• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 14
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Polymeric Monolithic Stationary Phases for Capillary Hydrophobic Interaction Chromatography

Li, Yuanyuan 06 October 2010 (has links) (PDF)
Rigid poly[hydroxyethyl acrylate-co-poly(ethylene glycol) diacrylate] (Poly(HEA-co-PEGDA) monoliths were synthesized inside 75-µm i.d. capillaries by one-step UV-initiated copolymerization using methanol and ethyl ether as porogens. The optimized monolithic column was evaluated for hydrophobic interaction chromatography (HIC) of standard proteins. Six proteins were separated within 20 min with high resolution using a 20 min elution gradient, resulting in a peak capacity of 54. The performance of this monolithic column for HIC was comparable or superior to the performance of columns packed with small particles. Monoliths synthesized solely from PEGDA were also found to show excellent performance in HIC of proteins. Continuing efforts showed that rigid monoliths could be synthesized from PEGDA or poly(ethylene glycol) dimethacrylates (PEGDMA) containing different ethylene glycol chain lengths for HIC of proteins. Effects of PEG chain length, bi-porogen ratio and reaction temperature on monolith morphology and back pressure were investigated. Monoliths prepared from PEGDA 258 were found to provide the best chromatographic performance with respect to peak capacity and resolution. An optimized PEGDA 258 monolithic column was able to separate proteins using a 20-min elution gradient with a peak capacity of 62. The preparation of these in situ polymerized single-monomer monolithic columns was highly reproducible. The single-monomer synthesis approach clearly improves column-to-column reproducibility.The highly crosslinked monolith networks resulting from single crosslinking monomers were found to enhance the surface area of the monolith and concentrations of mesopores. Thus, monolithic columns were developed from four additional crosslinking monomers, i.e., bisphenol A dimethacrylate (BADMA), bisphenol A ethoxylate diacrylate (BAEDA, EO/phenol = 2 or 4) and pentaerythritol diacrylate monostearate (PDAM) for RPLC of small molecules. Gradient elution of alkyl benzenes and alkyl parabens was achieved with high resolution using all monolithic columns. Porogen selection for the BADMA and PDAM was investigated in detail with the intention of obtaining data that could possiblly lead to a rational method for porogen selection.
22

MEMBRANE AND TEMPERATURE BASED METHODS FOR PROCESSING AND PURIFYING MONOCLONAL ANTIBODIES

Sadavarte, Hemant Rahul 04 1900 (has links)
<p>Monoclonal antibodies (mAbs) as therapeutic proteins have shown great potential in treatment of various human diseases because of their highly specific nature. This has attracted worldwide attention leading to increased demand for such mAb products. To meet this demand large scale manufacturing is carried out using recombinant mammalian cell culture techniques for high yields and faster production. mAb products are worth the investment if produced in their native state. The quantity of mAb present in such cell cultures is very less and therefore special care is needed while handling them. Purifying antibody molecules from heterogeneous cell culture impurities and maintaining their native functional state is a critical task mainly because these antibodies are labile in nature. Care also need to be exercised during processing because mAbs have inherent tendancy to aggregate which is undesirable since such aggregates in antibody formulation produces immunogenic reaction when injected in humans. The other important factor in mAb purification is the processing cost involved since majority of the total production cost is utilized for purification of mAb. Protein-A chromatography is the first choice for purifying antibodies and is widely adopted. However failure in distinguishing between monomer and aggregate antibody molecules along with harsh acidic processing conditions necessitates the use of further purification steps.</p> <p>In this work various techniques for mAb processing are discussed and are outlined below:</p> <p>Removal of impurities from mAbs is a major challenge and this thesis discusses various processing options available to purify these mAbs. Impurities in mAb products are usually the aggregate byproducts formed due to unfolded monomer antibody molecules. These molecules are naturally hydrophobic in nature and display great differences in hydrophobicity on aggregation. Hydrophobic interaction membrane chromatography (HIMC) makes use of this hydrophobicity difference and helps in removal of aggregate impurities from monomer antibody.</p> <p>Heavy chain mAbs (hcmAbs) are promising new developments in the area of biopharmaceuticals because of their unique structural composition. Similar to conventional mAbs these hcmAbs are also rapidly finding their way into therapeutic markets. Purifying hcmAbs will be an important step in their development and for this purpose we use HIMC technique for removing impurities and obtain pure product.</p> <p>Antibody molecules are almost always lost as aggregates which leads to great economic losses and the ability to disaggregate these mAb oligomers would be of significant practical and scientific interest. In this work a novel thermalcycling technique is discussed to disaggregate such mAb oligomers and potentially recover functional monomer mAb molecules.</p> / Master of Applied Science (MASc)
23

Interactions between non-polar surfaces in water: Fokus on talc, pitch and surface roughness effects

Wallqvist, Viveca January 2009 (has links)
The aim of this thesis work was to gain understanding of the interactions between talc mineral and surfaces, liquids and chemicals relevant for industrial applications, such as pulp and paper. Talc is used in the pulp and paper industry as a filler pigment, in control of pitch (lipophilic extractives) deposits and as a coating pigment. A deeper understanding of talc interactions will be beneficial in optimizing its use. Long-range attractive interactions between talc and hydrophobic model probes, as well as pitch probes, have been measured using the atomic force microscope (AFM) colloidal probe method. Two procedures for preparation of pitch colloidal probes were developed to allow these studies. Model hydrophobic, nanorough surfaces with surface energy characteristics similar to talc have also been prepared and their interactions with hydrophobic model probes compared to interactions between hydrophobic model probes and talc. It is demonstrated that talc mineral interacts with model hydrophobic particles, as well as with pitch, by long-range attractive forces, considerably stronger than the expected van der Waals force. The possible origin of the measured interaction forces is discussed, and the conclusion is that the main cause is an attractive capillary force due to formation of a gas/vapor capillary between the surfaces. Force measurements using model hydrophobic, nanorough surfaces show that a large-scale waviness does not significantly influence the range and magnitude of the capillary attraction, but large local variations in these quantities are found. It is demonstrated that a large variation in adhesion force corresponds to a small variation in local contact angle of the capillaries at the surfaces. The nature of the surface topographical features influences the capillary attraction by affecting the local contact angle and by pinning of the three-phase contact line. The effect is clearly dependent on the size of the surface features and whether they exist in the form of crevices or as extending ridges. Entrapment of air also affects the imbibition of water in pressed talc tablets. The effects of wetting and dispersion agents on the interactions between talc and hydrophobic probes have also been investigated. It is demonstrated that a common dispersing agent used for talc, poly(acrylic acid), does not affect the capillary attraction between talc and non-polar probes. In fact, the results strongly suggest that poly(acrylic acid) does not adsorb on the basal plane of talc. From this finding it is inferred that the stabilizing effect of this additive most likely is due to adsorption to the edges of talc. In contrast, a wetting agent (the non-ionic triblock copolymer Pluronic PE6400) removes the long-range capillary attraction. It is suggested that such an ability to replace air at the talc surface is of great importance for an efficient wetting agent. The Hamaker constant for talc has also been estimated by using optical data obtained from spectroscopic ellipsometry. It is demonstrated that a nanocrystalline talc mineral, cut in different directions displays very small differences in Hamaker constant between the different crystallographic orientations, whereas a microcrystalline sample displays a significantly higher value. The estimated Hamaker constants are discussed for different material combinations of relevance for the pulp- and paper industry, such as cellulose and calcium carbonate. / Målet med detta avhandlingsarbete var att öka förståelsen för interaktioner mellan talkmineral och ytor, vätskor och kemikalier relevanta för industriella applikationer, såsom papper och massa. Talk används i pappers- och massaindustrin som fyllmedel, för kontroll av hartsrika (lipofila extraktivämnen) avsättningar och som bestrykningspigment. En djupare förståelse för talkinteraktioner kommer att vara användbart för att optimera dess användning. Långväga attraktiva interaktioner mellan talk och hydrofoba modellpartiklar, såväl som mellan talk och hartspartiklar, har uppmätts med hjälp av atomkraftsmikroskopi (AFM) genom att fästa kolloidala partiklar på kraftsensorn. Två metoder för att framställa partiklar gjorda av harts har utvecklats för att möjliggöra dessa studier. Hydrofoba, nanostrukturerade modellytor med ytenergier liknande de för talk har också tillverkats och deras växelverkan med hydrofoba modellpartiklar har jämförts med dem mellan talk och hydrofoba modellpartiklar. Studierna visar att talkmineral växelverkar med hydrofoba modellpartiklar, såväl som med harts, genom långväga attraktiva krafter som är betydligt starkare än den förväntade van der Waals kraften. Möjliga orsaker till de uppmätta växelverkanskrafterna diskuteras och slutsatsen blir att huvudorsaken är en attraktiv kapillärkraft som uppkommer genom att en gas-/ångkapillär bildas mellan ytorna. Kraftmätningar gjorda med hydrofoba nanostrukturerade modellytor visar att en storskalig vågighet inte nämnvärt påverkar storleken av kapillärattraktionen, men stora lokala variationer existerar. Det demonstreras att en stor variation i adhesionskraft motsvaras av en liten variation i lokal kontaktvinkel för kapillärerna på ytorna. Ytornas topografi påverkar kapillärattraktionen genom att påverka den lokala kontaktvinkeln samt genom att trefaskontaktlinjen inte kan röra sig fritt över ytan. Effekten är tydligt beroende av huruvida ytojämnheterna existerar i form av nedsänkningar eller upphöjningar. Instängd luft påverkar också pressade talktabletters uppsugningsförmåga av vatten. Vätnings- och dispergeringsmedels inverkan på växelverkan mellan talk och hydrofoba partiklar har undersökts. Resultaten visar att ett vanligt dispergeringsmedel för talk, polyakrylsyra, inte påverkar kapillärattraktionen. I själva verket tyder data på att polyakrylsyra inte adsorberas på talks basalplan. Utifrån dessa resultat dras slutsatsen att polyakrylsyra stabiliserar talkdispersioner genom att adsorbera på talkkanterna. Ett vanligt vätmedel (nonjonisk triblock sampolymer Pluronic PE6400) tar å andra sidan bort långväga kapillärattraktion. Detta antyder att egenskapen att ersätta luft på talkytan är av stor betydelse för effektiva vätmedel. Hamakerkonstanten för talk har uppskattats genom att utnyttja optiska data från ellipsometrimätningar. Det demonstreras att ett nanokristallint talkmineral kapat i olika riktningar uppvisar mycket små skillnader i Hamakerkonstant mellan de olika kristallografiska orienteringarna, medan ett mikrokristallint prov uppvisar ett betydligt högre värde. De beräknade Hamakerkonstanterna diskuteras för olika materialkombinationer relevanta för pappersindustrin, såsom cellulosa och kalciumkarbonat. / QC 20100813
24

Expression of human α-N-Acetylglucosaminidase in Sf9 insect cells: effect of cryptic splice site removal and native secretion-signaling peptide addition.

Jantzen, Roni Rebecca 15 August 2011 (has links)
Human α-N-Acetylglucosaminidase (Naglu) is a lysosomal acid hydrolase implicated in tthe rare metabolic storage disorder known as mucopolysaccharidosis type IIIB (MPS IIIB; also Sanfilippo syndrome B). Absence of this enzyme results in cytotoxic accumulation of heparan sulphate in the central nervous system, causing mental retardation and a shortened lifespan. Enzyme replacement therapy is not currently effective to treat neurological symptoms due to the inability of exogenous Naglu to access the brain. This laboratory uses a Spodoptera frugiperda (Sf9) insect cell system to express Naglu fused to a synthetic protein transduction domain with the intent to facilitate delivery of Naglu across the blood-brain barrier. The project described herein may be broken down into three main sections. Firstly, the impact of two cryptic splice sites on Naglu expression levels was analyzed in both transiently expressing Sf9 cultures and stably selected cell lines. Secondly, the effectiveness of the native Naglu secretion-signaling peptide in the Sf9 system was examined. Finally, purification of a Naglu fusion protein from suspension culture medium was performed using hydrophobic interaction chromatographic techniques. The ultimate goal of this research is to develop an efficient system for economical, large-scale production of a human recombinant Naglu fusion protein that has the potential to be successfully used for enzyme replacement therapy to treat MPS IIIB. / Graduate

Page generated in 0.0995 seconds