• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-objective optimization strategies for design and deployment of hydrogen supply chains / Stratégies d'optimisation multi-objectif pour la conception et le déploiement de chaînes logistiques hydrogène

Ochoa Robles, Jesus 05 July 2018 (has links)
L'hydrogène est l'un des vecteurs énergétiques les plus prometteurs dans la recherche d'un mix énergétique plus durable. Plusieurs études et feuilles de route ont été réalisées sur le potentiel d'une économie « hydrogène » et ont identifié que même si de nombreuses technologies requisessont déjà disponibles aujourd'hui, le déploiement d'infrastructures hydrogène constitue la tâche la plus difficile de son développement, dont la mesure où on doit atteindre des coûts compétitifs et avoir l'acceptation du marché. La conception de la chaîne logistique de l’hydrogène (HSC), enparticulier à des fins de mobilité, implique une série de décisions importantes à différents niveaux (sources d'énergie, production, transport et stockage) et peut être considérée comme un problème multi-échelle et multi-période avec plusieurs parties prenantes. L'objectif de ce travail est de proposer un cadre méthodologique pour aborder le problème de conception de la HSC de manière complémentaire au travail proposé dans le travail de doctorat de (Sofia de Leon Almaraz, 2014) dans lequel une formulation multi-objectif a été mise en œuvre via la méthodologie - contrainte pour obtenir le front de Pareto, en optimisant trois objectifs en même temps : le coût journalier total, le potentiel de réchauffement global et un indice de risque de sécurité. Une analyse de sensibilité basée sur un plan d'expérience en utilisant les méthodes de plan factoriel et surface de réponse a été réalisée pour identifier les principaux paramètres (facteurs) et leur interaction affectant le critère économique, soit le coût journalier total (TDC) (réponse), englobant les coûts capitaux et opérationnels. Cette analyse de sensibilité souligne que la demande est de loin le paramètre le plus important qui conditionne fortement le critère TDC, de sorte que davantage d'efforts sont nécessaires pour modéliser l'incertitude de la demande de façon homogène. Dans la formulation initiale de la conception de la HSC, la taille du problème liée au nombre de variables binaires conduit souvent à des difficultés pour résoudre le problème. Dans ce travail, le potentiel des algorithmes génétiques (GA) via une variante de NSGA-II est exploré pour faire face à la formulation multi-objectif, afin de produire automatiquement le front de Pareto. La formulation du modèle a ensuite été étendue pour tenir compte de l'incertitude de la demande, ce qui donne plus de robustesse à l'approche proposée. Deux études de cas soutiennent cette analyse : d'abord au niveau régional, les résultats de la conception de la HSC pour l'ancienne région Midi-Pyrénées obtenus avec les deux modèles sont comparés. Les solutions obtenues par GA présentent le même ordre de grandeur que celles obtenues avec MILP (Programmation Linéaire en Nombres Entiers) dans le problème mono-critère, mais de meilleures solutions de compromis sont produites dans la formulation multi-objectif et des résultats plus flexibles sont obtenues avec la modélisation de l’incertitude de demande. Puis l’écosystème aéroportuaire, Tarbes-Lourdes, a été étudié : l'infrastructure aéroportuaire est une étude de cas intéressante, car un aéroport est une source d'émissions qui affectent le climat à cause des émissions générées par les activités faites à l'intérieur et à l'extérieur du périmètre de l'aéroport, liées à l’opération et utilisation de l’aéroport. Enfin, une analyse post-optimale sur une solution de compromis de la HSC est réalisée sur la base d'une évaluation sociale, via deux analyses coûts-bénéfices (CBA) d'un point de vue social (SCBA) et gouvernemental (subventions et taxes), montrant que l'incorporation d'externalités aide à financer une proportion importante des coûts. L'approche SCBA pour le déploiement de l'hydrogène intègre les avantages sociétaux induits à travers la réduction des émissions de gaz à effet de serre, la réduction de la pollution atmosphérique mais aussi les coûts sociaux par l'augmentation de la consommation de platine. / Hydrogen is one of the most promising energy carriers in the quest for a more sustainable energy mix. Several studies and roadmaps have been carried out about the potential of a « hydrogen » economy and have identified that even if many of the required technologies are already available today, the deployment of hydrogen infrastructures constitutes the most challenging task for its development, so as to achieve competitive costs and mass market acceptance. The design of a hydrogen supply chain (HSC), in particular for mobility purpose, involves a series of important decisions at different levels, i.e. energy sources, production, transportation and storage and can be viewed as a multi-echelon, multi-objective and multi-period problem with multiple stakeholders. The objective of this work is to propose a methodological framework to tackle the HSC design problem in a complementary manner to the work proposed in the PhD work of (Sofia de Leon Almaraz, 2014) in which a multi-objective formulation was implemented via the -constraint method to generate the Pareto front, optimising three objectives at the same time, total daily cost, global warming potential and a safety risk index. A sensitivity analysis based on a design of experiments through the Factorial Design and Response Surface methods was carried to identify the major parameters (factors) and their interaction affecting the economic criterion, i.e., the total daily cost (TDC) (response), encompassing capital and operational expenditures. This sensitivity analysis highlights that the demand is by far the most significant parameter that strongly conditions the TDC criterion so that more effort is needed to model demand uncertainty consistently in HSC design, especially since a long horizon time is considered for hydrogen deployment. Besides, in the initial formulation of HSC design, the size of the problem related to the number of binary variables often leads to difficulties for problem solution. In this work, the potential of genetic algorithms (GA) via a variant of NSGA-II is explored to cope with the multi-objective formulation, in order to automatically produce the Pareto front. The model formulation has then been extended to take into account demand uncertainty, giving more robustness to the proposed approach. Two case studies support the analysis: first at regional level, the results of a HSC design for the former Midi-Pyrénées region obtained with both models are compared. The solutions obtained by GA exhibit the same order of magnitude as those obtained with MILP (Mixed Integer Linear Programming) in the mono-criterion problem, but better compromise solutions are produced in the multi-objective formulation and more flexible ones are obtained with demand uncertainty modelling. Then an airport ecosystem, i.e. Tarbes-Lourdes has been studied: the airport infrastructure is an interesting case study, since an airport is a source of emissions that affect climate, including the emissions generated from activities occurring inside and outside the airport perimeter fence associated with the operation and use of an airport. Finally, a post-optimal analysis on a compromise solution of HSC configuration is carried out based via two cost-benefit analyses (CBA) from a social (SCBA) and governmental perspective (subsidies and taxes). The SCBA approach for hydrogen deployment integrates societal benefits for the reduction of greenhouse gas emissions, noise air pollution abatement and social costs for the increase in platinum consumption in the manufacture of fuel cells. By including external costs, economic benefits of the replacement of ICEV (internal combustion engine) by FCV (Fuel Cell Vehicles) were highlighted as well as the generation of positive social net present values
2

Assessment of hydrogen supply chain for transport sector of Sweden

Maria Soares Rodrigues, José January 2023 (has links)
Fuel cell electric vehicles, powered by hydrogen are an enticing alternative to fossil-fuel vehicles in order to reduce greenhouse gas emissions and consequently accomplish the environmental targets set to tackle the environmental crisis. It is crucial to develop the appropriate infrastructure if the FCEVs are to be successfully accepted as an alternative to fossil-fuel vehicles. This study aims to carry out a techno-economic analysis of different hydrogen supply chain designs, that are coupled with the Swedish electricity system in order to study the inter-dependencies between them. The supply chain designs comprehend centralised production, decentralised production and a combination of both. The outputs of the hydrogen supply chain model include the hydrogen refuelling stations’ locations, the electrolyser’s locations and their respective sizes as well as the operational schedule. Both the hydrogen supply chain designs and the electricity system were parameterized with data for 2030. The supply chain design is modelled to minimize the overall cost while ensuring the hydrogen demands are met. The mixed-integer linear programming problems were modelled using Python and the optimisation software was Gurobi. The hydrogen models were run for two different scenarios, one that considers seasonal variations in hydrogen demand, and another that does not. The results show that for the scenario with seasonal variation the supply chain costs are higher than for the scenario without seasonal variation, regardless of the supply chain design. In addition, the hydrogen supply chain design with the minimal cost is based on decentralised hydrogen production. / Bränslecellsdrivna elbilar, som drivs av vätgas, är ett lockande alternativ till fossildrivna fordon för att minska växthusgasutsläppen och därigenom uppnå de miljömål som satts för att tackla miljökrisen. Det är avgörande att utveckla lämplig infrastruktur om FCEV:er ska accepteras som ett alternativ till fossildrivna fordon. Denna studie syftar till att utföra en teknisk-ekonomisk analys av olika vätgas supply kedjedesign som är kopplade till det svenska elsystemet för att studera beroendeförhållandena mellan dem. Försörjningskedjans design omfattar centraliserad produktion, decentraliserad produktion och en kombination av båda. Resultaten från vätgas supply kedja modellen inkluderar vätgasmackarnas placeringar, elektrolysörernas placeringar och deras respektive storlekar samt den operationella schemat. Både vätgas supplykedjedesi och elsystemet parameteriserades med data för 2030. Supplykedjedesignen modellerades för att minimera de totala kostnaderna samtidigt som vätgasbehoven uppfylls. Mixed-integer lineära programmeringsproblem modellerades med hjälp av Python och optimeringsprogramvaran Gurobi. Vätgasmodellerna kördes för två olika scenarier, ett som tar hänsyn till säsongsvariationer i vätgasbehovet och ett annat som inte gör det. Resultaten visar att för scenariet med säsongsvariation är supply kedja kostnaderna högre än för scenariot utan säsongsvariation, oavsett supplykedjedesignen. Dessutom är vätgas supply kedjedesignen med minimal kostnad baserad på decentraliserad vätgasproduktion.
3

TECHNO-ECONOMIC ANALYSIS OF THE HYDROGEN SUPPLY CHAIN : A CASE STUDY OF THE SWEDISH INDUSTRY / TEKNISK-EKONOMISK ANALYS AV VÄTGASFÖRSÖRJNINGSKEDJAN: : EN FALLSTUDIE AV DEN SVENSKA INDUSTRIN

Dautel, Jan Lukas January 2023 (has links)
The European Energy system is currently transitioning towards a reduced use of fossil fuels and increasing use of renewable energy. Hydrogen as energy carrier for renewable electricity has a potential to play a significant role in this transition. It can be stored and transported in its gaseous or liquid state, and utilized in industries that require highprocess heat, which makes them difficult to decarbonize. Further, hydrogen storage canbe employed to store over‐produced renewable electricity in large scale and for long periods of time. This research aims to develop a methodology to conduct a layout and dispatch optimization for utilizing locally produced hydrogen. The objective is to find the least cost supply pathway for a defined demand. In this case study, hydrogen is produced by water electrolysis supplied by the local electricity grid and renewable electricity, such as solar PV, onshore and offshore wind turbines. The scope is limited to gaseous hydrogen thereby the distribution is also limited to pipelines or road trucks. The optimized supplychain comprises four main stages: I) electricity generation and storage; II) hydrogen production; III) hydrogen compression and storage; IV) hydrogen transportation to the end consumer. It results in the system's optimum hourly dispatch schedule and a proposed least‐cost layout. The developed methodology is finally applied to an industrial case study in Sweden, for which scenarios with varying boundary conditions are tested. The least cost supply chain for the case study resulted in a system solely supplied with electricity purchased from the grid, a PEM electrolyzer, a hydrogen storage in a Lined Rock Cavern, and hydrogen transport via pipeline. The lowest Levelized Cost of Hydrogen from electricity purchase until delivery is 5.17 EUR/kgH2. The study concludes that there is no one optimum solution for all and the constraints of the optimization problem need to be evaluated case by case.The study further highlights that intermittency and peaks of both electricity availability and hydrogen demand can lead to an increase in system cost owing to the oversizing and storage needs. / Det europeiska energisystemet är för närvarande i en övergångsprocess mot en minskande användning av fossila bränslen och en ökande användning av förnybar energi. Vätgas som energibärare för förnybar el har potential att spela en viktig roll i denna övergång. Vätgas kan lagras och transporteras i gasform eller flytande form, och användas i industrier som kräver hög processvärme vars koldioxidutsläpp därför är svåra att minska. Vidare kan vätgaslagring användas för att lagra överproducerad förnybar el istor skala och under långa perioder. Denna forskning syftar till att utveckla en metod för layout och distributions optimering för utnyttjandet av lokalt producerad vätgas. Målet är att hitta den minst kostsamma försörjningsvägen för en definierad efterfrågan. I den här fallstudien produceras vätgas genom vattenelektrolys som försörjs av det lokala elnätet och förnybar el, t.ex. solceller, vindkraftverk på land och till havs. Omfattningen är begränsad till gasformig vätgas och därmed är distributionen också begränsad till rörledningar eller lastbilar. Den optimerade försörjningskedjan består av fyra huvudsteg: I) elproduktion och lagring, II) vätgasproduktion, III) komprimering och lagring av vätgas, IV) transport av vätgas till slutkonsumenten. Metodens output är systemets optimala timplan och ett förslag till layout med den lägsta kostnaden.  Den utvecklade metoden tillämpas slutligen i en industriell fallstudie i Sverige, för vilken scenarier med varierande randvillkor testas. Den minst kostsamma försörjningskedjan för fallstudien resulterade i ett system som enbart försörjs med el som köps från nätet, en PEM‐elektrolyser, ett magasin för vätgaslagring i ett fodrat bergrum och vätgastransport via en rörledning. Den lägsta Levelized Cost för vätgas från el inköp till leverans är 5,17EUR/ kgH2. I studien dras slutsatsen att det inte finns någon optimal lösning i allmänhet och att begränsningarna i optimeringsproblemet måste utvärderas från fall till fall. Studien belyser vidare att ostadighet och toppar i både eltillgången och efterfrågan på vätgas kan leda till en ökning av systemkostnaderna på grund av överdimensionering och lagringsbehov.

Page generated in 0.0837 seconds