• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 12
  • 3
  • 1
  • Tagged with
  • 33
  • 33
  • 13
  • 13
  • 11
  • 11
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Espectro essencial de uma classe de variedades riemannianas / Essential spectrum of a class of Riemannian manifolds

Luiz AntÃnio Caetano Monte 21 November 2012 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Neste trabalho, provaremos alguns resultados sobre espectro essencial de uma classe de variedades Riemannianas, nÃo necessariamente completas, com condiÃÃes de curvatura na vizinhanÃa de um raio. Sobre essas condiÃÃes obtemos que o espectro essencial do operador de Laplace contÃm um intervalo. Como aplicaÃÃo, obteremos o espectro do operador de Laplace de regiÃes ilimitadas dos espaÃos formas, tais como a horobola do espaÃo hiperbÃlico e cones do espaÃo Euclidiano. Construiremos tambÃm um exemplo que indica a necessidade das condiÃÃes globais sobre o supremo das curvaturas seccionais fora de uma bola para que a variedade nÃo tenha espectro essencial. / In this thesis we consider a family of Riemannian manifolds, not necessarily complete, with curvature conditions in a neighborhood of a ray. Under these conditions we obtain that the essential spectrum of the Laplace operator contains an interval. The results presented in this thesis allow to determine the spectrum of the Laplace operator on unlimited regions of space forms, such as horoball in hyperbolic space and cones in Euclidean space. Also construct an example that shows the need of global conditions on the supreme sectional curvature outside a ball, so that the variety has no essential spectrum.
22

Quasi-isometries between hyperbolic metric spaces, quantitative aspects

Shchur, Vladimir 08 July 2013 (has links) (PDF)
In this thesis we discuss possible ways to give quantitative measurement for two spaces not being quasi-isometric. From this quantitative point of view, we reconsider the definition of quasi-isometries and propose a notion of ''quasi-isometric distortion growth'' between two metric spaces. We revise our article [32] where an optimal upper-bound for Morse Lemma is given, together with the dual variant which we call Anti-Morse Lemma, and their applications.Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic metric spaces. In this class, $L^p$-cohomology spaces provides useful quasi-isometry invariants and Poincaré constants of balls are their quantitative incarnation. We study how Poincaré constants are transported by quasi-isometries. For this, we introduce the notion of a cross-kernel. We calculate Poincaré constants for locally homogeneous metrics of the form $dt^2+\sum_ie^{2\mu_it}dx_i^2$, and give a lower bound on quasi-isometric distortion growth among such spaces.This allows us to give examples of different quasi-isometric distortion growths, including a sublinear one (logarithmic).
23

Hipersuperfícies no espaço hiperbólico associadas à equação da curvatura escalar constante / Hypersurfaces in hyperbolic space associated with a conformai scalar curvature equation

Machado, Cid Dias Ferraz 07 March 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-01-13T11:21:20Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Cid Dias Ferraz Machado - 2014.pdf: 1785087 bytes, checksum: 2f0dd6f0844c3aa992b9eaf248f40ed4 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-01-13T11:22:09Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Cid Dias Ferraz Machado - 2014.pdf: 1785087 bytes, checksum: 2f0dd6f0844c3aa992b9eaf248f40ed4 (MD5) / Made available in DSpace on 2015-01-13T11:22:10Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Cid Dias Ferraz Machado - 2014.pdf: 1785087 bytes, checksum: 2f0dd6f0844c3aa992b9eaf248f40ed4 (MD5) Previous issue date: 2014-03-07 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we present a study of a class of oriented hypersurfaces in hyperbolic space satisfying a special linear relation between the rth mean curvatures which is based on a Walterson Ferreira and Pedro Roitman’s article, where this class is characterized by a harmonic map derived from the two hyperbolic Gauss maps.We also show the relation of such hypersufaces with solutions of the equation Du+kun+2 n􀀀2 = 0, where k 2 f􀀀1;0;1g. / Neste trabalho apresentamos um estudo de uma classe de hipersuperfícies orientadas no espaço hiperbólico satisfazendo uma relação linear especial entre as r-ésimas curvaturas médias, baseado no trabalho de Walterson Ferreira e Pedro Roitman, onde esta classe é caracterizada por uma aplicação harmônica derivada das duas aplicações hiperbólicas de Gauss. Também mostramos a relação de tais hipersuperfícies com as soluções da equação Du+kun+2 n􀀀2 = 0, onde k 2 f􀀀1;0;1g.
24

Superfícies isocurvadas no semiespaço Euclidiano tridimensional / Isocurved surfaces in Euclidean three-dimensional half-space

García, Hector Andrés Rosero 31 March 2017 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-04-24T22:03:45Z No. of bitstreams: 2 Dissertação - Hector Andrés Rosero García - 2017.pdf: 4670148 bytes, checksum: 8bc0d1f8d189cce09af8bc129ec5edcd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-25T15:46:02Z (GMT) No. of bitstreams: 2 Dissertação - Hector Andrés Rosero García - 2017.pdf: 4670148 bytes, checksum: 8bc0d1f8d189cce09af8bc129ec5edcd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-04-25T15:46:02Z (GMT). No. of bitstreams: 2 Dissertação - Hector Andrés Rosero García - 2017.pdf: 4670148 bytes, checksum: 8bc0d1f8d189cce09af8bc129ec5edcd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-31 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we develop the basics of the concept of Isocurved Surface, introduced in [2] by Barroso and Roitman, that is, a surface immersed in a 3-dimensional manifold M and which have the same Gaussian curvature induced by two different metrics. Later on, we show a geometric method to generate non-trivial examples of elliptic and hyperbolic isocurved surfaces for the particular case of M = R3+ and the Euclidean and hyperbolic metrics induced on it. We also exhibit some examples coming from the geometric method above. / Neste trabalho, desenvolvemos as bases do conceito de Superfície Isocurvada, introduzido em [2] por Barroso e Roitman, isto é, uma superfície imersa numa variedade 3-dimensional M a qual tem a mesma curvatura Gaussiana induzida por duas métricas diferentes em M. Segundo isso, mostramos um método geométrico para a geração de exemplos não triviais de superfícies isocurvadas elípticas e hiperbólicas no caso particular de M = R^3_+ com as métricas conformes Euclidiana e hiperbólica. Também exibimos alguns exemplos subjacentes ao método acima.
25

Studies on boundary values of eigenfunctions on spaces of constant negative curvature

Bäcklund, Pierre January 2008 (has links)
<p>This thesis consists of two papers on the spectral geometry of locally symmetric spaces of Riemannian and Lorentzian signature. Both works are concerned with the idea of relating analysis on such spaces to structures on their boundaries.</p><p>The first paper is motivated by a conjecture of Patterson on the Selberg zeta function of Kleinian groups. We consider geometrically finite hyperbolic cylinders with non-compact Riemann surfaces of finite area as cross sections. For these cylinders, we present a detailed investigation of the Bunke-Olbrich extension operator under the assumption that the cross section of the cylinder has one cusp. We establish the meromorphic continuation of the extension of Eisenstein series and incomplete theta series through the limit set. Furthermore, we derive explicit formulas for the residues of the extension operator in terms of boundary values of automorphic eigenfunctions.</p><p>The motivation for the second paper comes from conformal geometry in Lorentzian signature. We prove the existence and uniqueness of a sequence of differential intertwining operators for spherical principal series representations, which are realized on boundaries of anti de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti de Sitter spaces.</p>
26

Semi-groupes de matrices et applications / Matrix semigroups and applications

Mercat, Paul 11 December 2012 (has links)
Nous étudions les semi-groupes de matrices avec des points de vue variés qui se re-coupent. Le point de vue de la croissance s’avère relié à un point de vue géométrique : nous avons partiellement généralisé aux semi-groupes un théorème de Patterson-Sullivan-Paulin sur les groupes, qui donne l’égalité entre exposant critique et dimension de Hausdorff de l’ensemble limite. Nous obtenons cela dans le cadre général des semi-groupes d’isométries d’un espace Gromov-hyperbolique, et notre preuve nous a permis d’obtenir également d’autres résultats nouveaux. Le point de vue informatique s’avère également relié à la croissance, puisque la notion de semi-groupe fortement automatique, que nous avons introduit, permet de calculer les exposants critiques exactes de semi-groupes de développement en base β. Et ce point de vue donne également beaucoup d’autres informations sur ces semi-groupes. Cette notion de croissance s’avère aussi reliée à des conjectures sur les fractions continues telles que celle de Zaremba. Et c’est en étudiant certains semi-groupes de matrices que nous avons pu démontrer des résultats sur les fractions continues périodiques bornées qui permettent de petites avancées dans la résolution d'une conjecture de McMullen. / We study matrix semigroups with different point of view that overlaps. The growth point of view seems to be related with the geometric point of view : we partially generalize to the semigroups a theorem on groups of Patterson-Sullivan-Paulin, that give the equality between the critical exponent and the Hausdorff dimension of the limit set. We obtain this in the general framework of isometries of a Gromov-hyperbolic space, and our proof give also others new results. The computer science point of view is also related to the growth, since we obtain a way to calculate exact values of critical exponents of somes β-adic development semigroups, from a notion of automatic semigroups that we introduce. Furthermore this point of view give a lot of information on these semigroups. This notion of growth shows to be also related to conjectures on continued fractions like Zaremba’s one. And by studing some matrix semigroups we were able to prove some results on bounded periodic continued fractions, doing a little step in the resolution of a conjecture of McMullen.
27

Quasi-isometries between hyperbolic metric spaces, quantitative aspects / Quasi-isométries entre espaces métriques hyperboliques, aspects quantitatifs

Shchur, Vladimir 08 July 2013 (has links)
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait que deux espaces ne sont pas quasi-isométriques. De ce point de vue quantitatif, on reprend la définition de quasi-isométrie et on propose une notion de “croissance de distorsion quasi-isométrique” entre deux espaces métriques. Nous révisons notre article [32] où une borne supérieure optimale pour le lemme de Morse est donnée, avec la variante duale que nous appelons Anti-Morse Lemma, et leurs applications.Ensuite, nous nous concentrons sur des bornes inférieures sur la croissance de distorsion quasi-isométrique pour des espaces métriques hyperboliques. Dans cette classe, les espaces de $L^p$-cohomologie fournissent des invariants de quasi-isométrie utiles et les constantes de Poincaré des boules sont leur incarnation quantitative. Nous étudions comment les constantes de Poincaré sont transportées par quasi-isométries. Dans ce but, nous introduisons la notion de transnoyau. Nous calculons les constantes de Poincaré pour les métriques localement homogènes de la forme $dt^2+\sum_ie^{2\mu_it}dx_i^2$, et donnons une borne inférieure sur la croissance de distorsion quasi-isométrique entre ces espaces.Cela nous permet de donner des exemples présentant différents type de croissance de distorsion quasi-isométrique, y compris un exemple sous-linéaire (logarithmique). / In this thesis we discuss possible ways to give quantitative measurement for two spaces not being quasi-isometric. From this quantitative point of view, we reconsider the definition of quasi-isometries and propose a notion of ``quasi-isometric distortion growth'' between two metric spaces. We revise our article [32] where an optimal upper-bound for Morse Lemma is given, together with the dual variant which we call Anti-Morse Lemma, and their applications.Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic metric spaces. In this class, $L^p$-cohomology spaces provides useful quasi-isometry invariants and Poincar\'e constants of balls are their quantitative incarnation. We study how Poincar\'e constants are transported by quasi-isometries. For this, we introduce the notion of a cross-kernel. We calculate Poincar\'e constants for locally homogeneous metrics of the form $dt^2+\sum_ie^dx_i^2$, and give a lower bound on quasi-isometric distortion growth among such spaces.This allows us to give examples of different quasi-isometric distortion growths, including a sublinear one (logarithmic).
28

Studies on boundary values of eigenfunctions on spaces of constant negative curvature

Bäcklund, Pierre January 2008 (has links)
This thesis consists of two papers on the spectral geometry of locally symmetric spaces of Riemannian and Lorentzian signature. Both works are concerned with the idea of relating analysis on such spaces to structures on their boundaries. The first paper is motivated by a conjecture of Patterson on the Selberg zeta function of Kleinian groups. We consider geometrically finite hyperbolic cylinders with non-compact Riemann surfaces of finite area as cross sections. For these cylinders, we present a detailed investigation of the Bunke-Olbrich extension operator under the assumption that the cross section of the cylinder has one cusp. We establish the meromorphic continuation of the extension of Eisenstein series and incomplete theta series through the limit set. Furthermore, we derive explicit formulas for the residues of the extension operator in terms of boundary values of automorphic eigenfunctions. The motivation for the second paper comes from conformal geometry in Lorentzian signature. We prove the existence and uniqueness of a sequence of differential intertwining operators for spherical principal series representations, which are realized on boundaries of anti de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti de Sitter spaces.
29

Surfaces de Cauchy polyédrales des espaces temps plats singuliers / Polyhedral Cauchy-surfaces of flat space-times

Brunswic, Léo 22 December 2017 (has links)
L'étude des espaces-temps plats singuliers munis d'une surface de Cauchy polyédrale est motivée par leur rôle de model jouet de gravité quantique proposé par Deser, Jackiw et 'T Hooft. Cette thèse porte sur les paramétrisations de certaines classes d'espaces-temps plat singuliers : les espaces-temps plats avec particules massives et BTZ Cauchy-compacts maximaux. Deux paramétrisations sont proposées, l'une reposant sur une extension du théorème de Mess aux espaces-temps plats avec BTZ et la surface de Penner-Epstein, l'autre reposant sur une généralisation du théorème d'Alexandrov aux espaces-temps plats avec particules massives et BTZ. Ce travail propose également une amorce de cadre théorique permettant de considérer des espaces-temps singuliers plus généraux. / The study of singular flat spacetimes with polyhedral Cauchy-surfaces is motivated by the quantum gravity toy model role they play in the seminal work of Deser, Jackiw and 'T Hooft. This thesis study parametrisations of classes of singular flat spacetimes : Cauchy-compact maximal flat spacetimes with massive and BTZ-like singularities. Two parametrisations are constructed. The first is based on an extension of Mess theorem to flat spacetimes with BTZ and Penner-Epstein convex hull construction. The second is based on a generalisation of Alexandrov polyhedron theorem to radiant Cauchy-compact flat spacetimes with massive and BTZ-like singularities. This work also initiate a wider theoretical background that encompass singular spacetimes.
30

Teoremas de Rigidez no espaço hiperbólico. / Theorems of Stiffness in hyperbolic space.

ROCHA, Jamilly Lourêdo. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T17:38:25Z No. of bitstreams: 1 JAMILLY LOURÊDO ROCHA - DISSERTAÇÃO PPGMAT 2014..pdf: 5707925 bytes, checksum: 8010cd451ac64c8a7fccc36a2f8313f6 (MD5) / Made available in DSpace on 2018-08-09T17:38:25Z (GMT). No. of bitstreams: 1 JAMILLY LOURÊDO ROCHA - DISSERTAÇÃO PPGMAT 2014..pdf: 5707925 bytes, checksum: 8010cd451ac64c8a7fccc36a2f8313f6 (MD5) Previous issue date: 2014-08 / Capes / Com uma aplicação adequada do conhecido princípio do máximo generalizado de Omori-Yau, obtemos resultados de rigidez com relação a hipersuperfícies imersas completascomcurvaturamédiadelimitadanoespaçohiperbólicoHn+1 (n+1)-dimensional. Em nossa abordagem exploramos a existência de uma dualidade natural entreHn+1 e a metade Hn+1 do espaço de SitterSn+11 , cujo modelo é chamado de steady state space. / As a suitable application of the well known generalized maximum principle of Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed with bounded mean curvature in the (n+1)-dimensional hyperbolic spaceHn+1. In our approach, we explore the existence of a natural duality betweenHn+1 and the half Hn+1 of the de Sitter spaceSn+11 , which models the so-called steady state space.

Page generated in 0.0563 seconds