• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Deposição de filmes finos de silício amorfo hidrogenado por sputtering reativo. / Deposition of hydrogenated amorphous silicon thin films by reactive sputtering.

Carolina Carvalho Previdi Nunes 21 October 2010 (has links)
Neste trabalho filmes finos de silício amorfo hidrogenado (a-Si:H) foram depositados no reator magnetron sputtering do laboratório de sistemas integráveis (LSI), a temperaturas menores que 100 °C, pela introdução do gás hidrogênio junto com o de argônio para pulverização de um alvo de silício policristalino. As condições de deposição investigadas estão compreendidas em pressões totais de 5 e 10 mTorr para as quais a potência de RF variou de 150 a 300 W, para a menor pressão, e de 200 a 300 W, para a maior pressão, sendo que para cada condição de potência a concentração de hidrogênio nos gases de descarga variou de pelo menos 0 % a no máximo 60 %. Como os substratos utilizados foram carbono vítreo, lâminas oxidadas de silício e placas de vidro para microscópio óptico os filmes depositados sobre o carbono foram caracterizados por RBS, os depositados sobre as lâminas oxidadas de silício por FTIR e medidas IV e os depositados sobre o vidro por espectroscopia de absorção óptica na região do ultravioleta-visível. A caracterização RBS forneceu informações tanto sobre o tipo e quantidade de impurezas eventualmente incorporadas durante a deposição como sobre a densidade superficial do silício que permitiu a obtenção da densidade volumétrica pela utilização dos parâmetros de espessura obtidos pela técnica de perfilometria. Através da análise dos espectros FTIR o hidrogênio incorporado pode ser quantificado na forma de mono e polihidretos de silício. As medidas IV foram realizadas através de contatos de alumínio, evaporados sobre os filmes, para a obtenção tanto da condutividade de escuro como da fotocondutividade e a análise dos espectros de absorção óptica dos filmes permitiu a obtenção tanto dos valores de energia do gap óptico, pelo método Tauc, como do parâmetro B que é inversamente proporcional à largura da cauda das bandas de valência e de condução que por sua vez aumentam com o aumento da densidade de defeitos dos filmes. Desta forma os filmes que apresentaram as maiores fotosensibilidades (razão entre a fotocondutividade e a condutividade de escuro), consideradas para a escolha dos melhores resultados, foram os depositados a 10 mTorr uma vez que eles apresentam uma maior concentração tanto de ligações SiH 2 como de SiH 3 e menores concentrações totais de hidrogênio incorporado ao filme que os filmes depositados a 5 mTorr o que acabou contribuindo para a diminuição da densidades de estados localizados da banda de mobilidade, provavelmente devido a nucleação de cristais, o que ocorre tipicamente para filmes depositados por sistemas magnetron sputtering a grandes pressões totais e grandes pressões parciais de hidrogênio, estando, desta forma, tanto as ligações SiH 2 como SiH 3 situadas nos contornos de grão. Assim os filmes depositados a 10 mTorr apresentam concentrações quase nula de ligações SiH, mas as maiores fotosensibilidades. / In this work thin films of hydrogenated amorphous silicon (a-Si:H) were deposited in the magnetron sputtering reactor of the Laboratório de Sistemas Integráveis (LSI), at temperatures lower than 100 °C, by the introduction of hydrogen and argon gasses for the sputtering of a policrystalline silicon target. The deposition conditions investigated are total pressures of 5 and 10 mTorr for which the RF power varied from 150 to 300 W, for the lowest pressure, and from 200 to 300 W, for the highest pressure. For each power condition the hydrogen concentration in the discharge gases ranged from 0 % to maximum 60 %. The substrates used were glassy carbon, for RBS characterization, oxidized silicon wafers for FTIR and IV measurements and glass plate for optical microscope and visible-ultraviolet spectroscopy absorption. The RBS characterization provided information about both the type and quantity of impurity incorporated during the deposition and the amorphous silicon superficial density that allowed obtaining the volumetric density by the utilization of the thickness parameter obtained by the profilometry technique. Through the analyses of the FTIR spectra the hydrogen incorporated could be quantified in the form of mono and poli silicon hydrides. The IV measurements were performed, through aluminum contacts evaporated on the films, to obtain the dark and photoconductivity and the films ultraviolet-visible absorption spectra. Through ultraviolet-visible analysis was possible to obtain both the optical energy gap values, by the Tauc method, and the B parameter, which is inversely proportional to the valence and conduction tail width. The B parameter increases with the defect density of the films. Thus, the films that showed the biggest photosensitivity (relation between the photoconductivity and dark conductivity) were deposited at 10 mTorr. These films showed a higher concentration of both SiH 2 and SiH 3 bonds but a lower concentration of total hydrogen incorporated, which contributed to the decrease of the density of states in the mobility band, probably due to the nucleation of crystals typical of films deposited by the magnetron sputtering system at high pressure and high hydrogen concentration. In this way the SiH 2 and SiH 3 would be in the grain boundary. So the films deposited at 10 mTorr showed almost null concentration of SiH bonds, but the highest photosensitivities.
22

Deposição de filmes finos de silício amorfo hidrogenado por sputtering reativo. / Deposition of hydrogenated amorphous silicon thin films by reactive sputtering.

Nunes, Carolina Carvalho Previdi 21 October 2010 (has links)
Neste trabalho filmes finos de silício amorfo hidrogenado (a-Si:H) foram depositados no reator magnetron sputtering do laboratório de sistemas integráveis (LSI), a temperaturas menores que 100 °C, pela introdução do gás hidrogênio junto com o de argônio para pulverização de um alvo de silício policristalino. As condições de deposição investigadas estão compreendidas em pressões totais de 5 e 10 mTorr para as quais a potência de RF variou de 150 a 300 W, para a menor pressão, e de 200 a 300 W, para a maior pressão, sendo que para cada condição de potência a concentração de hidrogênio nos gases de descarga variou de pelo menos 0 % a no máximo 60 %. Como os substratos utilizados foram carbono vítreo, lâminas oxidadas de silício e placas de vidro para microscópio óptico os filmes depositados sobre o carbono foram caracterizados por RBS, os depositados sobre as lâminas oxidadas de silício por FTIR e medidas IV e os depositados sobre o vidro por espectroscopia de absorção óptica na região do ultravioleta-visível. A caracterização RBS forneceu informações tanto sobre o tipo e quantidade de impurezas eventualmente incorporadas durante a deposição como sobre a densidade superficial do silício que permitiu a obtenção da densidade volumétrica pela utilização dos parâmetros de espessura obtidos pela técnica de perfilometria. Através da análise dos espectros FTIR o hidrogênio incorporado pode ser quantificado na forma de mono e polihidretos de silício. As medidas IV foram realizadas através de contatos de alumínio, evaporados sobre os filmes, para a obtenção tanto da condutividade de escuro como da fotocondutividade e a análise dos espectros de absorção óptica dos filmes permitiu a obtenção tanto dos valores de energia do gap óptico, pelo método Tauc, como do parâmetro B que é inversamente proporcional à largura da cauda das bandas de valência e de condução que por sua vez aumentam com o aumento da densidade de defeitos dos filmes. Desta forma os filmes que apresentaram as maiores fotosensibilidades (razão entre a fotocondutividade e a condutividade de escuro), consideradas para a escolha dos melhores resultados, foram os depositados a 10 mTorr uma vez que eles apresentam uma maior concentração tanto de ligações SiH 2 como de SiH 3 e menores concentrações totais de hidrogênio incorporado ao filme que os filmes depositados a 5 mTorr o que acabou contribuindo para a diminuição da densidades de estados localizados da banda de mobilidade, provavelmente devido a nucleação de cristais, o que ocorre tipicamente para filmes depositados por sistemas magnetron sputtering a grandes pressões totais e grandes pressões parciais de hidrogênio, estando, desta forma, tanto as ligações SiH 2 como SiH 3 situadas nos contornos de grão. Assim os filmes depositados a 10 mTorr apresentam concentrações quase nula de ligações SiH, mas as maiores fotosensibilidades. / In this work thin films of hydrogenated amorphous silicon (a-Si:H) were deposited in the magnetron sputtering reactor of the Laboratório de Sistemas Integráveis (LSI), at temperatures lower than 100 °C, by the introduction of hydrogen and argon gasses for the sputtering of a policrystalline silicon target. The deposition conditions investigated are total pressures of 5 and 10 mTorr for which the RF power varied from 150 to 300 W, for the lowest pressure, and from 200 to 300 W, for the highest pressure. For each power condition the hydrogen concentration in the discharge gases ranged from 0 % to maximum 60 %. The substrates used were glassy carbon, for RBS characterization, oxidized silicon wafers for FTIR and IV measurements and glass plate for optical microscope and visible-ultraviolet spectroscopy absorption. The RBS characterization provided information about both the type and quantity of impurity incorporated during the deposition and the amorphous silicon superficial density that allowed obtaining the volumetric density by the utilization of the thickness parameter obtained by the profilometry technique. Through the analyses of the FTIR spectra the hydrogen incorporated could be quantified in the form of mono and poli silicon hydrides. The IV measurements were performed, through aluminum contacts evaporated on the films, to obtain the dark and photoconductivity and the films ultraviolet-visible absorption spectra. Through ultraviolet-visible analysis was possible to obtain both the optical energy gap values, by the Tauc method, and the B parameter, which is inversely proportional to the valence and conduction tail width. The B parameter increases with the defect density of the films. Thus, the films that showed the biggest photosensitivity (relation between the photoconductivity and dark conductivity) were deposited at 10 mTorr. These films showed a higher concentration of both SiH 2 and SiH 3 bonds but a lower concentration of total hydrogen incorporated, which contributed to the decrease of the density of states in the mobility band, probably due to the nucleation of crystals typical of films deposited by the magnetron sputtering system at high pressure and high hydrogen concentration. In this way the SiH 2 and SiH 3 would be in the grain boundary. So the films deposited at 10 mTorr showed almost null concentration of SiH bonds, but the highest photosensitivities.
23

Elaboration et caractérisations de silicium polycristallin par cristallisation en phase liquide du silicium amorphe / Formation and characterizations of polycristalline silicon produced by liquid phase crystallization of amorphous silicon

Said-Bacar, Zabardjade 13 February 2012 (has links)
L’objectif de ce travail de thèse est l’élaboration du silicium polycristallin en phase liquide, sur substrat de verre borosilicate, en utilisant l’irradiation par laser continu de forte puissance d’un film de silicium amorphe. Des simulations numériques modélisant l’interaction laser-silicium amorphe ont été effectuées grâce à un modèle que nous avons développé sur l’outil COMSOL. Nous avons ainsi pu suivre l’évolution des transferts thermiques dans les différentes structures Si/verre irradiées par laser et ainsi pu évaluer l’impact des paramètres expérimentaux tels que la vitesse de balayage, la puissance du laser, la température du substrat sur les seuils de transition de phase du Si amorphe (fusion, cristallisation, évaporation). Ces résultats de simulation ont été confrontés à des données réelles obtenues en réalisant différentes expériences d’irradiation de films Si amorphe. Les résultats de cette comparaison ont été largement discutés. Dans une deuxième partie, nous avons étudié les propriétés structurales et morphologiques de films Si polycristallin obtenus par l’irradiation laser de films Si amorphe. En particulier, nous avons mis en évidence les effets de la présence d’impuretés tels que l’hydrogène ou l’argon présent dans les couches Si amorphe préalablement au traitement laser. Nous avons également montré que la croissance des cristaux silicium s’opère par épitaxie à partir d’un effet de gradient thermique latéral et longitudinal, produit respectivement par le profil énergétique du faisceau laser et la diffusion thermique par conduction, et par convection thermique dans la direction de balayage. L’optimisation des conditions opératoires nous a permis de réaliser des films Si polycristallin à larges grains, jusqu’à plusieurs centaines de µm de long sur plusieurs dizaines de µm de large. Ces structures sont très intéressantes pour des applications en électronique et en photovoltaïque. / The objective of this thesis is the elaboration of polycrystalline silicon, on borosilicate glass substrate, by a Continuous Wave laser annealing of amorphous silicon operating in the liquid phase regime. Numerical simulations of the laser-amorphous silicon interaction have been carried out using COMSOL tool. We were able to monitor the evolution of the heat transfer in the different laser irradiated Si/glass structures. Thus, we have evaluated the effects of experimental parameters such as the scan speed, the laser power, the substrate temperature on the phase transition thresholds (melting, crystallization, evaporation). The modeling data were compared to the experimental data obtained on laser irradiated amorphous Si films, and the results were thoroughly discussed. In a second part, we have investigated the structural and morphological properties of polysilicon films prepared by CW laser irradiation of different amorphous silicon. We have shown that the presence of impurities such as hydrogen or argon in the amorphous silicon affects strongly the quality of the formed polysilicon film. We also found that the Si crystal growth occurs epitaxially from lateral and longitudinal thermal gradient produced respectively by the laser beam profile and thermal conduction, and by thermal convection in the scanning direction. The optimization of the experimental procedure led to the formation of polysilicon films with large grains up to several hundred microns long and tens microns in width. Such materials are of great interest to electronic and photovoltaic devices.
24

Contribution à la caractérisation électrique et à la simulation numérique des cellules photovoltaïques silicium à hétérojonction / Contribution to the electrical characterization and to the numerical simulation of the silicon heterojunction solar cells

Lachaume, Raphaël 12 May 2014 (has links)
La technologie des cellules photovoltaïques silicium à hétérojonction (HET) a montré un intérêt croissant ces dernières années. En alliant les avantages des technologies couches minces et silicium cristallin (c-Si), elle permet un meilleur compromis coûts-performances que les cellules purement c-Si. Cette thèse a pour but d'améliorer la compréhension des mécanismes physiques qui régissent les performances de ces cellules, en mettant à profit des compétences spécifiques de caractérisation et de simulation issues de la microélectronique. Nos travaux se focalisent sur l'étude de la face avant de la cellule HET de type n, composée d'un empilement de couches minces d'oxyde d'indium dopé à l'étain (ITO) et de silicium amorphe hydrogéné (a-Si:H). Nous commençons par une étude théorique et expérimentale de la conduction des couches d'a-Si:H en fonction de la température, du dopage et des défauts qu'elles contiennent. Prendre en compte l'équilibre dopant/défaut de ces couches est primordial mais nous montrons aussi que le travail de sortie des électrodes en contact, comme l'ITO, peut influer fortement sur la position du niveau de Fermi dans les films nanométriques d'a-Si:H. Nous présentons ensuite une évaluation de sept techniques de caractérisation du travail de sortie afin d'identifier les plus adaptées à l'étude de semiconducteurs dégénérés tels que l'ITO. Nous montrons notamment l'intérêt de techniques originales de la microélectronique comme les mesures de capacité C(V), de courant de fuite I(V) et de photoémission interne (IPE) sur des empilements ITO/biseau d'oxyde/silicium. Nous mettons clairement en évidence que les propriétés volumiques de l'ITO peuvent être optimisées, mais que les interfaces ont un effet prépondérant sur les valeurs de travaux de sortie effectifs (EWF) extraits. Une bonne cohérence globale a été obtenue pour les techniques C(V), I(V) et IPE sur biseau de silice (SiO2) ; les valeurs extraites ont notamment permis d'expliquer des résultats expérimentaux d'optimisation des cellules. Nous montrons que la tension de circuit ouvert (Voc) des cellules est finalement peu sensible au travail de sortie, contrairement au Facteur de Forme (FF), grâce à la couche d'a-Si:H. Plus cette dernière est dopée, défectueuse et épaisse, plus elle est capable d'écranter les variations électrostatiques d'EWF. Aussi, le travail de sortie doit être suffisamment élevé pour pouvoir réduire les épaisseurs de couche p d'a-Si:H et ainsi gagner en courant de court-circuit (Jsc) sans perdre en FF ni Voc. Enfin, il nous a été possible d'appliquer cette méthodologie à d'autres oxydes transparents conducteurs (TCO) que l'ITO. Le meilleur candidat de remplacement de l'ITO doit non seulement présenter une transparence optique élevée, être un bon conducteur et avoir un fort travail de sortie effectif, mais il faut également prêter une attention particulière à la dégradation éventuelle des interfaces causée par les techniques de dépôt. / By combining the advantages of thin-films and crystalline silicon (c-Si), the silicon heterojunction solar cell technology (HET) achieves a better cost-performance compromise than the technology based only on c-Si. The aim of this thesis is to improve the understanding of the physical mechanisms which govern the performance of these cells by taking advantage of specific characterization and simulation skills taken from microelectronics. Our study focuses on the front-stack of the n type cell composed of thin layers of indium tin oxide (ITO) and hydrogenated amorphous silicon (a-Si:H). We begin with a theoretical and experimental study of the conductivity of a-Si:H layers as a function of temperature, doping concentration and bulk defects density. It is important to properly take into account the dopant/defect equilibrium of these layers but we also show that the work function of the electrodes in contact, such as the ITO, can strongly influence the Fermi level in the nano-films of a-Si:H. Then, we evaluate seven characterization techniques dedicated to the work function extraction in order to identify the most suitable one for studying degenerate semiconductors such as the ITO. We particularly show the interest of using original microelectronics techniques such as capacitance C(V), leakage current I(V) and internal photoemission (IPE) measurements on ITO/bevel oxide/silicon test structures. We clearly demonstrate that the ITO bulk properties can be optimized, yet the interfaces have a major influence on the extracted values of the effective work function (EWF). A good overall consistency has been obtained for C(V), I(V) and IPE measurements on a silicon dioxide bevel (SiO2) ; the extracted values enabled us to explain experimental results concerning the optimization of HET cells. We show that the open circuit voltage (Voc) of these devices is finally barely sensitive to work function, unlike the Fill Factor (FF). This is due to the a-Si:H layer. The more it is doped, defective and thick, the more it is able to screen the electrostatic variations of EWF. Thus, EWF must be sufficiently high to be able to reduce the p a-Si:H layer thickness and, in turn, to gain in short-circuit current (Jsc) without losing either in FF or Voc. Finally, we successfully applied this methodology to other types of transparent conductive oxides (TCO) differing from ITO. The best candidate to replace ITO must not only have a high optical transparency, be a good conductor and have a high EWF, but we must also pay close attention to the possible interface degradations caused by the deposition techniques.
25

Amélioration de la passivation de cellules solaires de silicium à hétérojonction grâce à l’implantation ionique et aux recuits thermiques / Robust passivation of silicon heterojunction solar cells thanks to the ion implantation and thermal annealing

Defresne, Alice 07 December 2016 (has links)
Les cellules solaires à hétérojonction a-Si:H/c-Si atteignent un rendement record de 24.7% en laboratoire. La passivation de la surface du c-Si est la clé pour obtenir de hauts rendements. En effet, la brusque discontinuité de la structure cristalline à l'interface amorphe/cristal induit une forte densité de liaisons pendantes créant une grande densité de défauts dans la bande interdite. Ces défauts sont des centres de recombinaison pour les paires électron-trou photogénérées dans le c-Si. Différentes couches diélectriques peuvent être utilisées pour passiver les wafers dopés n et dopés p : (i) le SiO₂ réalisé par croissance thermique, (ii) l’Al₂O₃ déposé par ALD, (iii) le a-SiNₓ:H et l’a-Si:H déposés par PECVD. La couche de passivation la plus polyvalente est a Si:H puisqu’elle peut passiver aussi bien les wafers dopés n que ceux dopés p. De plus sa production est peu coûteuse en énergie car sa croissance est réalisée à une température d’environ 200°C. L’inconvénient de cette couche de passivation est que lorsqu’elle est dopée p elle ne supporte pas des températures supérieures à 200°C, en raison de l’exodiffusion des atomes d’hydrogène qu’elle contient. Cependant, afin d'avoir un bon contact électrique, TCO et électrodes métalliques, il est souhaitable de recuire à plus haute température (entre 300°C et 500°C). Nous avons implanté des ions Argon de façon contrôlée dans des précurseurs de cellules solaires à des énergies comprises entre 1 et 30 keV, pour contrôler la profondeur à laquelle nous créons les défauts. En variant la fluence entre 10¹² Ar.cm⁻² et 10¹⁵ Ar.cm⁻² nous contrôlons la concentration de défauts créés. Nous montrons qu’une implantation à une énergie de 5 keV avec une fluence de 10¹⁵ Ar.cm⁻² n’est pas suffisante pour endommager l’interface a-Si:H/c-Si. La durée de vie effective des porteurs minoritaires mesurée par photoconductance (temps de décroissance de la photoconductivité) passe de 3 ms à 2,9 ms après implantation. En revanche les implantations à 10 keV, 10¹⁴ Ar.cm⁻² ou à 17 keV, 10¹² Ar.cm⁻² sont suffisantes pour dégrader la durée de vie effective de plus de 85%. Suite aux implantations les cellules solaires ont subi des recuits sous atmosphère contrôlée à différentes températures et ce jusqu’à 420°C. Nous avons découvert que le recuit permet de guérir les défauts introduits par l’implantation. Mais surtout, dans certains cas, d’obtenir des durées de vie après implantation et recuit supérieures aux durées de vies initiales. En combinant l’implantation ionique et les recuits, nous conservons de bonnes durées de vies effectives des porteurs de charges (supérieures à 2 ms) même avec des recuits jusqu’à 380°C. Nous avons utilisé une grande variété de techniques telles que la photoconductance, la photoluminescence, l’ellipsométrie spectroscopique, la microscopie électronique en transmission, la Spectroscopie de Masse d’Ions Secondaires, la spectroscopie Raman et l’exodiffusion de l’hydrogène pour caractériser et analyser l’ensemble des résultats et phénomènes physico-chimique intervenant dans la modification des précurseur de cellules solaires. Nous discutons ici de plusieurs effets tels que l’augmentation de la durée de vie et la tenue en température par la conservation de l’hydrogène dans la couche de silicium amorphe et ceci même après les recuits. Cette conservation peut s’expliquer par l’augmentation du nombre de liaisons Si-H au sein du silicium amorphe et par la formation de cavités lors de l’implantation. Durant les recuits l’hydrogène qui diffuse est piégé puis libéré par les cavités et/ou les liaisons pendantes, ce qui limite son exo-diffusion et le rend de nouveau disponible pour la passivation des liaisons pendantes. / A-Si:H/c-Si heterojunction solar cells have reached record efficiencies of 24.7%. The passivation of c-Si is the key to achieve a high-efficiency. Indeed, the abrupt discontinuity in the crystal structure at the amorphous/crystal interface induces a high density of dangling bonds creating a high density of defects in the band gap. These defects act as recombination centers for electron-hole pairs photogenerated in c-Si. Several dielectric layers can be used to passivate n-type and p-type wafers: (i) SiO₂ produced by thermal growth, (ii) Al₂O₃ deposited by ALD, (iii) a-SiNₓ:H and a-Si:H deposited by PECVD. The most versatile passivation layer is a-Si: H because it is effective for both p-type and n-type wafers. In addition, this process has a low thermal budget since the deposition is made at 200°C. The drawback of this passivation layer, in particular when p-type doped, is that it does not withstand temperatures above 200°C. However, in order to have a good electrical contact, TCO and metal electrodes require high temperature annealing (between 300°C and 500°C).We implanted Argon ions in solar cell precursors with energies between 1 and 30 keV, which allows to control the depth to which we are creating defects. By varying the fluence between 10¹² Ar.cm⁻² and 10¹⁵ Ar.cm⁻² we control the concentration of defects. We show that implantation with an energy of 5 keV and a fluence of 10¹⁵ Ar.cm⁻² is not sufficient to damage the a-Si:H/c-Si interface. The effective lifetime of the minority charge carriers, measured using a photoconductance technique (decay time of photoconductivity), decreases only from 3 ms to 2.9 ms after implantation. On the other hand the implantations at 10 keV, 10¹⁴ Ar.cm⁻² or at 17 keV, 10¹² Ar.cm⁻² are sufficient to degrade the effective lifetime by more than 85%.Following implantation the solar cells have been annealed in a controlled atmosphere at different temperatures and this up to 420°C. We show that annealing can heal the implantation defects. Moreover, under certain conditions, we obtain lifetimes after implantation and annealing greater than the initial effective lifetime. Combining ion implantation and annealing leads to robust passivation with effective carrier lifetimes above 2 ms even after annealing our solar cell precursors at 380°C. We used a large variety of techniques such as photoconductance, photoluminescence, spectroscopic ellipsometry, Transmission Electron Microscopy, Secondary Ion Mass Spectrometry, Raman spectroscopy and hydrogen exodiffusion to characterize and analyze the physico-chemical phenomena involved in the modification of solar cells precursors. We discuss here several effects such as the increase of the effective lifetime and the temperature robustness by the preservation of hydrogen in amorphous silicon layer and this even after annealing. This hydrogen preservation can be explained by the increase of the number of Si–H bonds in amorphous silicon and the formation of cavities during implantation. In the course of annealing the hydrogen which diffuses is trapped and then released by cavities and dangling bonds, which limits its exodiffusion and makes it available for dangling bonds passivation.
26

Élaboration de carbure de silicium amorphe hydrogéné par PECVD : Optimisation des propriétés optiques, structurales et passivantes pour des applications photovoltaïques / Study of amorphous hydrogenated silicon carbide deposited by PECVD technique : Optimization of optical, structural and passivating properties for photovoltaic applications

Gaufrès, Aurélien 14 January 2014 (has links)
Notre étude concerne la mise en place et le développement de dépôts de carbure de silicium amorphe hydrogéné (a-SiCx:H) à basse température (370°C), par voie PECVD, sur un réacteur PECVD semi-industriel à faible fréquence (440 kHz). Les propriétés chimiques, optiques et de passivation de surface des couches déposées sont analysées et l’impact du changement des débits de gaz précurseurs (silane et méthane) est aussi étudié. La possibilité d’utiliser le a-SiCx:H comme couche anti-reflet en face avant d’une cellule solaire est envisagée. Bien que l’indice de réfraction d’une couche riche en carbone soit en accord avec la condition de lame quart-d’onde requise pour une couche anti-reflet, le coefficient d’extinction est trop élevé en raison de la proportion significative de silicium dans la couche. Cette absorption peut être atténuée par l’incorporation d’azote dans la couche (a-SiCxNy:H). En revanche, la passivation de surface s’améliore lorsque la quantité de silane augmente. La plus faible vitesse de recombinaison de surface atteinte sur les échantillons après dépôt est de 10 cm.s. / Our study deals with the deposition of amorphous hydrogenated silicon carbide (a- SiCx:H) at low temperature (370°C), by PECVD technique, using a semi-industrial lowfrequency PECVD reactor (440 kHz). The deposited films are analyzed for chemical, optical and surface passivation properties, and the impact of the gas flow parameters (silane and methane) is studied. The possible use of a-SiCx:H as an antireflective coating at the front side of solar cells is investigated. Although the refractive index for high carbon concentration could be in agreement with the demand of quarter-wave layer for antireflective coating, the extinction coefficient remains too high due to a significant silicon content in the material. This absorption can be attenuated by incorporating nitrogen in the layer. However, the surface passivation improves with the silane proportion. The lowest surface recombination velocity of an as-deposited samples is about 10 cm.s.
27

Charakterisierung von a-Si:H/c-Si-Heterokontakten und dünnen Schichten aus hydrogenisiertem amorphem Silizium, hergestellt mittels gepulstem DC-Magnetronsputtern

Nobis, Frank 17 December 2013 (has links) (PDF)
Dünne Schichten aus hydrogenisiertem amorphem Silizium a-Si:H spielen für die Photovoltaik eine wichtige Rolle. Einerseits kommt für die Dünnschicht-Photovoltaik unterschiedlich dotiertes a-Si:H in den Schichten einer p-i-n-Solarzelle zur Anwendung, andererseits stellen Heterokontakt-Solarzellen aus amorphem und kristallinem Silizium (a-Si:H/c-Si) wegen ihres hohen Wirkungsgrades derzeit ein sehr aktuelles Forschungsthema dar. Die Abscheidung der a-Si:H-Schichten im Rahmen dieser Arbeit erfolgt mit der Methode des Magnetronsputterns (Kathodenzerstäubung). Dieses für die in-line-Beschichtung etablierte Verfahren wird speziell für die Photovoltaik noch nicht in industriellem Maßstab eingesetzt (lediglich für transparente leitfähige Oxide TCO). Insbesondere existiert nur eine geringe Zahl von Veröffentlichungen zu Heterokontakten, welche mittels Magnetronsputtern hergestellt wurden. Ein Schwerpunkt der vorliegenden Arbeit ist daher die Herstellung sowie Charakterisierung solcher Heterokontakte unter dem Aspekt variierter Abscheide- und Prozessparameter (Substrattemperatur, Wasserstoffflussrate, Ionenbeschuss). Das für das Sputtern erforderliche Plasma wird mit einer im Mittelfrequenzbereich gepulsten Gleichspannung angeregt. Ein dadurch mehr oder weniger ausgeprägter Ionenbeschuss der wachsenden Schichten in Abhängigkeit der Pulsparameter wird hier analysiert. Die Charakterisierung der Heterokontakte erfolgt hauptsächlich anhand deren Strom-Spannung-Kennlinien, welche auch bei variierter Temperatur gemessen werden. Erzielte Gleichrichtungsverhältnisse um 10000:1 sowie Diodenidealitätsfaktoren η ≈ 1,3 kennzeichnen (p)a-Si:H/(n)c-Si-Heterokontakte mit den besten halbleiterphysikalischen Eigenschaften. Bei zu schwacher Schichthydrogenisierung wurde ein Ladungstransportmechanismus nachgewiesen, welcher in der Literatur als multi-tunneling capture-emission MTCE bekannt ist. Eine erhöhte Hydrogenisierung unterdrückt diesen Mechanismus nahezu vollständig. Durch Abscheidung unterschiedlich stark bordotierter a-Si:H-Schichten wird außerdem die Dotiereffizienz beurteilt. Hohe Werte sind bei amorphen Halbleitern im Allgemeinen schwer zu erreichen. Die mit stärkerer Dotierung erhöhte Gleichrichterwirkung lieferte hier ein Indiz für eine nachweisbare Dotiereffizienz.
28

Macroscopic and Microscopic surface features of Hydrogenated silicon thin films

Pepenene, Refuoe Donald January 2018 (has links)
Magister Scientiae - MSc (Physics) / An increasing energy demand and growing environmental concerns regarding the use of fossil fuels in South Africa has led to the challenge to explore cheap, alternative sources of energy. The generation of electricity from Photovoltaic (PV) devices such as solar cells is currently seen as a viable alternative source of clean energy. As such, crystalline, amorphous and nanocrystalline silicon thin films are expected to play increasingly important roles as economically viable materials for PV development. Despite the growing interest shown in these materials, challenges such as the partial understanding of standardized measurement protocols, and the relationship between the structure and optoelectronic properties still need to be overcome.
29

Interfacial Electrochemistry of Cu/Al Alloys for IC Packaging and Chemical Bonding Characterization of Boron Doped Hydrogenated Amorphous Silicon Films for Infrared Cameras

Ross, Nick 05 1900 (has links)
We focused on a non-cooling room temperature microbolometer infrared imaging array device which includes a sensing layer of p-type a-Si:H component layers doped with boron. Boron incorporation and bonding configuration were investigated for a-Si:H films grown by plasma enhanced chemical deposition (PECVD) at varying substrate temperatures, hydrogen dilution of the silane precursor, and dopant to silane ratio using multiple internal reflection infrared spectroscopy (MIR-IR). This study was then confirmed from collaborators via Raman spectroscopy. MIR-IR analyses reveal an interesting counter-balance relationship between boron-doping and hydrogen-dilution growth parameters in PECVD-grown a-Si:H. Specifically, an increase in the hydrogen dilution ratio (H2/SiH4) or substrate temperature was found to increase organization of the silicon lattice in the amorphous films. It resulted in the decrease of the most stable SiH bonding configuration and thus decrease the organization of the film. The new chemical bonding information of a-Si:H thin film was correlated with the various boron doping mechanisms proposed by theoretical calculations. The study revealed the corrosion morphology progression on aluminum alloy (Al, 0.5% Cu) under acidic chloride solution. This is due to defects and a higher copper content at the grain boundary. Direct galvanic current measurement, linear sweep voltammetry (LSV), and Tafel plots are used to measure corrosion current and potential. Hydrogen gas evolution was also observed (for the first time) in Cu/Al bimetallic interface in areas of active corrosion. Mechanistic insight that leads to effective prevention of aluminum bond pad corrosion is explored and discussed. (Chapter 4) Aluminum bond pad corrosion activity and mechanistic insight at a Cu/Al bimetallic interface typically used in microelectronic packages for automotive applications were investigated by means of optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electrochemistry. Screening of corrosion variables (temperature, moisture, chloride ion concentration, pH) have been investigated to find their effect on corrosion rate and to better understand the Al/Cu bimetallic corrosion mechanism. The study revealed the corrosion morphology progression on aluminum alloy (Al, 0.5% Cu) under acidic chloride solution. The corrosion starts as surface roughening which evolves into a dendrite structure and later continues to grow into a mud-crack type corrosion. SEM showed the early stage of corrosion with dendritic formation usually occurs at the grain boundary. This is due to defects and a higher copper content at the grain boundary. The impact of copper bimetallic contact on aluminum corrosion was explored by sputtering copper microdots on aluminum substrate. Copper micropattern screening revealed that the corrosion is activated on the Al/Cu interface area and driven by the large potential difference; it was also seen to proceed at much higher rates than those observed with bare aluminum. Direct galvanic current measurement, linear sweep voltammetry (LSV), and Tafel plots are used to measure corrosion current and potential. Hydrogen gas evolution was also observed (for the first time) in Cu/Al bimetallic interface in areas of active corrosion. Mechanistic insight that leads to effective prevention of aluminum bond pad corrosion is explored and discussed. Micropattern corrosion screening identified hydrogen evolution and bimetallic interface as the root cause of Al pad corrosion that leads to Cu ball lift-off, a fatal defect, in Cu wire bonded device. Complete corrosion inhibition can be achieved by strategically disabling the mutually coupled cathodic and anodic reaction cycles.
30

Charakterisierung von a-Si:H/c-Si-Heterokontakten und dünnen Schichten aus hydrogenisiertem amorphem Silizium, hergestellt mittels gepulstem DC-Magnetronsputtern

Nobis, Frank 17 September 2013 (has links)
Dünne Schichten aus hydrogenisiertem amorphem Silizium a-Si:H spielen für die Photovoltaik eine wichtige Rolle. Einerseits kommt für die Dünnschicht-Photovoltaik unterschiedlich dotiertes a-Si:H in den Schichten einer p-i-n-Solarzelle zur Anwendung, andererseits stellen Heterokontakt-Solarzellen aus amorphem und kristallinem Silizium (a-Si:H/c-Si) wegen ihres hohen Wirkungsgrades derzeit ein sehr aktuelles Forschungsthema dar. Die Abscheidung der a-Si:H-Schichten im Rahmen dieser Arbeit erfolgt mit der Methode des Magnetronsputterns (Kathodenzerstäubung). Dieses für die in-line-Beschichtung etablierte Verfahren wird speziell für die Photovoltaik noch nicht in industriellem Maßstab eingesetzt (lediglich für transparente leitfähige Oxide TCO). Insbesondere existiert nur eine geringe Zahl von Veröffentlichungen zu Heterokontakten, welche mittels Magnetronsputtern hergestellt wurden. Ein Schwerpunkt der vorliegenden Arbeit ist daher die Herstellung sowie Charakterisierung solcher Heterokontakte unter dem Aspekt variierter Abscheide- und Prozessparameter (Substrattemperatur, Wasserstoffflussrate, Ionenbeschuss). Das für das Sputtern erforderliche Plasma wird mit einer im Mittelfrequenzbereich gepulsten Gleichspannung angeregt. Ein dadurch mehr oder weniger ausgeprägter Ionenbeschuss der wachsenden Schichten in Abhängigkeit der Pulsparameter wird hier analysiert. Die Charakterisierung der Heterokontakte erfolgt hauptsächlich anhand deren Strom-Spannung-Kennlinien, welche auch bei variierter Temperatur gemessen werden. Erzielte Gleichrichtungsverhältnisse um 10000:1 sowie Diodenidealitätsfaktoren η ≈ 1,3 kennzeichnen (p)a-Si:H/(n)c-Si-Heterokontakte mit den besten halbleiterphysikalischen Eigenschaften. Bei zu schwacher Schichthydrogenisierung wurde ein Ladungstransportmechanismus nachgewiesen, welcher in der Literatur als multi-tunneling capture-emission MTCE bekannt ist. Eine erhöhte Hydrogenisierung unterdrückt diesen Mechanismus nahezu vollständig. Durch Abscheidung unterschiedlich stark bordotierter a-Si:H-Schichten wird außerdem die Dotiereffizienz beurteilt. Hohe Werte sind bei amorphen Halbleitern im Allgemeinen schwer zu erreichen. Die mit stärkerer Dotierung erhöhte Gleichrichterwirkung lieferte hier ein Indiz für eine nachweisbare Dotiereffizienz.

Page generated in 0.0643 seconds