can be further chemically functionalized. With the introduction of PG as multifunctional crosslinker for HA gels, a higher cross-linking density and, accordingly, a greater potential for biomimetic functionalization may be achieved. However, despite the mentioned potential benefits, PG has not been used for cartilage regeneration approaches so far.
The initial aim of the study was to set up and optimize a HA-based hydrogel for the chondrogenic differentiation of mesenchymal stromal cells (MSCs), using different amounts and variations of cross-linkers. Therefore, the hydrogel composition was optimized by the utilization of different PEG diacrylate (PEGDA) concentrations to cross-link thiol-modified HA (Glycosil, HA-SH) via Michael addition. We aimed to generate volumestable scaffolds that simultaneously enable a maximum of ECM deposition. Histological and biochemical analysis showed 0.4% PEGDA as the most suitable concentration for these requirements (Section 5.1.2).
In order to evaluate the impact of a differently designed cross-linker on MSC chondrogenesis, HA-SH was cross-linked with PEGTA (0.6%) and compared to PEGDA (0.4%) in a next step. Following this, acrylated PG (PG-Acr) as multifunctional cross-linker alternative to acrylated PEG was evaluated. It provides around five times more functional groups when utilized in PG-Acr (0.6%) HA-SH hydrogels compared to PEGTA (0.6%) HA-SH hydrogels, thus enabling higher degrees of biomimetic functionalization. Determination of cartilage-specific ECM components showed no substantial differences between both cross-linkers while the deposition of cartilaginous matrix appeared more homogeneous in HA-SH PG-Acr gels. Taken together, we were able to successfully increase the possibilities for biomimetic functionalization in the developed HA-SH hydrogel system by the introduction of PG-Acr as cross-linker without negatively affecting MSC chondrogenesis (Section 5.1.3).
The next part of this thesis focused extensively on the biomimetic functionalization of PG-Acr (0.6%) cross-linked HA-SH hydrogels. Here, either biomimetic peptides or a chondrogenic growth factor were covalently bound into the hydrogels.
Interestingly, the incorporation of a N-cadherin mimetic (HAV), a collagen type II binding (KLER), or a cell adhesion-mediating peptide (RGD) yielded no improvement of MSC chondrogenesis. For instance, the covalent binding of 2.5mM HAV changed morphology of cell nuclei and reduced GAG production while the incorporation of 1.0mM RGD impaired collagen production. These findings may be attributed to the already supportive conditions of the employed HA-based hydrogels for chondrogenic differentiation. Most of the previous studies reporting positive peptide effects on chondrogenesis have been carried out in less supportive PEG hydrogels or in significantly stiffer MeHA-based hydrogels [99, 101, 160]. Thus, the incorporation of peptides may be more important under unfavorable conditions while inert gel systems may be useful for studying single peptide effects (Section 5.2.1).
The chondrogenic factor transforming growth factor beta 1 (TGF-b1) served as an example for growth factor binding to PG-Acr. The utilization of covalently bound TGF-b1 may thereby help overcome the need for repeated administration of TGF-b1 in in vivo applications, which may be an advantage for potential clinical application. Thus, the effect of covalently incorporated TGF-b1 was compared to the effect of the same amount of TGF-b1 without covalent binding (100nM TGF-b1) on MSC chondrogenesis. It was successfully demonstrated that covalent incorporation of TGF-b1 had a significant positive effect in a dose-dependent manner. Chondrogenesis of MSCs in hydrogels with covalently bound TGF-b1 showed enhanced levels of chondrogenesis compared to hydrogels into which TGF-b1 was merely mixed, as shown by stronger staining for GAGs, total collagen, aggrecan and collagen type II. Biochemical evaluation of GAG and collagen amounts, as well as Western blot analysis confirmed the histological results. Furthermore, the positive effect of covalently bound TGF-b1 was shown by increased expression of chondrogenic marker genes COL2A1, ACAN and SOX9. In summary, covalent growth factor incorporation utilizing PG-Acr as cross-linker demonstrated significant positive effects on chondrogenic differentiation of MSCs (Section 5.2.2).
In general, PG-Acr cross-linked HA hydrogels generated by Michael addition represent a versatile hydrogel platform due to their high degree of acrylate functionality. These hydrogels may further offer the opportunity to combine several biological modifications, such as the incorporation of biomimetic peptides together with growth factors, within one cell carrier.
A proof-of-principle experiment demonstrated the suitability of pure PG gels for studying single peptide effects. Here, the hydrogels were generated by the utilization of thiol-ene-click reaction. In this setting, without the supportive background of hyaluronic acid, MSCs showed enhanced chondrogenic differentiation in response to the incorporation of 1.0mM HAV. This was demonstrated by staining for GAGs, the cartilage-specific ECM molecules aggrecan and type II collagen, and by increased GAG and total collagen amounts shown by biochemical analysis. Thus, pure PG gels exhibit the potential to study the effects and interplay of peptides and growth factors in a highly modifiable, bioinert hydrogel environment.
The last section of the thesis was carried out as part of the EU project HydroZONES that aims to develop and generate zonal constructs. The importance of zonal organization has attracted increased attention in the last years [127, 128], however, it is still underrepresented in tissue engineering approaches so far. Thus, the feasibility of zonal distribution of cells in a scaffold combining two differently composed hydrogels was investigated. A HA-SH(FMZ) containing bottom layer was generated and a pure PG top layer was subsequently cast on top of it, utilizing both times thiol-ene-click reaction. Indeed, stable, hierarchical constructs were generated that allowed encapsulated MSCs to differentiate chondrogenically in both zones as shown by staining for GAGs and collagen type II, and by quantification of GAG amount. Thus, the feasibility of differently composed zonal hydrogels utilizing PG as a main component was successfully demonstrated (Section 5.4).
With the first-time utilization and evaluation of PG-Acr as versatile multifunctional cross-linker for the preparation of Michael addition-generated HA-SH hydrogels in the context of cartilage tissue engineering, a highly modifiable HA-based hydrogel system was introduced. It may be used in future studies as an easily applicable and versatile toolbox for the generation of biomimetically functionalized hydrogels for cell-based cartilage regeneration. The introduction of reinforcement structures to enhance mechanical resistance may thereby further increase the potential of this system for clinical applications.
Additionally, it was also demonstrated that thiol-ene clickable hydrogels can be used for the generation of cell-laden, pure PG gels or for the generation of more complex, coherent zonal constructs. Furthermore, thiol-ene clickable PG hydrogels have already been further modified and successfully been used in 3D bioprinting experiments [204]. 3D bioprinting, as part of the evolving biofabrication field [205], offers the possibilities to generate complex and hierarchical structures, and to exactly position defined layers, yet at the same time alters the requirements for the utilized hydrogels [159, 206–209]. Since a robust chondrogenesis of MSCs was demonstrated in the thiol-ene clickable hydrogel systems, they may serve as a basis for the development of hydrogels as so called bioinks which may be utilized in more sophisticated biofabrication processes. / Es ist von großem Interesse die Therapieoptionen für die degenerative Gelenkerkrankung Osteoarthrose (OA) zu verbessern, da OA als eine der weltweit häufigsten Ursachen von Bewegungseinschränkungen und Schmerzen gilt und somit eine sozioökonomische Belastung darstellt [202]. Laut epidemiologischen Studien leiden bereits 27 Millionen Menschen in den USA an OA [23]. Darüber hinaus geht die WHO davon aus, dass OA bereits im Jahr 2020 die vierthäufigste Ursache von körperlichen Behinderungen sein wird [203], was die Notwendigkeit für effektive und langanhaltende Therapien von schweren Knorpeldefekten zeigt. Obwohl sich bereits eine Vielzahl von Therapien in klinischer Anwendung für die Behandlung von Knorpeldefekten befindet [62], ist die Entwicklung von knorpelspezifischen Produkten noch nicht weit fortgeschritten.
Hyaluronsäure (HA), als Hauptbestandteil der Extrazellulären Matrix (ECM) von Knorpel, stellt eine generell zytokompatible Umgebung dar, die Zellen von Natur aus Bindungsstellen zur Adhäsion und Fortbewegung bietet. Zudem ist bekannt, dass die funktionellen Gruppen von HA besonders gut für chemische Modifikationen geeignet sind. Aufgrund dieser Eigenschaften wird HA häufig als Material für das hydrogelbasierte Tissue Engineering verwendet. Durch die Verwendung von Poly(glycidol) (PG) als Cross-linker stehen die gleichen chemischen Eigenschaften wie bei der Verwendung des gängigen Cross-linkers Poly(ethylene glycol) (PEG) zur Verfügung, allerdings bietet es zusätzliche Seitenketten an jeder Wiederholungseinheit. Durch die Einführung von PG
als multifunktionalem Cross-linker zur Herstellung von HA-Gelen ergibt sich letztlich eine höhere Vernetzungsdichte und damit auch ein größeres Potenzial für biomimetische Funktionalisierungen. Trotz dieser genannten Vorteile wird PG bisher noch nicht im Bereich der Knorpelregeneration verwendet.
Das erste Ziel dieser Arbeit beinhaltete die Etablierung und Optimierung eines HA-basierten
Hydrogels für die chondrogene Differenzierung von Mesenchymalen Stromazellen (MSCs). Hierzu wurden verschiedene Mengen und Derivate von Cross-linkern eingesetzt. Zunächst wurde die Hydrogelzusammensetzung mithilfe von verschiedenen PEG-Diacrylat (PEGDA)-Konzentrationen zur Vernetzung von thiolmodifizierter HA (Glycosil, HASH) mittels Michael-Addition optimiert. Das Ziel war hierbei die Herstellung eines volumenstabilen Konstrukts, das gleichzeitig die größtmögliche Ablagerung von ECM erlaubt. Histologische und biochemische Analysen zeigten in Bezug darauf, dass eine Konzentration von 0,4% PEGDA die zuvor genannten Anforderungen am besten erfüllte (Abschnitt 5.1.2).
Um im weiteren Verlauf den Einfluss von verschiedenen Cross-linkern auf die chondrogene Differenzierung von MSCs zu untersuchen, wurde die HA-SH vergleichend mit PEGTA (0,6%) und PEGDA (0,4%) vernetzt. Nachfolgend wurde acryliertes PG (PG-Acr) als eine Alternative zu acrylierten PEG-Derivaten evaluiert. Der Vorteil in der Verwendung von PG-Acr (0,6%) im Vergleich zu PEGTA (0,6%) liegt darin, dass es eine ca. fünfmal höhere Anzahl an funktionellen Gruppen bietet, was wiederum ein deutlich höheres Maß an biomimetischer Funktionalisierung ermöglicht. Hierbei zeigte die Untersuchung der knorpelspezifischen ECM-Bestandteile keine grundlegenden Unterschiede zwischen beiden Cross-linkern, wobei durch die Verwendung von PG-Acr eine gleichmäßigere Ablagerung von Knorpelmatrix in die entsprechenden Gele zu erkennen war. Zusammenfassend lässt
sich feststellen, dass die Möglichkeiten für eine biomimetische Funktionalisierung durch die Verwendung von PG-Acr deutlich erhöht wurden, ohne dabei die Chondrogenese von MSCs negativ zu beeinträchtigen (Abschnitt 5.1.3).
Der nächste Teil dieser Arbeit befasste sich mit der umfangreichen biomimetischen Funktionalisierung von mit PG-Acr (0,6%) vernetzten HA-SH Hydrogelen. Hierzu wurden entweder biomimetische Peptide oder ein chondrogener Wachstumsfaktor kovalent in das Hydrogel eingebunden.
Interessanterweise führte weder das Einbringen des N-Cadherin-mimetischen (HAV), des Kollagen II-bindenden (KLER), noch des Zelladhäsions-vermittelnden (RGD) Peptids zu einer Verbesserung der chondrogenen Differenzierung der MSCs. Beispielsweise führte das kovalente Anbinden von 2,5mM HAV zu einer Veränderung der Zellkernmorphologie und einer Verringerung der Glykosaminoglykan (GAG)-Produktion, wohingegen das Einbringen von 1,0mM RGD die Kollagenproduktion hemmte. Diese Ergebnisse könnten möglicherweise darauf zurückzuführen sein, dass die hier verwendeten HA-SH-Hydrogele selbst bereits ausreichend effizient für die chondrogene Differenzierung von MSCs sind. Im Vergleich dazu wurden die vorherigen Studien, die positive Effekte von Peptiden nachweisen konnten, entweder in neutralen PEG-Hydrogelen oder in wesentlich festeren MeHA-Hydrogelen durchgeführt [99, 101, 160]. Daraus lässt sich folgern, dass die Verwendung von Peptiden gerade unter ungünstigen Bedingungen von Bedeutung sein könnte und ein neutrales Gelsystem für die Untersuchung von einzelnen Peptideffekten geeignet scheint (Abschnitt 5.2.1).
Als nächstes wurde exemplarisch der chondrogene Wachstumsfaktor Transforming Growth Factor Beta 1 (TGF-b1) kovalent an PG-Acr angebunden. Durch die Verwendung von kovalent gebundenem TGF-b1 könnte somit die Notwendigkeit einer wiederholten Zugabe von TGF-b1 bei in vivo-Anwendungen vermieden werden, was wiederum bei einer potentiellen klinischen Anwendung von Vorteil sein könnte. Deshalb wurde der Einfluss von kovalent gebundenem TGF-b1 auf die Chondrogenese von MSCs mit der gleichen Menge ungebundenem TGF-b1 (100nM TGF-b1) verglichen. Hierbei wurde ein
signifikant positiver, dosisabhängiger Effekt von kovalent gebundenem TGF-b1 erfolgreich nachgewiesen. Die Chondrogenese von MSCs in Hydrogelen mit kovalent gebundenem TGF-b1 war dabei der Chondrogenese von MSCs in Hydrogelen, in die TGF-b1 lediglich gemischt wurde, deutlich überlegen. Dies wurde anhand von stärkeren Färbungen für GAGs, Gesamtkollagen, Aggrecan und Kollagen II in den TGF-b1-modifizierten Gelen gezeigt. Darüber hinaus bestätigten sowohl biochemische Analysen des GAG- und Kollagengehalts, als auch Western Blot-Analysen die histologischen Daten. Zusätzlich wurde der positive Effekt von kovalent gebundenem TGF-b1 durch erhöhte Expressionsraten der chondrogenen Markergene COL2A1, ACAN und SOX9 nachgewiesen. Zusammenfassend konnte gezeigt werden, dass durch die kovalente Bindung des Wachstumsfaktors TGF-b1 ein signifikant positiver Effekt auf die chondrogene Differenzierung von MSCs entsteht (Abschnitt 5.2.2).
Generell stellen die auf Basis von Michael-Addition hergestellten PG-Acr-HA-SH-Hydrogele aufgrund ihrer hohen Acrylat-Funktionalität eine vielseitige Hydrogelplattform dar. So bieten diese Hydrogele zahlreiche Möglichkeiten für das Einbringen von verschiedensten biologischen Modifikationen wie die kovalente Bindung von biomimetischen Peptiden zusammen mit Wachstumsfaktoren in ein und demselben Zellträger.
Anhand eines Proof-of-principle-Experiments wurde die generelle Eignung von reinen PG-Hydrogelen für die Evaluation von einzelnen Peptideffekten demonstriert. Dazu wurden die Hydrogele unter Verwendung der Thiol-ene-click-Reaktion hergestellt. In diesem Hydrogelsystem, ohne den unterstützenden Effekt von HA, zeigten MSCs eine verstärkte chondrogene Differenzierung in Anwesenheit von 1,0mM HAV. Diese ließ sich anhand von stärkeren Färbungen für GAGs, Aggrecan und Kollagen II nachweisen. Außerdem waren die GAG- und Gesamtkollagen-Werte deutlich erhöht. Hiermit wurde gezeigt, dass sich die vielseitig modifizierbaren, reinen PG-Hydrogele für die Analyse von Peptideffekten und deren Interaktion mit Wachstumsfaktoren eignen (Abschnitt 5.3).
Der letzte Teil dieser Arbeit wurde im Rahmen des EU-Projektes HydroZONES durchgeführt, welches an der Entwicklung und Herstellung von zonalen Konstrukten arbeitet. Der Aspekt der zonalen Organisation von Knorpel rückte in den letzten Jahren verstärkt in den Fokus [127, 128], jedoch findet er im Bereich des Tissue Engineering noch immer wenig Beachtung. Deshalb wurde im Folgenden die zonale Verteilung von Zellen innerhalb eines Zellträgers realisiert. Dazu wurden zwei unterschiedlich zusammengesetzte Hydrogele mithilfe der Thiol-ene-click-Reaktion hergestellt: eine aus HA-SH(FMZ) bestehende untere Lage und eine darauf liegende Lage aus reinem PG. Hierbei gelang es stabile, zonale Konstrukte herzustellen, in denen MSCs in beiden Zonen chondrogen differenzierten, was anhand von GAG- und Kollagen II-Färbungen, sowie durch die Quantifizierung des GAG-Gehalts bestätigt wurde. Hiermit konnte ein aus zwei verschiedenen Hydrogelen zusammengesetztes zonales Konstrukt erfolgreich hergestellt werden (Abschnitt 5.4).
Durch den erstmaligen Einsatz des multifunktionalen Cross-linkers PG-Acr für das Tissue Engineering von Knorpel wurde ein auf Michael-Addition basierendes, vielseitiges HA-SH-Hydrogelsystem etabliert. Das hier vorgestellte Hydrogelsystem besitzt das Potenzial zukünftig als eine einfach anwendbare und vielseitige Toolbox zur Herstellung von biomimetischen Hydrogelen für die zellbasierte Knorpelregeneration verwendet zu werden. Vor allem könnte dabei der Einsatz von Stützstrukturen von entscheidender Bedeutung sein, um die mechanische Widerstandskraft der Zellträger zu erhöhen und somit das Potenzial für klinische Anwendungen zu vergrößern.
Zusätzlich wurde gezeigt, dass Thiol-ene-click-Hydrogele sowohl zur Herstellung von zellbeladenen, reinen PG-Gelen, als auch zur Herstellung von deutlich komplexeren, zonalen Konstrukten geeignet sind. Diese Thiol-ene-click-Hydrogele wurden bereits erfolgreich weiterentwickelt und für 3D-Bioprinting-Prozesse verwendet [204]. 3D-Bioprinting ist eine Teildisziplin des sich immer weiter entwickelnden Feldes der Biofabrikation [205]. Die Verwendung in diesem Bereich verändert zwar die Anforderungen an die hierfür verwendeten Hydrogele, ermöglicht es aber gleichzeitig deutlich komplexere sowie hierarchische Strukturen herzustellen und kleinere Lagen noch exakter zu positionieren [159, 206–209]. Da in den hier vorgestellten Thiol-ene-click-Hydrogelen eine deutliche chondrogene Differenzierung von MSCs nachgewiesen wurde, ist es vorstellbar, dass sie als Basis für die Herstellung sogenannter Bioinks dienen, welche in zukünftigen, anspruchsvollen Biofabrikationsprozessen Anwendung finden sollen.
|
178 |
Entwicklung und Charakterisierung von Gelatine-basierten Hydrogelen und PLGA-basierten Janus-Partikeln / Development and characterization of gelatin-based hydrogels and PLGA-based Janus particlesSchönwälder, Sina Maria Siglinde January 2016 (has links) (PDF)
Zusammenfassung
In der Regenerativen Medizin sind polymerbasierte Biomaterialien von großer Bedeutung für
die Entwicklung und Anwendung verbesserter bzw. neuer Therapien. Die Erforschung der
Oberflächeneigenschaften von Biomaterialien, welche als Implantate eingesetzt werden, ist
eine grundlegende Voraussetzung für deren erfolgreichen Einsatz. Die Protein-Oberflächen-
Interaktion geschieht initial, sobald ein Implantat mit Körperflüssigkeiten oder mit Gewebe
in Kontakt kommt, und trägt maßgeblich zur direkten Wechselwirkung von Implantat und
umgebenden Zellen bei. Dieser Prozess wird in der vorliegenden Arbeit an Gelatine untersucht.
Daher bestand ein Ziel darin, stabile, nanometerdünne Gelatineoberflächen herzustellen
und darauf die Adsorption von humanen Plasmaproteinen und bakteriellen Proteinen zu
analysieren.
Die Abscheidung der Gelatinefilme in variabler Schichtdicke auf zuvor mit PPX-Amin modifizierten
Oberflächen wurde unter Verwendung eines Rotationsbeschichters durchgeführt.
Um stabile Hydrogelfilme zu erhalten, wurden die Amingruppen der disaggregierten Gelatinefibrillen
untereinander und mit denen der Amin-Modifizierung durch ein biokompatibles
Diisocyanat quervernetzt. Dieser Prozess lieferte einen reproduzierbaren und chemisch stabilen
Gelatinefilm, welcher durch die substratunabhängige Amin-Modifizierung kovalent auf
unterschiedlichste Oberflächen aufgebracht werden konnte. Die durch den Herstellungsprozess
präzise eingestellte Schichtdicke (Nano- bzw. Mikrometermaßstab) wurde mittels Ellipsometrie
und Rasterkraftmikroskopie ermittelt. Die ebenso bestimmte Rauheit war unabhängig
von der Schichtdicke sehr gering. Gelatinefilme, die auf funktionalisierte und strukturierte
Proben aufgebracht wurden, konnten durch Elektronenmikroskopie dargestellt werden. Mit
Hilfe der Infrarot-Reflexions-Absorptions-Spektroskopie wurden die Gelatinefilme im Hinblick
auf ihre Stabilität chemisch charakterisiert. Zur Quantifizierung der Adsorption humaner
Plasmaproteine (Einzelproteinlösungen) und komplexer Proteingemische aus steril filtrierten
Kulturüberständen des humanpathogenen Bakteriums Pseudomonas aeruginosa wurde die
Quarzkristall-Mikrowaage mit Dissipationsüberwachung eingesetzt. Hiermit konnte nicht
nur die adsorbierte Menge an Proteinen auf dem Gelatinehydrogel bzw. Referenzoberflächen
(Gold, PPX-Amin, Titan), sondern auch die viskoelastischen Eigenschaften des adsorbierten
Proteinfilms bestimmt werden. Allgemein adsorbierte auf dem Gelatinehydrogel eine geringere
Proteinmasse im Vergleich zu den Referenzoberflächen. Circa ein Viertel der adsorbierten
Proteine migrierte in die Poren des gequollenen Gels und veränderte dessen viskoelastische
Eigenschaften. Durch anschließende MALDI-ToF/MS- und MS/MS-Analyse konnten die bakteriellen
Proteine auf den untersuchten Oberflächen identifiziert und untereinander verglichen
werden. Hierbei zeigten sich nur geringfügige Unterschiede in der Proteinzusammensetzung.
Zudem wurde eine Sekundärionenmassenspektrometrie mit Flugzeitanalyse an reinen Gelatinefilmen
und an mit humanen Plasmaproteinen beladenen Gelatinefilmen durchgeführt.
Durch eine anschließende multivariante Datenanalyse konnte zwischen den untersuchten
Proben eindeutig differenziert werden. Dieser Ansatz ermöglicht es, die Adsorption von
unterschiedlichen Proteinen auf proteinbasierten Oberflächen markierungsfrei zu untersuchen
und kann zur Aufklärung der in vivo-Situation beitragen. Darüber hinaus bietet dieser
Untersuchungsansatz neue Perspektiven für die Gestaltung und das schnelle und effiziente
Screening von unterschiedlichen Proteinzusammensetzungen.
Biomaterialien können jedoch nicht nur als Implantate oder Implantatbeschichtungen eingesetzt
werden. Im Bereich des drug delivery und der Depotarzneimittel sind biologisch
abbaubare Polymere, aufgrund ihrer variablen Eigenschaften, von großem Interesse. Die
Behandlung von bakteriellen und fungalen Pneumonien stellt insbesondere bei Menschen mit
Vorerkrankungen wie Cystische Fibrose oder primäre Ziliendyskinesie eine große Herausforderung
dar. Oral oder intravenös applizierte Wirkstoffe erreichen die Erreger aufgrund der
erhöhten Zähigkeit des Bronchialsekretes oft nicht in ausreichender Konzentration. Daher
besteht ein weiteres Ziel der vorliegenden Arbeit darin, mittels electrohydrodynamic cojetting
mikrometergroße, inhalierbare, wirkstoffbeladene Partikel mit zwei Kompartimenten
(Janus-Partikel) herzustellen und deren Eignung für die therapeutische Anwendung bei
Lungeninfektionen zu untersuchen.
Durch das in dieser Arbeit entwickelte Lösungsmittelsystem können Janus-Partikel aus
biologisch abbaubaren Co-Polymeren der Polymilchsäure (Poly(lactid-co-glycolid), PLGA)
hergestellt und mit verschiedenen Wirkstoffen beladen werden. Darunter befinden sich ein
Antibiotikum (Aztreonam, AZT), ein Antimykotikum (Itraconazol, ICZ), ein Mukolytikum
(Acetylcystein, ACC) und ein Antiphlogistikum (Ibuprofen, IBU). Die Freisetzung der eingelagerten
Wirkstoffe, mit Ausnahme von ICZ, konnte unter physiologischen Bedingungen
mittels Dialyse und anschließender Hochleistungsflüssigkeitschromatographie gemessen werden.
Die Freisetzungsrate wird von der Kettenlänge des Polymers beeinflusst, wobei eine
kürzere Kettenlänge zu einer schnelleren Freisetzung führt. Das in die Partikel eingelagerte
Antimykotikum zeigte in vitro eine gute Wirksamkeit gegen Aspergillus nidulans. Durch das
Einlagern von ICZ in die Partikel ist es möglich diesen schlecht wasserlöslichen Wirkstoff in
eine für Patienten zugängliche und wirksame Applikationsform zu bringen. In Interaktion mit
P. aeruginosa erzielten die mit Antibiotikum beladenen Partikel in vitro bessere Ergebnisse
als der Wirkstoff in Lösung, was sich in einem in vivo-Infektionsmodell mit der Wachsmotte
Galleria mellonella bestätigte. AZT-beladene Partikel hatten gegenüber einer identischen
Wirkstoffmenge in Lösung eine 27,5% bessere Überlebensrate der Wachsmotten zur Folge.
Des Weiteren hatten die Partikel keinen messbaren negativen Einfluss auf die Wachsmotten.
Dreidimensionale Atemwegsschleimhautmodelle, hergestellt mit Methoden des Tissue Engineerings,
bildeten die Basis für Untersuchungen der Partikel in Interaktion mit humanen
Atemwegszellen. Die Untersuchung von Apoptose- und Entzündungsmarkern im Überstand
der 3D-Modelle zeigte diesbezüglich keinen negativen Einfluss der Partikel auf die humanen
Zellen. Diese gut charakterisierten und standardisierten in vitro-Testsysteme machen es
möglich, Medikamentenuntersuchungen an menschlichen Zellen durchzuführen. Hinsichtlich
der histologischen Architektur und funktionellen Eigenschaften der 3D-Modelle konnte eine
hohe in vitro-/in vivo-Korrelation zu menschlichem Gewebe festgestellt werden. Humane
Mucine auf den 3D-Modellen dienten zur Untersuchung der schleimlösenden Wirkung von
ACC-beladenen Partikeln. Standen diese in räumlichem Kontakt zu den Mucinen, wurde deren
Zähigkeit durch das freigesetzte ACC herabgesetzt, was qualitativ mittels histologischen
Methoden bestätigt werden konnte.
Die in dieser Arbeit entwickelten Herstellungsprotokolle dienen als Grundlage und können
für die Synthese ähnlicher Systeme, basierend auf anderen Polymeren und Wirkstoffen,
modifiziert werden. Gelatine und PLGA erwiesen sich als vielseitig einsetzbare Werkstoffe
und bieten eine breite Anwendungsvielfalt in der Regenerativen Medizin, was die erzielten
Resultate bekräftigen. / In the field of regenerative medicine, polymer-based biomaterials are of great importance for the
development and application of improved or new therapies. The research on the surface properties of
biomaterials, which are used as implants, is essential for their successful use. The
protein-surface interaction is the initial step and occurs when an implant comes into contact with
bodily fluids or tissues and significantly increases direct interaction of the implant and the
surrounding cells. This thesis investigates these processes on gelatin. Accordingly, one of the
project’s major goals was to produce stable nanometer-thin gelatin surfaces and analyze the
adsorption of human plasma and bacterial proteins.
The deposition of gelatin films and the assortment of layer thicknesses on PPX-amine modified
surfaces were carried out using a spin coater. To gain hydrogel films with reproducible
properties, the amine groups of the disaggregated gelatin fibrils were cross- linked with each
other and with those of the amine modification by a biocompatible diisocyanate. The result was a
reproducible and chemically stable gelatin film, which could be applied to a wide variety of
surfaces through the substrate-independent amine modification. The manufacturing process precisely
adjusted the layer thickness to the nano- or micrometer scale which could be determined applying
ellipsometry and atomic- force microscopy. The roughness was very low regardless of the layer
thickness. Gelatin films applied to the functionalized and patterned samples could be visualized by
electron microscopy. With the help of infrared reflection absorption spectroscopy, the gelatin
films were chemically characterized in terms of stability. The adsorption of human plasma proteins
(single protein solutions) as well as the complex protein mixtures of sterile filtered supernatants
belonging to Pseudomonas aeruginosa, a human pathogenic bacterium, were quantified by quartz
crystal microbalance with dissipation monitoring. Both the adsorbed amount of proteins on the
gelatin hydrogel or reference surfaces (gold, PPX-amine, titanium) and the viscoelastic properties
of the adsorbed protein film were determined. In general, there was less protein mass adsorbed on
the gelatin hydrogel compared to the reference surfaces. About a quarter of the adsorbed proteins
migrated into the pores of the swollen gel and changed its viscoelastic properties. Subsequent
MALDI-ToF/MS and MS/MS analysis were used to identify and compare the adsorbed bacterial proteins
on the investigated surfaces. Only slight differences were found in the adsorbed protein
composition. A secondary ion mass spectrometry with time-of-flight analysis was performed on pure
gelatin films and gelatin films loaded with human plasma proteins. By subsequent multivariate data
analysis, it was possible to clearly differentiate between the examined samples. Not only does this
approach enable us to screen the adsorption of different proteins on protein-based surfaces without
labeling, but it also contributes to the elucidation of the in vivo-situation. ach provides new
perspectives regarding the design and efficient
screening of different protein compositions. ...
|
179 |
Muscles artificiels à base d'hydrogel électroactifBassil, Maria 15 September 2009 (has links) (PDF)
Les hydrogels de Polyacrylamide (PAAM) hydrolysés sont des matériaux électroactifs biocompatibles non biodégradables. Ils possèdent des propriétés très proches de celles du muscle naturel et leur mode opérationnel basé sur la diffusion d'ions est similaire à celui existant dans les tissus musculaires naturels. Compte tenu de ces caractéristiques, ces hydrogels sont de bons candidats pour la conception de nouveaux muscles artificiels. Le problème qui limite leur utilisation réside dans leur temps de réponse qui reste encore inférieur à celui du système de fibres musculaires naturelles. Leur fonction actuatrice est limitée par le phénomène de diffusion en raison de leur structure massique qui est à l'origine de cycles de fonctionnement relativement lents. Dans le but de développer un nouveau système artificiel mimant le comportement du muscle squelettique naturel cette étude se divise en deux grandes étapes. La première étape vise le développement d'une étude de la synthèse de l'hydrogel de PAAM et de son mode de fonctionnement. Dans cette étude les effets des paramètres gouvernant la polymérisation sur les propriétés des hydrogels sont évalués. Les propriétés électrochimiques et le mécanisme d'activation des actuateurs soumis à une excitation électrique sont étudiés et le mode de fonctionnement des actuateurs est caractérisé et expliqué. La seconde étape est la proposition et le développement d'une nouvelle architecture de muscle artificiel à base de PAAM. Cette architecture consiste en une structure fibreuse du gel encapsulée par une couche en gel conducteur jouant le rôle d'électrodes. La structure fibreuse permet au système d'exhiber une réponse rapide et la couche en gel améliore ses propriétés mécaniques. Comme un premier pas dans la réalisation du modèle nous avons mis en place un nouveau procédé basé sur la technique d'électrofilage qui permet la génération de fibres linéairement disposées. En utilisant ce processus nous avons réussi à fabriquer des microfibres de PAAM réticulées, électroactives montrant des réponses rapides.
|
180 |
Swelling and protein adsorption characteristics of stimuli-responsive hydrogel gradientsSterner, Olof January 2010 (has links)
<p>In this work, a gradient of interpenetrating polymer networks, consisting of anionic</p><p>and cationic polymers, has been investigated with respect to protein resistant</p><p>properties and swelling characteristics at different pH and ionic strength</p><p>conditions.</p><p> </p><p>The swelling and protein adsorption have been studied using <em>in situ </em>spectroscopic</p><p>ellipsometry(SE) and imaging surface plasmon resonance(iSPR) respectively.</p><p>It has been shown that, by altering the buffer pH, the region of lowest</p><p>protein adsorption on the surface could be moved laterally. The swelling has</p><p>similarly been shown to respond to both changes in pH and ionic strength. Additionally,</p><p>the arise of surface charge and the polymer swelling in solution, both a</p><p>consequence of the ionisation of fixed charges on the polymer, have been indicated</p><p>to occur at different buffer pH.</p><p> </p><p>The studied polymer systems show promising properties for future applications</p><p>in, for example, the biosensor area, where the surface chemistry can be</p><p>tailor-made to work optimally in a given environment.</p>
|
Page generated in 0.054 seconds