• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 8
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 66
  • 66
  • 19
  • 14
  • 12
  • 12
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Adhesion and Mechanics in the Cadherin Superfamily of Proteins

Neel, Brandon Lowell January 2021 (has links)
No description available.
62

The Hair Bundle: Fluid-Structure Interaction in the Inner Ear

Baumgart, Johannes 22 December 2010 (has links) (PDF)
A multitude of processes cooperate to produce the sensation of sound. The key initial step, the transformation from mechanical motion into an electrical signal, takes place in highly specialized mechanosensitive organelles that are called hair bundles due to their characteristic appearance. Each hair bundle comprises many apposed cylindrical stereocilia that are located in a liquid-filled compartment of the inner ear. The viscous liquid surrounding the hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To understand the structure-function relationship in this complex system, a realistic physical model of the hair bundle with an appropriate representation of the fluid-structure interactions is needed to identify the relevant physical effects. In this work a novel approach is introduced to analyze the mechanics of the fluid-structure interaction problem in the inner ear. Because the motions during normal mechanotransduction are much smaller than the geometrical scales, a unified linear system of equations describes with sufficient accuracy the behavior of the liquid and solid in terms of a displacement variable. The finite-element method is employed to solve this system of partial differential equations. Based on data from the hair bundle of the bullfrog's sacculus, a detailed model is constructed that resolves simultaneously the interaction with the surrounding liquid as well as the coupling liquid in the narrow gaps between the individual stereocilia. The experimental data are from high-resolution interferometric measurements at physiologically relevant amplitudes in the range from a fraction of a nanometer to several tens of nanometers and over a broad range of frequencies from one millihertz to hundred kilohertz. Different modes of motion are analyzed and their induced viscous drag is calculated. The investigation reveals that grouping stereocilia in a bundle dramatically reduces the total drag as compared to the sum of the drags on individual stereocilia moving in isolation. The stereocilia in a hair bundle are interconnected by oblique tip links that transmit the energy in a sound to the mechanotransduction channels and by horizontal top connectors that provide elastic coupling between adjacent stereocilia. During hair-bundle deflections, the tip links induce additional drag by causing small but very dissipative relative motions between stereocilia; this effect is offset by the horizontal top connectors that restrain such relative movements, assuring that the hair bundle moves as a unit and keeping the total drag low. In the model the stiffness of the links, the stiffness of the stereocilia, and the geometry are carefully adjusted to match experimental observations. The references are stiffness and drag measurements, as well as the coherence measurements for the bundle's opposite edges, both with and without the tip links. The results are further validated by a comparison with the relative motions measured in a sinusoidally stimulated bundle for the distortion frequencies at which movements are induced by the nonlinearity imposed by channel gating. The model of the fluid-structure interactions described here provides insight into the key step in the perception of sound and the method presented provides an efficient and reliable approach to fluid-structure interaction problems at small amplitudes. / Bei der Hörwahrnehmung eines Klangs spielen viele komplexe Prozesse zusammen. Der Schlüsselprozess, die Umwandlung mechanischer Schwingungsbewegung in elektrische Signale, findet in den Haarbündeln im Innenohr statt. Diese Haarbündel sind hoch entwickelte mechanosensitive Organellen, bestehend aus vielen nahe beieinander stehenden Stereozilien umgeben von Flüssigkeit. Die beträchtliche Viskosität dieser Flüssigkeit führt zur Energiedissipation und zur Schwingungsdämpfung, was im Gegensatz zur bekannten hohen Empfindlichkeit und der ausgezeichneten Frequenzselektivität der Hörwahrnehmung steht. Um die Komponenten des Haarbündelsystems in ihrem funktionalen Zusammenspiel besser zu verstehen, bedarf es eines wirklichkeitsgetreuen Modells unter Einbeziehung der Wechselwirkung zwischen Flüssigkeit und Struktur. Mit dieser Arbeit wird ein neuer Ansatz vorgestellt, um die Mechanik der Fluid-Struktur-Wechselwirkung im Innenohr zu analysieren. Da die Bewegungen bei der normalen Mechanotransduktion wesentlich kleiner als die geometrischen Abmessungen sind, ist es möglich, das Verhalten von Fluid und Struktur in Form der Verschiebungsvariable in einem linearen einheitlichen System von Gleichungen ausreichend genau zu beschreiben. Dieses System von partiellen Differentialgleichungen wird mit der Finite-Elemente-Methode gelöst. Basierend auf experimentell ermittelten Daten vom Haarbündel des Ochsenfrosches wird ein detailliertes Modell erstellt, welches sowohl die Interaktion mit der umgebenden Flüssigkeit als auch die koppelnde Flüssigkeit in den engen Spalten zwischen den einzelnen Stereozilien erfasst. Die experimentellen Daten sind Ergebnisse von hochauflösenden interferometrischen Messungen bei physiologisch relevanten Bewegungsamplituden im Bereich von unter einem Nanometer bis zu mehreren Dutzend Nanometern, sowie über einen breiten Frequenzbereich von einem Millihertz bis hundert Kilohertz. Das Modell erlaubt die Berechnung der auftretenden viskosen Widerstände aus der numerischen Analyse der verschiedenen beobachteten Bewegungsmoden. Es kann gezeigt werden, dass durch die Gruppierung zu einem Bündel der Gesamtwiderstand drastisch reduziert ist, im Vergleich zur Summe der Widerstände einzelner Stereozilien, die sich individuell und unabhängig voneinander bewegen. Die einzelnen Stereozilien in einem Haarbündel sind durch elastische Strukturen mechanisch miteinander verbunden: Die Energie des Schalls wird durch schräg angeordnete sogenannte Tiplinks auf die mechanotransduktiven Kanäle übertragen, wohingegen horizontale Querverbindungen die Stereozilien direkt koppeln. Während der Haarbündelauslenkung verursachen die Tiplinks zusätzlichen Widerstand durch stark dissipative Relativbewegungen zwischen den Stereozilien. Die horizontalen Querverbindungen unterdrücken diese Bewegungen und sind dafür verantwortlich, dass sich das Haarbündel als Einheit bewegt und der Gesamtwiderstand gering bleibt. Die Steifigkeit der Stereozilien und der Verbindungselemente sowie deren Geometrie sind in dem Modell sorgfältig angepasst, um eine Übereinstimmung mit den Beobachtungen aus verschiedenen Experimenten zu erzielen. Als Referenz dienen Steifigkeits- und Widerstandsmessungen, sowie Kohärenzmessungen für die gegenüberliegenden Außenkanten des Bündels, die jeweils mit und ohne Tiplinks durchgeführt wurden. Darüberhinaus sind die Ergebnisse durch den Vergleich mit experimentell beobachteten Relativbewegungen validiert, die das Haarbündel infolge von sinusförmiger Anregung bei Distorsionsfrequenzen zeigt. Diese haben ihren Ursprung in dem nichtlinearen Prozess des öffnens von Ionenkanälen. Das entwickelte Modell eines Haarbündels liefert neue Einblicke in den Schlüsselprozess der auditiven Wahrnehmung. Zur Behandlung von Problemen der Fluid-Struktur-Wechselwirkungen bei kleinen Amplituden hat sich der hier ausgearbeitete Ansatz als effizient und zuverlässig erwiesen.
63

Reconstitution of mouse inner ear sensory development from pluripotent stem cells

Koehler, Karl R. 01 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The inner ear contains specialized sensory epithelia that detect head movements, gravity and sound. Hearing loss and imbalance are primarily caused by degeneration of the mechanosensitive hair cells in sensory epithelia or the sensory neurons that connect the inner ear to the brain. The controlled derivation of inner ear sensory epithelia and neurons from pluripotent stem cells will be essential for generating in vitro models of inner ear disorders or developing cell-based therapies. Despite some recent success in deriving hair cells from mouse embryonic stem (ES) cells, it is currently unclear how to derive inner ear sensory cells in a fully defined and reproducible manner. Progress has likely been hindered by what is known about induction of the nonneural and preplacodal ectoderm, two critical precursors during inner ear development. The studies presented here report the step-wise differentiation of inner ear sensory epithelia from mouse ES cells in three-dimensional culture. We show that nonneural, preplacodal and pre-otic epithelia can be generated from ES cell aggregates by precise temporal control of BMP, TGFβ and FGF signaling, mimicking in vivo development. Later, in a self-guided process, vesicles containing supporting cells emerge from the presumptive otic epithelium and give rise to hair cells with stereocilia bundles and kinocilium. Remarkably, the vesicles developed into large cysts with sensory epithelia reminiscent of vestibular sense organs (i.e. the utricle, saccule and crista), which sense head movements and gravity in the animal. We have designated these stem cell-derived structures inner ear organoids. In addition, we discovered that sensory-like neurons develop alongside the organoids and form putative synapses with hair cells in a similar fashion to the hair cell-to-neuron circuit that forms in the developing embryo. Our data thus establish a novel in vitro model of inner ear organogenesis that can be used to gain deeper insight into inner ear development and disorder.
64

The Hair Bundle: Fluid-Structure Interaction in the Inner Ear

Baumgart, Johannes 08 November 2010 (has links)
A multitude of processes cooperate to produce the sensation of sound. The key initial step, the transformation from mechanical motion into an electrical signal, takes place in highly specialized mechanosensitive organelles that are called hair bundles due to their characteristic appearance. Each hair bundle comprises many apposed cylindrical stereocilia that are located in a liquid-filled compartment of the inner ear. The viscous liquid surrounding the hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To understand the structure-function relationship in this complex system, a realistic physical model of the hair bundle with an appropriate representation of the fluid-structure interactions is needed to identify the relevant physical effects. In this work a novel approach is introduced to analyze the mechanics of the fluid-structure interaction problem in the inner ear. Because the motions during normal mechanotransduction are much smaller than the geometrical scales, a unified linear system of equations describes with sufficient accuracy the behavior of the liquid and solid in terms of a displacement variable. The finite-element method is employed to solve this system of partial differential equations. Based on data from the hair bundle of the bullfrog's sacculus, a detailed model is constructed that resolves simultaneously the interaction with the surrounding liquid as well as the coupling liquid in the narrow gaps between the individual stereocilia. The experimental data are from high-resolution interferometric measurements at physiologically relevant amplitudes in the range from a fraction of a nanometer to several tens of nanometers and over a broad range of frequencies from one millihertz to hundred kilohertz. Different modes of motion are analyzed and their induced viscous drag is calculated. The investigation reveals that grouping stereocilia in a bundle dramatically reduces the total drag as compared to the sum of the drags on individual stereocilia moving in isolation. The stereocilia in a hair bundle are interconnected by oblique tip links that transmit the energy in a sound to the mechanotransduction channels and by horizontal top connectors that provide elastic coupling between adjacent stereocilia. During hair-bundle deflections, the tip links induce additional drag by causing small but very dissipative relative motions between stereocilia; this effect is offset by the horizontal top connectors that restrain such relative movements, assuring that the hair bundle moves as a unit and keeping the total drag low. In the model the stiffness of the links, the stiffness of the stereocilia, and the geometry are carefully adjusted to match experimental observations. The references are stiffness and drag measurements, as well as the coherence measurements for the bundle's opposite edges, both with and without the tip links. The results are further validated by a comparison with the relative motions measured in a sinusoidally stimulated bundle for the distortion frequencies at which movements are induced by the nonlinearity imposed by channel gating. The model of the fluid-structure interactions described here provides insight into the key step in the perception of sound and the method presented provides an efficient and reliable approach to fluid-structure interaction problems at small amplitudes. / Bei der Hörwahrnehmung eines Klangs spielen viele komplexe Prozesse zusammen. Der Schlüsselprozess, die Umwandlung mechanischer Schwingungsbewegung in elektrische Signale, findet in den Haarbündeln im Innenohr statt. Diese Haarbündel sind hoch entwickelte mechanosensitive Organellen, bestehend aus vielen nahe beieinander stehenden Stereozilien umgeben von Flüssigkeit. Die beträchtliche Viskosität dieser Flüssigkeit führt zur Energiedissipation und zur Schwingungsdämpfung, was im Gegensatz zur bekannten hohen Empfindlichkeit und der ausgezeichneten Frequenzselektivität der Hörwahrnehmung steht. Um die Komponenten des Haarbündelsystems in ihrem funktionalen Zusammenspiel besser zu verstehen, bedarf es eines wirklichkeitsgetreuen Modells unter Einbeziehung der Wechselwirkung zwischen Flüssigkeit und Struktur. Mit dieser Arbeit wird ein neuer Ansatz vorgestellt, um die Mechanik der Fluid-Struktur-Wechselwirkung im Innenohr zu analysieren. Da die Bewegungen bei der normalen Mechanotransduktion wesentlich kleiner als die geometrischen Abmessungen sind, ist es möglich, das Verhalten von Fluid und Struktur in Form der Verschiebungsvariable in einem linearen einheitlichen System von Gleichungen ausreichend genau zu beschreiben. Dieses System von partiellen Differentialgleichungen wird mit der Finite-Elemente-Methode gelöst. Basierend auf experimentell ermittelten Daten vom Haarbündel des Ochsenfrosches wird ein detailliertes Modell erstellt, welches sowohl die Interaktion mit der umgebenden Flüssigkeit als auch die koppelnde Flüssigkeit in den engen Spalten zwischen den einzelnen Stereozilien erfasst. Die experimentellen Daten sind Ergebnisse von hochauflösenden interferometrischen Messungen bei physiologisch relevanten Bewegungsamplituden im Bereich von unter einem Nanometer bis zu mehreren Dutzend Nanometern, sowie über einen breiten Frequenzbereich von einem Millihertz bis hundert Kilohertz. Das Modell erlaubt die Berechnung der auftretenden viskosen Widerstände aus der numerischen Analyse der verschiedenen beobachteten Bewegungsmoden. Es kann gezeigt werden, dass durch die Gruppierung zu einem Bündel der Gesamtwiderstand drastisch reduziert ist, im Vergleich zur Summe der Widerstände einzelner Stereozilien, die sich individuell und unabhängig voneinander bewegen. Die einzelnen Stereozilien in einem Haarbündel sind durch elastische Strukturen mechanisch miteinander verbunden: Die Energie des Schalls wird durch schräg angeordnete sogenannte Tiplinks auf die mechanotransduktiven Kanäle übertragen, wohingegen horizontale Querverbindungen die Stereozilien direkt koppeln. Während der Haarbündelauslenkung verursachen die Tiplinks zusätzlichen Widerstand durch stark dissipative Relativbewegungen zwischen den Stereozilien. Die horizontalen Querverbindungen unterdrücken diese Bewegungen und sind dafür verantwortlich, dass sich das Haarbündel als Einheit bewegt und der Gesamtwiderstand gering bleibt. Die Steifigkeit der Stereozilien und der Verbindungselemente sowie deren Geometrie sind in dem Modell sorgfältig angepasst, um eine Übereinstimmung mit den Beobachtungen aus verschiedenen Experimenten zu erzielen. Als Referenz dienen Steifigkeits- und Widerstandsmessungen, sowie Kohärenzmessungen für die gegenüberliegenden Außenkanten des Bündels, die jeweils mit und ohne Tiplinks durchgeführt wurden. Darüberhinaus sind die Ergebnisse durch den Vergleich mit experimentell beobachteten Relativbewegungen validiert, die das Haarbündel infolge von sinusförmiger Anregung bei Distorsionsfrequenzen zeigt. Diese haben ihren Ursprung in dem nichtlinearen Prozess des öffnens von Ionenkanälen. Das entwickelte Modell eines Haarbündels liefert neue Einblicke in den Schlüsselprozess der auditiven Wahrnehmung. Zur Behandlung von Problemen der Fluid-Struktur-Wechselwirkungen bei kleinen Amplituden hat sich der hier ausgearbeitete Ansatz als effizient und zuverlässig erwiesen.
65

Avaliação do trauma intracoclear causado pela inserção do feixe de eletrodos do implante coclear via fossa média em ossos temporais / Evaluation of intra cochlear trauma after cochlear implant electrode insertion through a middle fossa approach in temporal bones

Cisneros Lesser, Juan Carlos 01 February 2017 (has links)
Introdução: O acesso pela via da fossa craniana média para colocação do implante coclear provou ser uma alternativa valiosa em pacientes com otite média crônica e cavidades de mastoidectomia instáveis, cócleas parcialmente ossificadas e em alguns casos de displasia do ouvido interno. Até hoje não existem pesquisas que descrevam se a inserção do feixe de eletrodos pela via da fossa média pode ser feita com um mínimo de traumatismo intracoclear, comparável ao observado nas inserções pela janela redonda. Objetivo: Avaliar o trauma intracoclear com dois modelos distintos de implante quando o feixe de eletrodos é inserido por cocleostomia na fossa craniana média em ossos temporais. Método: 20 ossos temporais retirados antes de 24 horas pós-óbito, foram implantados através do local da cocleostomia no giro basal da cóclea identificado no assoalho da fossa cerebral média. Dez peças receberam um implante reto e dez um pré-curvado, e foram fixadas em resina epóxi. Foi realizada tomografia computadorizada para determinar a colocação adequada do feixe eletrodos, profundidade de inserção e a distância entre a janela redonda e a cocleostomia. Por último, as peças foram polidas em série, tingidas e visualizadas por estereomicroscópio para avaliar a posição do feixe e trauma intracoclear. Resultados: A tomografia mostrou um posicionamento intracoclear do feixe de eletrodos nas 20 peças. No grupo dos implantes retos a média de eletrodos inserido foi 12,3 (10 a 14) e dos pré-curvados 15,1 (14 a 16) com uma diferença significativa (U=78, p=0,0001). A mediana de profundidade de inserção foi maior para o eletrodo pré-curvado (14,5mm) que para o reto (12,5mm) com diferenças estatisticamente significativas (U = 66, p = 0,021). Só uma das 20 inserções foi atraumática e 70% tiveram graus de trauma altos (grau 3 ou 4). Não foram observadas diferenças significativas do grau de trauma entre os dois tipos de feixes nem quando as inserções foram no sentido da janela redonda, comparado com o sentido do giro médio. Conclusões: A técnica cirúrgica utilizada permitiu a inserção do feixe de eletrodos na cóclea em todas as peças, porém sem garantir uma inserção na escala timpânica e com alto risco de trauma nas microestruturas da cóclea / Introduction: In recent years, a middle fossa approach has been described for the insertion of cochlear implants, and it proved to be a reliable alternative for implantation in patients with chronic supurative otitis media, unstable mastoid cavities with recurrent otorrhea, partially ossified cochlea and in some cases of inner ear dysplasia. Until now, no research has been done to describe if this approach allows for anatomic preservation and non-traumatic insertions comparable to those through the round window. Objective: To evaluate cochlear trauma when the cochlear implant electrode is inserted through a middle fossa approach by means of histologic and imaging studies in temporal bones. Methods: 20 temporal bones retrieved before 24 hours after death were implanted through a middle cranial fossa cochleostomy in the basal turn of the cochlea. Ten received a straight electrode and 10 a perimodiolar electrode. After reducing the bone size with preservation of the inner ear structures, the temporal bones were fixed, dehydrated and embedded in an epoxy resin. CT scans were performed to determine if an adequate direction of insertion was attained, the depth of insertion and the distance between the cochleostomy and the round window. At last, the samples were polished by micro-grinding technique and microscopically visualized to evaluate intracochlear trauma. Results: The CT-scan showed an adequate intracoclear position of the electrode in all the samples. In the straight electrode group the average number of inserted electrodes was 12.3 (10 to 14) against 15.1 (14- 16) for the perimodiolar (U=78, p=0.0001). The median depth of insertion was significantly larger for the perimodiolar electrode group (14.4mm vs. 12.5mm U=66, p = 0.021). Only one atraumatic insertion was achieved and 70% of the samples had important trauma (grades 3 and 4). No differences were identified for the trauma grades between the two groups of electrodes. Also, there were no differences in trauma if the cochlear implants were inserted in the direction of the basal turn of the cochlea or in the direction of the middle and apical turns. Conclusions: The surgical technique that was used allowed for a proper intracochlear insertion of the electrodes in all 20 temporal bones but it does not guarantee a correct scala tympani position and carries high trauma risk for the intracochlear microstructures
66

Avaliação do trauma intracoclear causado pela inserção do feixe de eletrodos do implante coclear via fossa média em ossos temporais / Evaluation of intra cochlear trauma after cochlear implant electrode insertion through a middle fossa approach in temporal bones

Juan Carlos Cisneros Lesser 01 February 2017 (has links)
Introdução: O acesso pela via da fossa craniana média para colocação do implante coclear provou ser uma alternativa valiosa em pacientes com otite média crônica e cavidades de mastoidectomia instáveis, cócleas parcialmente ossificadas e em alguns casos de displasia do ouvido interno. Até hoje não existem pesquisas que descrevam se a inserção do feixe de eletrodos pela via da fossa média pode ser feita com um mínimo de traumatismo intracoclear, comparável ao observado nas inserções pela janela redonda. Objetivo: Avaliar o trauma intracoclear com dois modelos distintos de implante quando o feixe de eletrodos é inserido por cocleostomia na fossa craniana média em ossos temporais. Método: 20 ossos temporais retirados antes de 24 horas pós-óbito, foram implantados através do local da cocleostomia no giro basal da cóclea identificado no assoalho da fossa cerebral média. Dez peças receberam um implante reto e dez um pré-curvado, e foram fixadas em resina epóxi. Foi realizada tomografia computadorizada para determinar a colocação adequada do feixe eletrodos, profundidade de inserção e a distância entre a janela redonda e a cocleostomia. Por último, as peças foram polidas em série, tingidas e visualizadas por estereomicroscópio para avaliar a posição do feixe e trauma intracoclear. Resultados: A tomografia mostrou um posicionamento intracoclear do feixe de eletrodos nas 20 peças. No grupo dos implantes retos a média de eletrodos inserido foi 12,3 (10 a 14) e dos pré-curvados 15,1 (14 a 16) com uma diferença significativa (U=78, p=0,0001). A mediana de profundidade de inserção foi maior para o eletrodo pré-curvado (14,5mm) que para o reto (12,5mm) com diferenças estatisticamente significativas (U = 66, p = 0,021). Só uma das 20 inserções foi atraumática e 70% tiveram graus de trauma altos (grau 3 ou 4). Não foram observadas diferenças significativas do grau de trauma entre os dois tipos de feixes nem quando as inserções foram no sentido da janela redonda, comparado com o sentido do giro médio. Conclusões: A técnica cirúrgica utilizada permitiu a inserção do feixe de eletrodos na cóclea em todas as peças, porém sem garantir uma inserção na escala timpânica e com alto risco de trauma nas microestruturas da cóclea / Introduction: In recent years, a middle fossa approach has been described for the insertion of cochlear implants, and it proved to be a reliable alternative for implantation in patients with chronic supurative otitis media, unstable mastoid cavities with recurrent otorrhea, partially ossified cochlea and in some cases of inner ear dysplasia. Until now, no research has been done to describe if this approach allows for anatomic preservation and non-traumatic insertions comparable to those through the round window. Objective: To evaluate cochlear trauma when the cochlear implant electrode is inserted through a middle fossa approach by means of histologic and imaging studies in temporal bones. Methods: 20 temporal bones retrieved before 24 hours after death were implanted through a middle cranial fossa cochleostomy in the basal turn of the cochlea. Ten received a straight electrode and 10 a perimodiolar electrode. After reducing the bone size with preservation of the inner ear structures, the temporal bones were fixed, dehydrated and embedded in an epoxy resin. CT scans were performed to determine if an adequate direction of insertion was attained, the depth of insertion and the distance between the cochleostomy and the round window. At last, the samples were polished by micro-grinding technique and microscopically visualized to evaluate intracochlear trauma. Results: The CT-scan showed an adequate intracoclear position of the electrode in all the samples. In the straight electrode group the average number of inserted electrodes was 12.3 (10 to 14) against 15.1 (14- 16) for the perimodiolar (U=78, p=0.0001). The median depth of insertion was significantly larger for the perimodiolar electrode group (14.4mm vs. 12.5mm U=66, p = 0.021). Only one atraumatic insertion was achieved and 70% of the samples had important trauma (grades 3 and 4). No differences were identified for the trauma grades between the two groups of electrodes. Also, there were no differences in trauma if the cochlear implants were inserted in the direction of the basal turn of the cochlea or in the direction of the middle and apical turns. Conclusions: The surgical technique that was used allowed for a proper intracochlear insertion of the electrodes in all 20 temporal bones but it does not guarantee a correct scala tympani position and carries high trauma risk for the intracochlear microstructures

Page generated in 0.1125 seconds