• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 125
  • 75
  • 28
  • 14
  • 13
  • 10
  • 10
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 604
  • 266
  • 129
  • 116
  • 87
  • 63
  • 44
  • 38
  • 38
  • 30
  • 28
  • 25
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Wildland Fire Prediction based on Statistical Analysis of Multiple Solutions

Bianchini, Germán 21 July 2006 (has links)
En diferentes áreas científicas, el uso de modelos para representar sistemas físicos se ha tornado una tarea habitual. Estos modelos reciben parámetros de entradas representando condiciones particulares y proveen una salida que representa la evolución del sistema. Usualmente, dichos modelos están integrados en herramientas de simulación que pueden ser ejecutadas en una computadora.Un caso particular donde los modelos resultan muy útiles es la predicción de la propagación de Incendios Forestales. Los incendios se han vuelto un gran peligro que cada año provoca grandes pérdidas desde el punto de vista ambiental, económico, social y humano. En particular, las estaciones secas y calurosas incrementan seriamente el riesgo de incendios en el área Mediterránea. Por lo tanto, el uso de modelos es relevante para estimar el riesgo de incendios y predecir el comportamiento de los mismos.Sin embargo, en muchos casos, los modelos presentan una serie de limitaciones. Estas se relacionan con la necesidad de un gran número de parámetros de entrada. En muchos casos, tales parámetros presentan cierto grado de incertidumbre debido a la imposibilidad de medirlos en tiempo real, y deben ser estimados a partir de datos indirectas. Además, en muchos casos estos modelos no se pueden resolver analíticamente y deben ser calculados aplicando métodos numéricos que son una aproximación de la realidad.Se han desarrollado diversos métodos basados en asimilación de datos para optimizar los parámetros de entrada. Comúnmente, estos métodos operan sobre un gran número de parámetros de entrada y, a través de optimización, se enfocan en hallar un único conjunto de parámetros que describa de la mejor forma posible el comportamiento previo. Por lo tanto, es de esperar que el mismo conjunto de valores pueda ser usado para describir el futuro inmediato.Sin embargo, esta clase de predicción se basa en un solo conjunto de parámetros y, por lo que se explicó, debido a aquellos parámetros que presentan un comportamiento dinámico, los valores optimizados pueden no resultar adecuados para el siguiente paso.El presente trabajo propone un método alternativo. Nuestro sistema, llamado Sistema Estadístico para la Gestión de Incendios Forestales, se basa en conceptos estadísticos. Su objetivo es hallar un patrón del comportamiento del incendio, independientemente de los valores de los parámetros. En este método, cada parámetro es representado mediante un rango de valores y una cardinalidad. Se generan todos los posibles escenarios considerando todas las posibles combinaciones de los valores de los parámetros de entrada, y entonces se evalúa la propagación para cada caso. Los resultados son agregados estadísticamente para determinar la probabilidad de que cada área se queme. Esta agregación se utiliza para predecir el área quemada en el siguiente paso.Para validar nuestro método, usamos un conjunto de quemas reales prescritas. Además, comparamos nuestro método contra otros dos. Uno de estos dos métodos fue implementado para este trabajo: GLUE (Generalized Likelihood Uncertainty Estimation). Dicho método corresponde a una adaptación de un sistema hidrológico. El otro caso (Método Evolutivo) es un algoritmo genético previamente desarrollado e implementado también por nuestro equipo de investigación.Los sistemas propuestos requieren un gran número de simulaciones, razón por la cual decidimos usar un esquema paralelo para implementarlos. Esta forma de trabajo difiere del esquema tradicional de teoría y experimentación, lo cual es la forma común de la ciencia y la ingeniería. El cómputo científico está en continua expansión, principalmente a través del análisis de modelos matemáticos implementados en computadores. Los científicos e ingenieros desarrollan programas de computador que modelan los sistemas bajo estudio. Esta metodología está creando una nueva rama de la ciencia basada en métodos computacionales, la cual crece de forma acelerada. Esta aproximación es llamada Ciencia Computacional. / In many different scientific areas, the use of models to represent the physical system has become a common strategy. These models receive some input parameters representing the particular conditions and provide an output representing the evolution of the system. Usually, these models are integrated in simulation tools that can be executed on a computer.A particular case where models are very useful is the prediction of Forest Fire propagation. Forest fire is a very significant hazard that every year provokes huge looses from the environmental, economical, social and human point of view. Particularly dry and hot seasons seriously increase the risk of forest fires in the Mediterranean area. Therefore, the use of models is very relevant to estimate fire risk, and predict fire behavior.However, in many cases models present a series of limitations. Usually, such limitations are due to the need of a large number of input parameters. In many cases such parameters present some uncertainty due to the impossibility to measure all of them in real time and must be estimated from indirect measurements. Moreover, in most cases these models cannot be solved analytically and must be solved applying numerical methods that are only an approach to reality (still without considering the limitations that present the translations of these solutions when they are carried out by means of computers).Several methods based on data assimilation have been developed to optimize the input parameters. In general, these methods operate over a large number of input parameters, and, by mean of some kind of optimization, they focus on finding a unique parameter set that would describe the previous behavior in the best form. Therefore, it is hoped that the same set of values could be used to describe the immediate future.However, this kind of prediction is based on a single value of parameters and, as it has been said above, for those parameters that present a dynamic behavior the new optimized values cannot be adequate for the next step.The objective of this work is to propose an alternative method. Our method, called Statistical System for Forest Fire Management, is based on statistical concepts. Its goal is to find a pattern of the forest fire behavior, independently of the parameters values. In this method, each parameter is represented by a range of values with a particular cardinality for each one of them. All possible scenarios considering all possible combinations of input parameters values are generated and the propagation for each scenario is evaluated. All results are statically aggregated to determine the burning probability of each area. This aggregation is used to predict the burned area in the next step.To validate our method, we use a set of real prescribed burnings. Furthermore, we compare our method against two other methods. One of these methods was implemented by us for this work: GLUE (Generalized Likelihood Uncertainty Estimation). It corresponds to an adaptation of a hydrological method. The other method (Evolutionary method) is a genetic algorithm previously developed and implemented by our research team.The proposed system requires a large number of simulations, a reason why we decide to use a parallel-scheme to implement them. This way of working is different from traditional scheme of theory and experiment, which is the common form of science and engineering. The scientific computing approach is in continuous expansion, mainly through the analysis of mathematical models implemented on computers. Scientists and engineers develop computer programs that model the systems under study. This methodology is creating a new branch of science based on computational methods that is growing very fast. This approach is called Computational Science.
142

Grup fonamental de les varietats de Kähler, El

Amorós Torrent, Jaume 01 January 1997 (has links)
Estudiem el grup fonamental de varietat algebràïques complexes i la seva monodromia. Les línies d'estudi són:- L'àlgebra de Malcev dels grups fonamentals de varietats compactes Kahler: Provem que no pot ser lliure, i donem una cota inferior del nombre de relacions cas que la varietat sigui no fibrada. La determinem quan la dimensió de Kodaira és igual a un. - Pinzells de Lefschetz de corbes: obtenim fòrmules per a la monodromia geomètrica i el grup fonamental per a pinzells de Lefschetz de corbes sobre la recta projectiva, amb ella demostrem un resultat de formalitat topològica de famílies de corbes, a l'igual que propietats conegudes d'entropia i quasi unipotència d'aquestes famílies.- La connexió de Gauss-Manin en el grup fonamental:Construïm complexos de Dolbeault logarítmics relatius analítics reals per a famíliers de varietats projectives, amb connexió de Gauss-Manin. Calculem la realització de la Rham d'aquesta coneexió en el grup fonamental de famílies de corbes afins racionals i no racionals, obtenint un contrast notable.Caracteritzem els grups de Galois diferencials de la connexió de Gauus-Manin en el grup fonamental com a extensions unipotents dels seus anàlegs cohomològics. / Estudiamos el grupo fundamental de variedades algebraicas complejas y su monodromía. Las líneas de estudio son:- El álgebra de Malcev de los grupos fundamentales de variedades compactas Kahler: Probamos que no puede ser libre, y damos una cota inferior del número de relaciones en el caso en que la variedad sea no fibrada. La determinamos cuando la dimensión de Kodaira es uno.- Pinceles de Lefschetz de curvas: obtenemos fórmulas para la monodromía geométrica y en el grupo fundamental para pinceles de Lefschetz de curvas sobre la recta proyectiva, con ella demostramos un resultado de formalidad topológica de familias de curvas, así como propiedades conocidas de entropía y cuasi unipotencia de estas familias.- La conexión de Gauss-Manin en el grupo fundamental:Construimos complejos de Dolbeault logarítmicos relativos analíticos reales para familias de variedades proyectivas, con conexión de Gauss-Manin. Calculamos la realización de la Rham de esta conexión en el grupo fundamental de familias de curvas afines racionales y no racionales, obteniendo un notable contraste.Caracterizamos los grupos de Galois diferenciales de la conexión de Gauss-Manin en el grupo fundamental como extensiones unipotentes de sus análogos cohomológicos.
143

Aritmètica d'ordres quaterniònics i uniformització hiperbòlica de corbes de Shimura

Alsina i Aubach, Montserrat 07 February 2000 (has links)
L'estudi dels grups fuchsians i les funcions automorfes associades s'inicià en el segle XIX en els treballs de H. Poincaré, R. Fricke i F. Klein, principalment. A partir dels anys seixanta, al llarg de nombrosos treballs, G. Shimura considerà l'acció de grups fuchsians "F" donats per subgrups d'unitats d'àlgebres de quaternions en el semiplà de Poincaré "H". El quocient F/H s'identifica amb els punts complexos d'una corba algebraica, anomenada corba de Shimura. Si l'àlgebra de quaternions és M(2, Q), en resulten les corbes modulars. Avui dia l'estudi de les corbes de Shimura ha mostrat ser un tema d'interès creixent en teoria de nombres, ja que han esdevingut en els darrers anys una eina clau en l'estudi de problemes aritmètics i en la demostració de resultats importants com ara el teorema de Fermat. Els tractaments algorítmics de les corbes de Shimura no modulars i de les corbes modulars són essencialment diferents. D'una banda, les corbes de Shimura es defineixen com a espais de moduli de superfícies abelianes, de les quals no se'n té informació numèrica. De l'altra, l'absència d'elements parabòlics en el grup fuchsià permet utilitzar desenvolupaments de Fourier a l'entorn de les puntes per a representar les funcions automorfes associades. De manera anàloga a la relació entre formes quadràtiques binàries i ordres dels cossos quadràtics, tenim una relació entre formes quadràtiques ternàries i ordres quaterniònics. Aquesta relació ens permet traslladar a un àmbit d'àlgebra no commutativa les necessitats de càlcul en corbes de Shimura. Notem que l'inici de l'estudi dels grups fuchsians en els treballs de Poincaré està lligat a la teoria de les formes quadràtiques. Shimura substituí elllenguatge algebraic de formes quadràtiques pel llenguatge geomètric de varietats abelianes. Així, com a eines algebraiques per a poder calcular hem considerat tant els ordres de les àlgebres de quaternions com les formes quadràtiques. En particular, això ha requerit l'estudi de treballs anteriors i posteriors a Shimura referents a àlgebres de quaternions i formes quadràtiques. Els principals resultats de la memòria fan referència a l'existència i propietats d'uniformitzacions hiperbòliques de corbes de Shimura, que s'obtenen per mitjà d'un estudi previ de l'aritmètica d'ordres de les àlgebres de quaternions. El model canònic obtingut per Shimura està caracteritzat per uns certs punts, anomenats punts de multiplicació complexa. En la memòria hem determinat aquests punts de manera explícita, a partir d'un conjunt de bijeccions que establim entre: classes d'immersions optimals d'ordres quadràtics imaginaris en ordres quaterniònics, classes de representacions primitives d'enters per formes quadràtiques ternàries enteres, classes de formes quadràtiques binàries de coeficients semi-enters en cossos quadràtics, definides i els punts de multiplicació complexa. Aquest plantejament ens ha portat, en particular, al desenvolupament d'una teoria de classificació de formes quadràtiques binàries per certs subgrups discrets de SL(2,R) diferents del grup modular SL(2,Z). Paral.lelament hem elaborat el paquet informàtic "Poincare", implementat en MapleV, amb unes 200 instruccions, que manipula els diferents objectes que intervenen al llarg de la memòria: ordres d'àlgebres de quaternions, formes quadràtiques, objectes de geometria hiperbòlica, immersions, punts de les corbes de Shimura, etc. El paquet conté la implementació dels algoritmes obtinguts i permet realitzar càlculs efectius. El capítol 1 està dedicat a les àlgebres de quaternions i els seus ordres. En el capítol 2 s'introdueixen formalment les corbes de Shimura X(D, N), definides a partir d'un ordre d'Eichler O(D, N). En el capítol 3 donem una uniformització hiperbòlica implementable de les corbes de Shimura per al cas no ramificat, X(, N) = X(o)(N), de nivell N primer. Els capítols 4, 5 i 6 estan dedicats a les formes quadràtiques obtingudes a partir de les àlgebres de quaternions, especialment les formes nòrmiques quaternària i ternària i el conjunt de formes binàries H(O) associat a un ordre quaterniònic O incluido en H. Donem resultats sobre la relació entre els invariants de l'ordre i les formes quadràtiques associades. A més de l'estudi dels seus invariants, l'aplicació dels conceptes introduïts per H. Brandt ens ha permès arribar a resultats sobre la caracterització de les formes nòrmiques que són K-formes. En el capítol 7 tractem amb immersions optimals d'ordres de cossos quadràtics en ordres d'àlgebres de quaternions, a partir de l'estudi de les formes quadràtiques associades als ordres. D'una banda, això ens ha permès obtenir resultats sobre formes quadràtiques; d'altra banda, ens ha aportat efectivitat al càlcul d'immersions. Relacionem les immersions de cossos quadràtics en àlgebres de quaternions amb les representacions de formes quadràtiques binàries per formes quaternàries i les representacions de nombres per formes ternàries. Mostrem lligams entre la classificació de les immersions i la de les representacions de nombres per formes ternàries i donem resultats sobre famílies de formes binàries de coeficients semi-enters en un cos quadràtic amb determinant fixat associades als ordres quaterniònics i sobre la seva classificació per subgrups discrets de SL(2, R).En el capítol 8 estudiem la uniformització hiperbòlica de les corbes de Shimura corresponents a àlgebres de divisió i presentem polígons hiperbòlics explícits que són dominis fonamentals per a corbes de Shimura corresponents a àlgebres poc ramificades. Caracteritzem les homografies quaterniàniques a partir dels resultats d'immersions i formes quadràtiques del capítol anterior, estudiem les homografies el-líptiques i les explicitem per a les àlgebres poc ramificades de tipus A i B. Estudiem també les homografies hiperbòliques que fixen l'infinit i certes simetries, anàlogues a les del cas modular. Així, posem de manifest l'existència d'una homotècia principal que substitueix la translació del cas no ramificat i introduïm les rectes hiperbòliques principals. A continuació, donem pautes per a l'aplicació del mètode dels cercles d'isometria en la construcció de dominis fonamentals. Fem efectiva la construcció de dominis fonamentals, per mitjà de polígons hiperbòlics i en descrivim les característiques. Mostrem també les representacions gràfiques dels dominis fonamentals explicitats, per a les corbes de Shimura X(6, 1), X(10, 1) i X(15, 1), i taules amb els cicles i la presentació dels grups. En el capítol 9 estudiem els punts de multiplicació complexa de les corbes de Shimura X(D, N) utilitzant els resultats sobre la uniformització hiperbòlica i el tàndem immersions-formes quadràtiques dels capítols anteriors. Considerem un conjunt finit d'ordres quadràtics per als quals hi ha punts de multiplicació complexa especials. En particular, per a les corbes de Shimura corresponents a àlgebres no ramificades i poc ramificades explicitem els resultats anteriors i en donem representacions gràfiques. Més concretament, representem tots els punts de multiplicació complexa especials en els dominis fonamentals de les corbes X(1, N) presentats en el capítol 3 i en els dominis de les corbes X(D, 1) presentats en el capítol 8. Les comandes implementades permeten classificar els ordres per als quals una corba X(D, N) té punts de multiplicació complexa especials, obtenir la llista d'ordres quadràtics de multiplicació complexa especial i calcular els punts de multiplicació complexa per un ordre quadràtic fixat. / The main results refer to the existence and properties of hyperbolic uniformity of Shimura curves, obtained by a study of the arithmetic of orders in quaternion algebras. The canonical model of Shimura curves is characterized by its complex multiplication points. We determine these points in an explicit way, from a set of bijections we state between: classes of optimal immersions of imaginary quadratic orders in quaternionic orders; classes of primitive representations of integers by integer ternary quadratic forms, and classes of defined binary quadratic forms with semi-integers coefficients in quadratic fields. This approach led us to develop a classification theory of binary quadratic forms by some discrete subgroups of SL(2, R) different from SL(2, Z). In a parallel way, we elaborated the package "Poincare", implemented in "Maple V", that handle orders in quaternion algebras, quadratic forms, objects from hyperbolic geometry, immersions, points of Shimura curves, etc. The package, with 200 instructions, contains the implementation of the obtained algorithms and allow to do effective calculations. Chapter 1 deals with quaternion algebras. In the chapter 2, the Shimura curves X(D, N) are formally introduced, from an Eichler order O(D, N). In chapter 3, we give an implementable hyperbolic uniformity in the non ramified case, X(1, N) = X(o)(N), of level "N" prime. Chapters 4, 5 and 6 are devoted to the quaternary and ternary normic forms and the set of binary forms, obtained from quaternion algebras. Chapter 7 deals with optimal immersions of quadratic orders in quaternionic orders. The use of quadratic forms has furnished effectiveness in the calculation of immersions. In chapter 8, we study the hyperbolic uniformity of the Shimura curves corresponding to division algebras and we present explicit hyperbolic polygons that are fundamental domains for some Shimura curves in the ramified case. In chapter 9, we study the complex multiplication points. We consider a finite set of quadratic orders for which there are special complex multiplication points. The implemented commands allow to obtain the list of quadratic orders with special complex multiplication and to compute the complex multiplication points by a fixed quadratic order.
144

Análisis intrínseco de la estimación puntual

Corcuera Valverde, José Manuel 14 June 1994 (has links)
Razones de coherencia lógica, en el contexto de modelos estadísticos paramétricos, llevan a considerar como estimadores únicamente aquellos que poseen la propiedad de invarianza funcional. Los estimadores resultan así aplicaciones medibles del espacio muestral en la variedad formada por las medidas de probabilidad. Las nociones clásicas de sesgo y varianza resultan ahora inadecuadas para estudiar las propiedades de un estimador al ser dependientes de la parametrización que se utilice para representar el modelo.La distancia Riemanniana proporcionada por la métrica informativa (distancia de Rao) aparece como el análogo natural del error cuadrático. La teoría clásica de estimación es reconstruida desde un punto de vista intrínseco (no dependiente de la parametrización y sin introducir funciones de pérdida ajenas al modelo).Los objetivos de lo que llamamos Análisis Intrínseco son, por un lado, suministrar herramientas invariantes que permitan analizar el comportamiento de un estimador, y por otro obtener resultados análogos a los clásicos y establecer conexiones entre las medidas clásicas no invariantes y las medidas intrínsecas obtenidas.Útiles clásicos de la geometría diferencial: aplicación exponencial, campos de Jacobi y los teoremas de comparación, son usados para definir y estudiar las nociones de sesgo intrínseco y distancia de Rao cuadrático media de un estimador. Otras nociones geométrico-diferenciales como valor medio de un objeto aleatorio en una variedad equipada con una conexión afín y desarrollo de Taylor invariante han tenido que ser desarrolladas.En el marco anterior se ha estudiado el comportamiento local y global de un estimador proporcionando cotas del tipo Cramér-Rao donde aparece el efecto de las curvaturas seccionales de la variedad Riemanniana asociada al modelo. En el estudio del comportamiento global de un estimador se ha hecho uso de métodos variacionales.Se ha estudiado también en qué condiciones la BIackwellización de un estimador produce una mejora del mismo. La noción de completitud ha sido modificada convenientemente para obtener un teorema análogo al clásico teorema de Lehmann- Scheffé. Por último se han estudiado propiedades asintóticas, especialmente en relación con el estimador máximo-verosímil, aplicando los desarrollos de Taylor tensoriales para el estudio de la eficiencia asintótica. / The aim of that we shall refer to as "Intrinsic Analysis" of the statistical estimation, is to develop a statistical estimation theory analogous to the classical one, based on geometrical structures of the statistical models. Then one goal of the Intrinsic Analysis is to supply invariant tools in order to analyse the performance of an estimator, and another is to obtain results that are analogous to classical ones and to establish relationships between the classical non invariant measures and the invariant herein obtained. In this thesis, taking into account the Riemannian structure of the regular parametric statistical models, an intrinsic bias measure is obtained by considering the mean value of random manifold-valued maps. The mean square of the Riemannian, or Rao, distance is the invariant analogous to the mean square error.The first part of the thesis is concerned with the moments of a random field on an n-dimensional C-infinity real manifold, and also the mean value concept of a random object which takes values on a (Hausdorff and connected) manifold equipped with an affine connection, through the exponential map. We emphasize the analogies and differences between moments and mean values, and we consider, in particular, the Riemannian case.The second part is the application of these results to the study of some invariant measures analogous to the bias and mean square error corresponding to a statistical estimator. The third and fourth parts are devoted to the development of intrinsic versions of the local and global Cramér-Rao lower bounds. In the fifth part we study the behaviour of the mean square Rao distance of an estimator when it is conditioned by a sufficient statistic, in order to obtain intrinsic versions of the Rao-Blackwell and Lehmann-Scheffée theorems. Finally some asymptotic properties, specially related with the maximum-likelihood estimator, are studied.
145

Finite Models of Splicing and Their Complexity

Loos, Remco 14 February 2008 (has links)
Durante las dos últimas décadas ha surgido una colaboración estrecha entre informáticos, bioquímicos y biólogos moleculares, que ha dado lugar a la investigación en un área conocida como la computación biomolecular. El trabajo en esta tesis pertenece a este área, y estudia un modelo de cómputo llamado sistema de empalme (splicing system). El empalme es el modelo formal del corte y de la recombinación de las moléculas de ADN bajo la influencia de las enzimas de la restricción.Esta tesis presenta el trabajo original en el campo de los sistemas de empalme, que, como ya indica el título, se puede dividir en dos partes. La primera parte introduce y estudia nuevos modelos finitos de empalme. La segunda investiga aspectos de complejidad (tanto computacional como descripcional) de los sistema de empalme. La principal contribución de la primera parte es que pone en duda la asunción general que una definición finita, más realista de sistemas de empalme es necesariamente débil desde un punto de vista computacional. Estudiamos varios modelos alternativos y demostramos que en muchos casos tienen más poder computacional. La segunda parte de la tesis explora otro territorio. El modelo de empalme se ha estudiado mucho respecto a su poder computacional, pero las consideraciones de complejidad no se han tratado apenas. Introducimos una noción de la complejidad temporal y espacial para los sistemas de empalme. Estas definiciones son utilizadas para definir y para caracterizar las clases de complejidad para los sistemas de empalme. Entre otros resultados, presentamos unas caracterizaciones exactas de las clases de empalme en términos de clases de máquina de Turing conocidas. Después, usando una nueva variante de sistemas de empalme, que acepta lenguajes en lugar de generarlos, demostramos que los sistemas de empalme se pueden usar para resolver problemas. Por último, definimos medidas de complejidad descriptional para los sistemas de empalme. Demostramos que en este respecto los sistemas de empalme finitos tienen buenas propiedades comparados / Over the last two decades, a tight collaboration has emerged between computer scientists, biochemists and molecular biologists, which has spurred research into an area known as DNAComputing (also biomolecular computing). The work in this thesis belongs to this field, and studies a computational model called splicing system. Splicing is the formal model of the cutting and recombination of DNA molecules under the influence of restriction enzymes.This thesis presents original work in the field of splicing systems, which, as the title already indicates, can be roughly divided into two parts: 'Finite models of splicing' on the onehand and 'their complexity' on the other. The main contribution of the first part is that it challenges the general assumption that a finite, more realistic definition of splicing is necessarily weal from a computational point of view. We propose and study various alternative models and show that in most cases they have more computational power, often reaching computational completeness. The second part explores other territory. Splicing research has been mainly focused on computational power, but complexity considerations have hardly been addressed. Here we introduce notions of time and space complexity for splicing systems. These definitions are used to characterize splicing complexity classes in terms of well known Turing machine classes. Then, using a new accepting variant of splicing systems, we show that they can also be used as problem solvers. Finally, we study descriptional complexity. We define measures of descriptional complexity for splicing systems and show that for representing regular languages they have good properties with respect to finite automata, especially in the accepting variant.
146

Membrane computing: traces, neural inspired models, controls

Ionescu, Armand-Mihai 11 April 2008 (has links)
Membrane Computing:Traces, Neural Inspired Models, ControlsAutor: Armand-Mihai IonescuDirectores: Dr. Victor Mitrana (URV)Dr. Takashi Yokomori (Universidad Waseda, Japón)Resumen Castellano:El presente trabajo está dedicado a una área muy activa del cálculo natural (que intenta descubrir la odalidad en la cual la naturaleza calcula, especialmente al nivel biológico), es decir el cálculo con membranas, y más preciso, a los modelos de membranas inspirados de la funcionalidad biológica de la neurona.La disertación contribuye al área de cálculo con membranas en tres direcciones principales. Primero, introducimos una nueva manera de definir el resultado de una computación siguiendo los rastros de un objeto especificado dentro de una estructura celular o de una estructura neuronal. A continuación, nos acercamos al ámbito de la biología del cerebro, con el objetivo de obtener varias maneras de controlar la computación por medio de procesos que inhiben/de-inhiben. Tercero, introducimos e investigamos en detallo - aunque en una fase preliminar porque muchos aspectos tienen que ser clarificados - una clase de sistemas inspirados de la manera en la cual las neuronas cooperan por medio de spikes, pulsos eléctricos de formas idénticas.English summary:The present work is dedicated to a very active branch of natural computing (which tries to discover the way nature computes, especially at a biological level), namely membrane computing, more precisely, to those models of membrane systems mainly inspired from the functioning of the neural cell.The present dissertation contributes to membrane computing in three main directions. First, we introduce a new way of defining the result of a computation by means of following the traces of a specified object within a cell structure or a neural structure. Then, we get closer to the biology of the brain, considering various ways to control the computation by means of inhibiting/de-inhibiting processes. Third, we introduce and investigate in a great - though preliminary, as many issues remain to be clarified - detail a class of P systems inspired from the way neurons cooperate by means of spikes, electrical pulses of identical shapes.
147

Languages Generated by Iterated Idempotencies.

Leupold, Klaus-Peter 22 November 2006 (has links)
The rewrite relation with parameters m and n and with the possible length limit = k or :::; k we denote by w~, =kW~· or ::;kw~ respectively. The idempotency languages generated from a starting word w by the respective operations are wD<l::', w=kD<l::' and W<;kD<l::'.Also other special cases of idempotency languages besides duplication have come up in different contexts. The investigations of Ito et al. about insertion and deletion, Le., operations that are also observed in DNA molecules, have established that w5 and w~ both preserve regularity.Our investigations about idempotency relations and languages start out from the case of a uniform length bound. For these relations =kW~ the conditions for confluence are characterized completely. Also the question of regularity is -k n answered for aH the languages w- D<lm . They are nearly always regular. Only the languages wD<lo for n > 1 are more complicated and belong to the class of context-free languages.For a generallength bound, i.e."for the relations :"::kW~, confluence does not hold so frequently. This complicatedness of the relations results also in more complicated languages, which are often non-regular, as for example the languages W<;kD<l::' for aH bounds k 2 4. For k :::; 2 they are regular. The case of k :::; 3, though, remains open. We show, however, that none of these languages ever exceeds the complexity of being context-free.Without any length bound, idempotency relations have a very complicated structure. Over alphabets of one or two letters we still characterize the conditions for confluence. Over three or more letters, in contrast, only a few cases are solved. We determine the combinations of parameters that result in the regularity of wD<l::', when the alphabet of w contains only two letters. Only the case of 2 :::; m < n remains open.In a second chapter sorne more involved questions are solved for the special case of duplication. First we shed sorne light on the reasons why it is so difficult to determine the context-freeness ofduplication languages. We show that they fulfiH aH pumping properties and that they are very dense. Therefore aH the standard tools to prove non-context-freness do not apply here.The concept of root in Formal Language ·Theory is frequently used to describe the reduction of a word to another one, which is in sorne sense elementary.For example, there are primitive roots, periodicity roots, etc. Elementary in connection with duplication are square-free words, Le., words that do not contain any repetition. Thus we define the duplication root of w to consist of aH the square-free words, from which w can be reached via the relation w~.Besides sorne general observations we prove the decidability of the question, whether the duplication root of a language is finite.Then we devise acode, which is robust under duplication of its code words.This would keep the result of a computation from being destroyed by dupli cations in the code words. We determine the exact conditions, under which infinite such codes exist: over an alphabet of two letters they exist for a length bound of 2, over three letters already for a length bound of 1.Also we apply duplication to entire languages rather than to single words; then it is interesting to determine, whether regular and context-free languages are closed under this operation. We show that the regular languages are closed under uniformly bounded duplication, while they are not closed under duplication with a generallength bound. The context-free languages are closed under both operations.The thesis concludes with a list of open problems related with the thesis' topics.
148

Estudios sobre algunas nuevas clases de conectividad condicional en grafos dirigidos

Balbuena Martínez, Camino 24 November 1995 (has links)
La conectividad condicional, definida por Harary en 1983, mide el mínimo número de vértices (o ramas) que hay que eliminar de un grafo o digrafo de forma que todas las componentes conexas resultantes tengan una propiedad prefijada de antemano. La importancia de los diferentes tipos de conectividad condicional está unida al concepto de supervivencia de las componentes que se determinan cuando la red se interrumpe, lo que se expresa especificando las propiedades de estas componentes. Engloban tanto la conectividad estándar como la superconectividad ya que pueden ser interpretadas como conectividades condicionales con respecto a la propiedad que consiste en tener más de cero vértices o un vértice respectivamente.En esta tesis presentamos condiciones suficientes de dos tipos que garantizan altas conectividades condicionales: cotas superiores sobre diámetro y cotas inferiores sobre el orden, ambas formuladas en términos del girth en el caso de grafos, o bien en función del semigirth l en el caso de digrafos.El primer tipo de conectividad condicional abordada es la t-distancia conectividad que juega un papel importante a la hora de medir la fiabilidad de la red como una función de la distancia entre los nodos que queremos comunicar. En este caso se requiere que los conjuntos desconectadotes separen vértices que estaban suficientemente alejados en el (di)grafo original. Se define el t-grado y se muestra que los parámetros que miden la t-distancia conectividad la arco t-distancia conectividad y el t-grado están relacionados por desigualdades que generalizan las desigualdades conocidas para las conectividades estándar. Además, se prueba que otra de las propiedades que estos nuevos parámetros mantienen es la independencia.El trabajo realizado previamente permite profundizar en el estudio de la superconectividad de (di)grafos y de digrafos bipartitos. Se aborda el problema de desconectar de manera no trivial un digrafo superconectado, centrándonos en calcular la máxima distancia a la que se encuentra alejado un vértice de un conjunto desconectador no trivial de cardinal relativamente pequeño. Se introducen los parámetros que miden la superconectividad de un digrafo superconectado, y se estudian condiciones suficientes sobre el diámetro y el orden para obtener cotas inferiores sobre estas medidas de superconectividad. Por último se desarrolla un estudio en el caso de grafos, paralelo al realizado en el caso dirigido. Se expone una tabla en cuyas entradas figuran los órdenes de los grafos con el mayor número de vértices que se conocen hasta el momento junto con sus conectividades respectivas.La última parte de la tesis está dedicado al estudio de grafos que modelan redes conectadas de forma óptima con respecto a la siguiente propiedad de tolerancia a fallos: Cuando algunos nodos o uniones fallan, se exige que en las componentes que se determinan en la red haya un número mínimo de nodos conectados entre sí. Esta conectividad condicional se denomina extraconectividad, que corresponde con la propiedad consistente en tener al menos un cierto número de vértices. Desde este punto de vista, tanto la conectividad estándar como la superconectividad, constituyen medidas de conectividad condicional. El trabajo llevado a cabo mejora sustancialmente las primeras condiciones suficientes sobre el diámetro dadas por Fiol y Fàbrega quienes ya habían conjeturado que la cota superior sobre el diámetro que se había encontrado era posible mejorarla. / The conditional connectivity defined by Harary in 1983, gives the minimum number of vertices or edges which have to be eliminated from a graph or a digraph in such a way all the resulting connected components satisfy a determined property The importance of the different types of conditional connectivity is linked to the concept of survival of the components that determine when the network is interrupted, which is expressed by specifying the properties of these components. They include both connectivity standard as superconectividad as they can be interpreted as a conditional connectivities with respect to the property that is to have more than zero points or a vertex respectively.In this thesis we present sufficient conditions of two types that guarantee high conditional connectivities: upper bounds on diameter and lower bounds on the order, both in terms of girth made in the case graph, or in terms of semigirth l in the directed case.The first type of conditional connectivity addressed is the t-distance connectivity that plays an important role in measuring the reliability of the network as a function of the distance between the nodes that we want to communicate. In this case disconnecting sets are required to separate vertices that were sufficiently distant in the original (di)graph. The t-degree is defined and it is shown that the parameters that measure the t-distance connectivity the arc t-distance connectivity and t-degree inequalities are related by the same inequalities known for standard connectivities. In addition, it is proved that another of the properties that these new parameters keep is the independence.The work done previously allows to study in depth the superconectivity of digraphs and bipartite digraphs. It addresses the problem of disconnecting in a non-trivial way a superconnected digraph, focusing on calculating the maximum distance that is a remote vertex from a non-trivial disconnecting set of cardinality relatively small. The superconnectivity parameters are introduced and sufficient conditions on the diameter and on the order to obtain good measures of superconnectivity are given. Finally, there has been a case study in graphs, conducted in parallel to the directed case addressed. A table whose entries include orders of the graph with the largest number of vertices that are known so far along with their respective connectivities is exposed.The last part of the thesis is devoted to the study of connected graphs modeling networks in an optimal way with respect to the following property of fault tolerance: When some nodes or links fail, it is required that all the components that are determined by the network have a minimum number of nodes connected to each other.This kind of conditional connectivity is called extraconectivity, and corresponds to the property of having at least a certain number of vertices. From this point of view, both as the standard connectivity and superconectivity constitute measures of conditional connectivity. The work carried out substantially improves the early sufficient conditions on the diameter given by Fiol and Fàbrega who had already conjetured that the upper bound on the diameter, which they had been found could be improved.
149

Collected results on semigroups, graphs and codes

Vico Oton, Albert 22 October 2012 (has links)
In this thesis we present a compendium of _ve works where discrete mathematics play a key role. The _rst three works describe di_erent developments and applications of the semigroup theory while the other two have more independent topics. First we present a result on semigroups and code e_ciency, where we introduce our results on the so-called Geil-Matsumoto bound and Lewittes' bound for algebraic geometry codes. Following that, we work on semigroup ideals and their relation with the Feng-Rao numbers; those numbers, in turn, are used to describe the Hamming weights which are used in a broad spectrum of applications, i.e. the wire-tap channel of type II or in the t-resilient functions used in cryptography. The third work presented describes the non-homogeneous patterns for semigroups, explains three di_erent scenarios where these patterns arise and gives some results on their admissibility. The last two works are not as related as the _rst three but still use discrete mathematics. One of them is a work on the applications of coding theory to _ngerprinting, where we give results on the traitor tracing problem and we bound the number of colluders in a colluder set trying to hack a _ngerprinting mark made with a Reed-Solomon code. And _nally in the last work we present our results on scientometrics and graphs, modeling the scienti_c community as a cocitation graph, where nodes represent authors and two nodes are connected if there is a paper citing both authors simultaneously. We use it to present three new indices to evaluate an author's impact in the community.
150

Optimal Sobolev Embeddings in Spaces with Mixed Norm

Clavero, Nadia F. 20 March 2015 (has links)
Este proyecto hace referencia a estimaciones, en espacios funcionales, que relacionan la norma de una función y la de sus derivadas. Concretamente, nuestro principal objetivo es estudiar las estimaciones clásicas de las inclusiones de Sobolev, probadas por Gagliardo y Nirenberg, para derivadas de orden superior y espacios más generales. En particular, estamos interesados en describir el dominio y el rango óptimos para estas inclusiones entre los espacios invariantes por reordenamiento (r.i.) y espacios de normas mixtas. / This thesis project concerns estimates, in function spaces, that relate the norm of a function and that of its derivatives. Speci.cally, our main purpose is to study the classical Sobolev-type inequalities due to Gagliardo and Nirenberg for higher order derivatives and more general spaces. In particular, we concentrate on seeking the optimal domains and the optimal ranges for these embeddings between rearrangement-invariant spaces (r.i.) and mixed norm spaces.

Page generated in 0.0223 seconds