• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 22
  • 22
  • 14
  • 5
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 151
  • 151
  • 54
  • 31
  • 28
  • 23
  • 22
  • 20
  • 19
  • 19
  • 17
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Density Functional Theory (DFT) study of hydrogen storage in porous silicon

Boaks, Mawla January 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Based on plane wave DFT calculation, we carried out micro level investigation of hydrogen storage in nanoporous silicon (npSi). One quarter of a hexagonal pore with Palladium catalyst placed at the surface has been studied for hydrogen dissociation, spillover, bond hopping, and diffusion for both single catalyst atom and small catalyst cluster consisting of multiple catalyst atoms. All the DFT computations were done in one of the biggest research supercomputer facilities of the world, Big Red II. We opted ABINIT, an open source DFT tool for our computations. Our calculation revealed low dissociation, spillover, and bond hoping energy barrier. The energy required to be provided from external sources to fully recharge the storage medium from a gaseous source at a completely empty state has also been evaluated. Hydrogen diffusion along the inner surface of the pore as a means of bond hopping and the possibility of quantum tunneling, a low temperature phenomena used to spontaneously go over an otherwise less likely high energy barrier have been studied as well. Using these micro level parameter values evaluated from the DFT study, the performance of any potential hydrogen storage material can be compared to a set of characteristics sought in an efficient storage media. Thus, the micro scale feasibility of this novel npSi material based hydrogen storage technology was studied as a part of a STTR Phase I project.
112

Synthesis and Evaluation of Functionalized Dirhodium(II) Carboxylate Catalysts Bearing Axially Chiral Amino Acid Derivatives / 軸性不斉アミノ酸リガンドを有する官能基化されたロジウムカルボキシラート触媒の合成と反応開発

Wenjie, Lu 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第20303号 / 薬科博第72号 / 新制||薬科||8(附属図書館) / 京都大学大学院薬学研究科薬科学専攻 / (主査)教授 川端 猛夫, 教授 高須 清誠, 教授 竹本 佳司 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DGAM
113

Thermal Stability of Al₂O₃/Silicone Composites as High-Temperature Encapsulants

Yao, Yiying 22 October 2014 (has links)
Conventional microelectronic and power electronic packages based on Si devices usually work below 150°C. The emergence of wide-bandgap devices, which potentially operate above a junction temperature of 250°C, results in growing research interest in high-density and high-temperature packaging. There are high-temperature materials such as encapsulants on the market that are claimed for capability of continuous operation at or above 250°C. With an objective of identifying encapsulants suitable for packaging wide-bandgap devices, some of commercial high-temperature encapsulants were obtained and evaluated at the beginning of this study. The evaluation revealed that silicone elastomers are processable for various types of package structure and exhibit excellent dielectric performance in a wide temperature range (25 - 250°C) but are insufficiently stable against long-term aging (used by some manufacturers, e.g., P²SI, to evaluate polymer stability) at 250°C. These materials cracked during aging, causing their dielectric strength to decrease quickly (as soon as 3 days) and significantly (60 - 70%) to approximately 5 kV/mm, which is below the value required by semiconductor packaging. The results of this evaluation clearly suggested that silicone needs higher thermal stability to reliably encapsulate wide-bandgap devices. Literature survey then investigated possible methods to improve silicone stability. Adding fillers is reported to be effective possibly due to the interaction between filler surface and polymer chains. However, the interaction mechanism is not clearly documented. In this study, the effect of Al₂O₃ filler on thermal stability was first investigated by comparing the performance of unfilled and Al₂O₃-filled silicones in weight-loss measurements and dielectric characterization. All test results on composites filed with Al₂O₃ micro-rods indicated that thermal stability increased with increasing filler loading. Thermogravimetric analysis (TGA) test demonstrated that the temperature of degradation onset increased from 330 to 379°C with a 30 wt% loading of Al₂O₃ rods. In isothermal soak test, unfilled and 30-wt%-filled silicones lost 10% of polymer weight in 700 and 1800 hours, respectively. The dielectric characterization found that both Weibull parameters, characteristic dielectric strength (E₀, representing the electric field at which 62.3% of samples are electrically broken down) and shape parameter (β, representing the spread of data. The larger the β, the narrower the distribution) can reflect the thermal stability of polymers. Both of them were influenced by microstructure evolution, to which β was found to be more sensitive than E₀. The characteristic dielectric strength of unfilled silicone decreased significantly after 240 hours of aging at 250°C, whereas that of Al₂O₃/silicone composites exhibited no significant change within 560 hours. The shape parameter of Al₂O₃-filled silicone decreased slower than that of unfilled silicone, also indicating the positive effect of Al₂O₃ micro-rods on thermal stability. Improved thermal stability can be explained by restrained chain mobility caused by interfacial hydrogen bonds, which are formed between hydroxyl groups on Al₂O₃ surface and silicone backbone. In this study, the effect of hydrogen bonds was investigated by dehydrating Al₂O₃ micro-rods at high temperature in N₂ to partially destroy the bonds. Removal of hydrogen bonds impaired thermal stability by increasing the initial weight-loss rate from 0.025 to 0.036 wt%/hour. The results explained the importance of interfacial hydrogen bond, which effectively reduced the average chain mobility, hindered the formation of degradation products, and led to higher thermal stability. The main discoveries of this study are listed below: 1. Al₂O₃ micro-rods were found to efficiently improve the thermal stability of silicone elastomer used for high-temperature encapsulation. 2. Characteristic dielectric strength and shape parameter obtained from Weibull distribution reflected the change of material microstructure caused by thermal aging. The shape parameter was found to be more sensitive to microscale defects, which were responsible for dielectric breakdown at low electric field. 3. Hydrogen bonds existing at filler/matrix interface were proven to be responsible for the improvement of thermal stability because they effectively restrained the average chain mobility of the silicone matrix. / Ph. D.
114

Energy Decomposition Analysis of Neutral and Anionic Hydrogen Bonded Dimers Using a Point-Charge Approach

Nyberg Borrfors, André January 2020 (has links)
En stor samling dimolekylära vätebindningar med formen A – H … B, där AH är en alkyn, alkohol eller tiol och B = [Br–, Cl–, NH3, HCN] beräknas och utvärderas med Kohn-Sham täthetsfunktionalteori tillsammans med bassetet m062x/6-311+g(2df.2p). Dessa komplex utvärderas även med en punktladdningsmodell (som använder samma metod och basset), där atomerna i vätebindningsmottagaren B byts ut mot laddningar som passats för att återskapa laddningsfördelningen runt molekylen, med målet att separera och isolera de elektrostatiska och polariserande energikomponenterna från de totala interaktionsenergierna. Med hjälp av detta tillvägagångssätt visade det sig att vätebindningars komplexeringsenergi (i.e. interaktionsenergin med energikostnaden för att deformera atomkärnornas rymdgeometri borttagen), oberoende av karaktären hos monomeren AH eller B, till stor del består av elektrostatik och polarisation, medan laddningsutbyte, dispersion, och andra resttermer endast utgör en liten del av den totala interaktionen. Fördelningen mellan elektrostatik och polarisation varierar beroende på typen av monomerer i vätebindningen, men deras summa, den resulterande punktladdningsenergin, korrelerar linjärt (ΔECompl = 0.85ΔEPC ) med R2 = 0.995 över energiomfånget 0 < ΔECompl < 50 kcal mol–1. Detta blir ännu mer anmärkningsvärt då inkluderingen av komplexeringsenergierna från halogenbindningar i samma korrelation inte förändrar korrelationskoefficienten avsevärt, vilket indikerar att båda bindningstyperna består av samma energikomponenter även då bindningarna i sig är väldigt olika. / A large set of dimeric hydrogen bonds of the type A – H … B, where AH is an alkyne, alcohol, or thiol and B = [Br–, Cl–, NH3, HCN]  are computed and evaluated using Kohn-Sham density functional theory together with the m062x/6-311+g(2df.2p) basis set. These complexes are also evaluated using a point charge (PC) approach (using the same method and basis set), where the atoms of the hydrogen bond acceptor B are substituted for charges that are optimized to reproduce the charge distribution of the molecule, with the purpose of separating and isolating the electrostatics- and polarization energy components of the interaction energies. Using this approach it was discovered that the complexation energy of hydrogen bonds (i.e.the interaction energy with the energy cost of nuclear deformation corrected for), independent on the nature of either monomer AH or B, are largely made up of electrostatics and polarization, while charge transfer, dispersion, and other rest terms only make up a small fraction of the total interaction. The composition of electrostatics and polarization vary depending on the type of monomers in the hydrogen bond, but their sum, the PC interaction energy, correlates linearly (ΔECompl = 0.85ΔEPC )  with R2 = 0.995 over an energy span of 0 < ΔECompl < 50 kcal mol–1. This is made even more remarkable by the inclusion of halogen bonded complexation energies in the same correlation without changing the correlation coefficient significantly, indicating that the two bond types are comprised of the same components even though they are remarkably different in origin.
115

Stereospecific dehydroxyfluorination and the synthesis of trifluoro D-hexose sugar analogues

Bresciani, Stefano January 2011 (has links)
This thesis describes stereospecific fluorination reactions, and addresses the synthesis of fluorosugars. In Chapter 1, the influence of fluorine on the physical properties of organic molecules, as well as its stereoelectronic effects, are introduced. Furthermore, an overview of nucleophilic and electrophilic fluorination reactions is given. Chapter 2 describes the dehydroxyfluorination of allylic alcohol diastereoisomers 155a and 155b, which can proceed either by direct or allylic fluorination. The regio- and stereo- selectivities were also assessed. Chapter 3 outlines the synthesis of the novel trifluoro D-glucose analogue 193 and trifluoro D-altrose analogue 216. The transport of these hexose analogues across the red blood cell membranes was then explored, to investigate the influence of polarity versus hydrogen bonding ability in carbohydrate-protein interactions. Chapter 4 describes the development and optimisation of Bio’s methodology, to promote stereospecific dehydroxyfluorination of benzylic alcohols (R)-213 and (R)-227 by addition of TMS-amine additives 226 and 229. And finally Chapter 5 reports the experimental procedures as well as the characterisation and the crystallographic data of the molecules prepared in this thesis.
116

Synthèses de nouvelles monocouches auto-assemblées à partir d’organosilanes fonctionnels capables d’auto-association par liaisons hydrogène / Synthesis of new self-assembled monolayers with functional organosilanes capable of auto-association by H-bonds

Ramin, Michael 15 December 2010 (has links)
Il existe une très forte demande en biocapteurs pour la détection d’agents pathogènes dans le domaine environnemental et médical. Dans ce contexte, le contrôle de l’état de surface des biocapteurs joue un rôle crucial. Les monocouches auto-assemblées (Self-Assembled Monolayers, SAMs) permettent de fonctionnaliser de manière homogène et reproductible ces surfaces. Ces SAMs sont généralement obtenues à partir d’agents de couplage siliciés à longue chaîne alkyle. Mais, ces composés sont souvent difficiles à synthétiser et à purifier en raison de leurs faibles solubilités dans les solvants organiques. C’est pour cela que nous avons proposé d’introduire une fonction polaire (amide ou urée) au sein de ces films. Ces fonctions permettent également un auto-assemblage des molécules sur le substrat au moyen de liaisons hydrogène entre les molécules. Les nouvelles monocouches fonctionnelles ont été caractérisées entre autres par spectroscopie infrarouge de réflexion-absorption par modulation de polarisation (PM-IRRAS) ce qui a permis d’identifier les différents groupes moléculaires. Ces monocouches ont aussi montré leurs capacités à immobiliser une molécule biologique (Protéine A). / There is an increasing demand for biosensors to detect pathogens in environmental and medical fields. In this context, the control of the surface properties plays an important role. Self-Assembled Monolayers (SAMs) allow to functionalize these surfaces homogeneously and reproducible. SAMs on silicon based surfaces are usually obtained from silylated coupling agents with long alkyl chain. However, these compounds are often difficult to purify owing to their low solubility in organic solvents. That’s why we proposed to introduce a polar function (amide or urea) in the molecular structure. These precursors were also capable of association by H-bonds and offer possibilities to control the organic assembly on the surfaces. The new functional monolayers were characterized by Polarization Modulation Infrared Reflection Adsorption Spectroscopy (PM-IRRAS) and others techniques such as XPS and contact angle in order to identify the different molecular groups on the surface. These functionalized monolayers have also shown their ability to immobilize biomolecules (Protein A).
117

Étude de l’association supramoléculaire bi- et tridimensionnelle d’oximes et d’hydrazones trigonales

Arseneault, Pierre-Marc 11 1900 (has links)
Les concepts de la chimie supramoléculaire peuvent être exploités avantageusement pour contrôler la structure et les propriétés des matériaux moléculaires. Dans une approche productive, les composantes moléculaires du matériau peuvent être choisies pour pouvoir s'engager dans des interactions fortes et prévisibles avec leurs voisins. Cette stratégie, appelée la tectonique moléculaire, est caractérisée par la préparation de molécules particulières appelées tectons (du grec tectos, qui signifie constructeur) qui, par design rationnel, s’associent de manière prévisible via de multiples interactions non-covalentes afin de générer l’architecture désirée. Ce processus est réversible et guidé par la présence de fonctions chimiques complémentaires, appelées groupements de reconnaissance, qui sont orientées de manière à conférer un aspect directionnel aux interactions intermoléculaires. Ceci permet de positionner les molécules voisines de façon prédéterminée. Les contraintes imposées par les interactions s’opposent souvent à la tendance naturelle des molécules à former une structure compacte et permettent donc à d'autres molécules invitées d’occuper un volume appréciable dans le matériau, sans toutefois contribuer directement à l'architecture principale. Appliquée à la cristallisation, cette approche peut générer des cristaux poreux, analogues aux zéolites. Les ponts hydrogène offrent une interaction non-covalente de choix dans cette stratégie car ils sont forts et directionnels. L’exploration d’une multitude de fonctions chimiques connues pour pouvoir participer à la formation de ponts hydrogène a permis de créer une grande diversité de nouveaux matériaux lors de l’évolution du domaine du génie cristallin. Une molécule classique, qui illustre bien la stratégie tectonique et qui a eu un fort impact dans le domaine de la chimie supramoléculaire, est l’acide 1,3,5-benzènetricarboxylique, communément appelé acide trimésique. L’acide trimésique donne une orientation trigonale à trois groupements carboxyles, favorisant ainsi la formation d'un réseau hexagonal retenu par ponts hydrogène. Nous avons visé une modification dans laquelle les groupements -COOH de l'acide trimésique sont remplacés par deux autres groupements de reconnaissance, jusqu’ici peu exploités en chimie supramoléculaire, l’oxime et l’hydrazone. Nous rapportons la synthèse et la cristallisation de différentes trioximes et trihydrazones analogues à l'acide trimésique. Les cristaux obtenus ont été analysés par diffraction des rayons-X et leurs structures ont été déterminées. L’auto-assemblage de différentes trioximes et trihydrazones en 2D par adsorption sur graphite a également été étudié en utilisant la microscopie à balayage à effet tunnel. Nos résultats nous permettent de comparer l'organisation en 2D et en 3D de différents analogues de l'acide trimésique. / The concepts of supramolecular chemistry can be exploited advantageously to control the structure and properties of molecular materials. In a productive approach, the molecular components of a material can be specifically selected to engage in strong and predictable interactions with their neighbours. This strategy, called molecular tectonics, is based on designing particular molecules called tectons (from the Greek word tectos, meaning builder) that self-associate in predictable ways via multiple non-covalent interactions, thereby generating a desired architecture. This process is reversible and guided by the presence of complementary chemical functions, named supramolecular synthons, specifically oriented to direct intermolecular interactions. This predisposes neighbouring molecules to be positioned in a predetermined fashion. The constraints arising from these interactions often tend to counter the natural tendency of molecules to form compact structures, thereby leaving significant volume within the material for guest molecules that do not directly contribute to the main architecture. When applied to crystallisation, this approach can generate potentially porous crystals similar to zeolites. Hydrogen bonds are an ideal non-covalent interaction for the strategy of molecular tectonics because of their strength and directionality. The field of crystal engineering has evolved greatly through exploration of various chemical functions known to assemble through hydrogen bonds. Such exploration has revealed a variety of new materials. A classic molecule that well represents the tectonic strategy and has had a larger impact in the field of supramolecular chemistry is benzene-1,3,5-tricarboxylic acid, commonly referred to as trimesic acid. Trimesic acid imparts a trigonal orientation to three carboxyl groups (COOH), favouring the formation of a hexagonal network supported by hydrogen bonds characteristic of these groups. We aimed to replace the COOH groups of trimesic acid by less-commonly used synthons in supramolecular chemistry derived from oximes and hydrazones. Herein, we report the synthesis and crystallisation of a series of trigonal trioximes and trihydrazones analogous to trimesic acid. Crystals were analysed by X-ray diffraction and their structures were determined. Self-assembly of the trioximes and trihydrazones in 2D by adsorption on graphite was also studied by scanning tunnelling microscopy. Together, our results enabled us to compare the 2D and 3D organisation of different analogues of trimesic acid.
118

Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3D

Lacatus, Monica Elena 10 1900 (has links)
Notre étude a pour objet la conception, la synthèse ainsi que l’étude structurale d’architectures supramoléculaires obtenues par auto-assemblage, en se basant sur les concepts de la tectonique moléculaire. Cette branche de la chimie supramoléculaire s’occupe de la conception et la synthèse de molécules organiques appelées tectons, du grec tectos qui signifie constructeur. Le tecton est souvent constitué de sites de reconnaissance branchés sur un squelette bien choisi. Les sites de reconnaissance orientés par la géométrie du squelette peuvent participer dans des interactions intermoléculaires qui sont suffisamment fortes et directionnelles pour guider la topologie du cristal résultant. La stratégie envisagée utilise des processus d'auto-assemblage engageant des interactions réversibles entre les tectons. L’auto-assemblage dirigé par de fortes interactions intermoléculaires directionnelles est largement utilisé pour fabriquer des matériaux dont les composants doivent être positionnés en trois dimensions (3D) d'une manière prévisible. Cette stratégie peut également être utilisée pour contrôler l’association moléculaire en deux dimensions (2D), ce qui permet la construction de monocouches organisées et prédéterminées sur différents types des surfaces, tels que le graphite.Notre travail a mis l’accent sur le comportement de la fonction amide comme fonction de reconnaissance qui est un analogue du groupement carboxyle déjà utilisé dans plusieurs études précédentes. Nous avons étudié le comportement d’une série de composés contenant un noyau plat conçu pour faciliter l'adsorption sur le graphite et modifiés par l'ajout de groupes amide pour favoriser la formation de liaisons hydrogène entre les molécules ainsi adsorbées. La capacité de ces composés à former de monocouches organisées à l’échelle moléculaire en 2D a été examinée par microscopie à effet tunnel, etleur organisation en 3D a également été étudiée par cristallographie aux rayons X. Dans notre étude, nous avons systématiquement modifié la géométrie moléculaire et d'autres paramètres afin d'examiner leurs effets sur l'organisation moléculaire. Nos résultats suggèrent que les analyses structurales combinées en 2D et 3D constituent un important atout dans l'effort pour comprendre les interactions entre les molécules adsorbées et l’effet de l’interaction avec la surface du substrat. / Our study involves the design, synthesis and structural analysis of supramolecular architectures obtained by self-assembly, based on the concepts of molecular tectonics. This branch of supramolecular chemistry explores the properties of molecules called tectons,from the Greek word tectos, meaning builder. Tectons typically incorporate sites of recognition connected to well-chosen skeletons with defined geometries. The sites of recognition, oriented by the geometry of the skeleton, can participate in intermolecular interactions that are sufficiently strong and directional to control the topology of the resulting assembly. This strategy is thereby based on self-assembly processes involving reversible interactions between tectons. Self-assembly directed by strong directional intermolecular interactions is widely used to produce materials whose components must be positioned in three dimensions (3D) in a predictable way. This strategy can also be used to control molecular association in two dimensions (2D), thereby allowing the construction of predictably organized and predetermined nanopatterns on various surfaces, such as graphite.Our work has focused on the behavior of the amide groups as primary sites of intermolecular interaction. These groups are analogues of carboxyl groups, which have been widely used in previous studies of directed molecular assembly. We have studied the 3D and 2D association of compounds with flat cores designed to favor the formation of sheets and to facilitate adsorption on graphite, modified by the addition of amide groups to promote the formation of intermolecular hydrogen bonds. The ability of these compounds to form predictably ordered 2D nanopatterns has been examined by scanning tunneling microscopy, and their organization in 3D has also been investigated by X-ray crystallography. In our study, we have systematically altered molecular geometry and other parameters to examine their effect on molecular organization. Our results suggest that combined structural analyses in 2D and 3D are an important asset in the effort to understand why molecules aggregate in particular ways and how these preferences can be altered by underlying surfaces.
119

Tectonique moléculaire : vers l'utilisation du dispirofluorène-indénofluorène comme unité de construction pour bâtir des réseaux cristallins poreux

Blair-Pereira, Joao-Nicolas 01 1900 (has links)
La chimie supramoléculaire est un domaine qui suscite depuis quelques années un intérêt grandissant. Le domaine s’appuie sur les interactions intermoléculaires de façon à contrôler l’organisation moléculaire et ainsi moduler les propriétés des matériaux. La sélection et le positionnement adéquat de groupes fonctionnels, utilisés en combinaison avec un squelette moléculaire particulier, permet d’anticiper la façon dont une molécule interagira avec les molécules avoisinantes. Cette stratégie de construction, nommé tectonique moléculaire, fait appel à la conception de molécules appelées tectons (du mot grec signifiant bâtisseur) pouvant s’orienter de façon prévisible par le biais d’interactions faibles et ainsi générer des architectures supramoléculaires inédites. Les tectons utilisent les forces intermoléculaires mises à leur disposition pour s’orienter de façon prédéterminée et ainsi contrecarrer la tendance à s’empiler de la manière la plus compacte possible. Pour ce faire, les tectons sont munies de diverses groupes fonctionnels, aussi appelés groupes de reconnaissance, qui agiront comme guide lors de l’assemblage moléculaire. Le choix du squelette moléculaire du tecton revêt une importance capitale puisqu’il doit permettre une orientation optimale des groupes de reconnaissance. La stratégie de la tectonique moléculaire, utilisée conjointement avec la cristallisation, ouvre la porte à un domaine de la chimie supramoléculaire appelé le génie cristallin. Le génie cristallin permet l’obtention de réseaux cristallins poreux soutenus par des interactions faibles, pouvant accueillir des molécules invitées. Bien que toutes les interactions faibles peuvent être mises à contribution, le pont hydrogène est l’interaction prédominante en ce qui a trait aux réseaux cristallins supramoléculaires. La force, la directionnalité ainsi que la versatilité font du pont hydrogène l’interaction qui, à ce jour, a eu le plus grand impact dans le domaine du génie cristallin. Un des groupements de reconnaissance particulièrement intéressants en génie cristallin, faisant appel aux ponts hydrogène et offrant plusieurs motifs d’interaction, est l’unité 2,4-diamino-1,3,5-triazinyle. L’utilisation de ce groupement de reconnaissance conjointement avec un cœur moléculaire en forme de croix d’Onsager, qui défavorise l’empilement compact, permet l’obtention de valeurs de porosités élevées, comme c’est le cas pour le 2,2’,7,7’-tétrakis(2,4-diamino-1,3,5-triazin-6-yl)-9,9’-spirobi[9H-fluorène]. Nous présentons ici une extension du travail effectué sur les cœurs spirobifluorényles en décrivant la synthèse et l’analyse structurale de molécules avec une unité dispirofluorène-indénofluorényle comme cœur moléculaire. Ce cœur moléculaire exhibe les mêmes caractéristiques structurales que le spirobifluorène, soit une topologie rigide en forme de croix d’Onsager défavorisant l’empilement compact. Nous avons combiné les cœurs dispirofluorène-indénofluorényles avec différents groupements de reconnaissance de façon à étudier l’influence de l’élongation du cœur moléculaire sur le réseau cristallin, en particulier sur le volume accessible aux molécules invitées. / Supramolecular chemistry is a field of rapidly increasing interest in recent years. The field uses weak intermolecular interactions to control molecular organisation and therefore modulate the properties of materials. Adequate selection and positioning of functional groups, combined with a carefully selected molecular core to which the groups are attached, allows for the creation of molecules with a high degree of predictability in the way they will interact with their neighbours. This approach to the design and construction of materials, called molecular tectonics, is based on subunits called tectons (derived from the Greek word for builder), which use weak interactions to organise themselves in a predictable manner and generate novel supramolecular architectures. In favorable cases, the interactions can counter the general tendency shown by molecules to pack together in a compact manner. Instead, specific functional groups direct molecular recognition and help guide the process of auto-assembly. At the same time, the molecular core of the tecton is also of capital importance as it must allow an optimal orientation of the recognition groups. The molecular tectonics approach, used jointly with crystallisation, opens the door to new opportunities in crystal engineering. For example, crystal engineering now allows the logical creation of porous crystalline networks that can accept guest molecules. Although any type of weak interaction can hold such networks together, the hydrogen bond is favored for constructing porous supramolecular networks. The strength, directionality and versatility of the hydrogen bond accounts for its special importance in the domain of crystal engineering. A recognition group of particular interest in crystal engineering is the 2,4-diamino-1,3,5-triazinyl unit. This unit forms hydrogen bonds according to various standard motifs. The use of this recognition group, joined to molecular cores specifically designed to inhibit close packing, such as Onsager crosses, allows for the construction of supramolecular networks with high porosity, as shown by the behaviour of 2,2’,7,7’-tetrakis(2,4-diamino-1,3,5-triazin-6-yl)-9,9’-spirobi[9H-fluorene]. We present here an extension of previous studies of spirobifluorenyl cores by describing the synthesis and structural analysis of molecules with related dispirofluorene-indenofluorenyl cores. This new core offers the same characteristics as the spirobifluorenyl core, namely rigid topology and an Onsager cross molecular shape which are known to inhibit close packing. We have combined this core with a variety of recognition groups to verify the influence of the molecular core on the crystalline networks generated, particularly on the volume accessible to guest molecules.
120

Synthèse et étude conformationnelle de nouveaux oligomères mixtes : les [[alpha]/[alpha]-N-amino]mères / Synthesis and conformational study of new mixed oligomers : the [[alpha]/[alpha]-N-amino]mers

Dautrey, Sébastien 02 October 2009 (has links)
Ce travail décrit la synthèse et l’étude conformationnelle de nouveaux oligomères mixtes. Dans le premier chapitre, en exploitant des travaux antérieurs concernant la synthèse des N-aminodipeptides, nous avons obtenu des oligomères mixtes, alternant des liens amides et N-aminoamides nommés [[allpha]/[alpha]-N-amino]mères. L’oligomérisation des N-aminopeptides en phase liquide est réalisable grâce à un couplage au fluorure d’acide à partir d’une unité de base possédant les protections Boc (extrémité N-terminale), Bn (extrémité C-terminale) et phtaloyle (azote latéral). Le deuxième chapitre présente les résultats obtenus par différentes méthodes spectroscopiques (RMN, IR et DC) et modélisation moléculaire sur les différents oligomères synthétisés dans le chapitre 1. Ces travaux ont permis de mettre en évidence un repliement répétitif original par une liaison hydrogène de type C8 impliquant un groupement carbonyle du phtalimide et un proton amidique / This work describes the synthesis and the conformational study of new mixed oligomers. In the first chapter, using previous work on the synthesis of N-aminodipeptids, we were obtained mixed oligomers alternating amid and N-aminoamid bond named [[alpha]/[alpha]-N-amino]mers. The oligomerization of N-aminopeptids in liquid phase was achieved through an acid fluorid coupling from a building block with the protections Boc (N-terminus), Bn (C-terminus) and phtaloyl (N-side). The second chapter presents the results obtained by different conformational spectroscopic methods (NMR, IR and DC) and molecular modeling on the various oligomers synthesized in Chapter 1. This work has allowed to highlight a original repetitive folding by a C8 hydrogen bond involving the carbonyl group of phthalimid and a amid proton

Page generated in 0.0758 seconds