Spelling suggestions: "subject:"imagerie dess os spongiform"" "subject:"imagerie dess os spongiforme""
1 |
Imaging the bone cell network with nanoscale synchrotron computed tomography / Imagerie du réseau cellulaire osseux par nano-tomographie synchrotronJoita Pacureanu, Alexandra 19 January 2012 (has links)
Les ostéocytes sont les plus nombreuses cellules du tissu osseux, enterrées dans la matrice osseuse. Elles sont interconnectées par des dendrites, situées dans des canaux appelés canalicules. Les lacunes ostéocytaires, les cavités dans lesquelles les cellules sont logées, avec les canalicules forment un réseau de communication à travers la matrice osseuse, permettant le transport des nutriments et des signaux. Ces cellules, considérées d’abord passives, ont révélé dernièrement leur rôle en tant que cellules mécanosensitives et orchestratrices du remodelage osseux. Malgré les progrès récents des techniques d'imagerie, aucune méthode disponible ne fournit une évaluation 3D adéquate du réseau lacuno-canaliculaire (LCN). Les objectifs de cette thèse ont porté sur l’imagerie 3D du LCN par tomographie synchrotron à rayons X (SR-CT), et le développement d’outils de détection et segmentation 3D de ce réseau cellulaire, afin de le quantifier et analyser. Nous démontrons la faisabilité de la SR-CT en géométrie parallèle pour imager le LCN dans le tissu osseux (voxel~300nm). Cette technique fournit des données 3D sur la morphologie du réseau cellulaire et aussi sur la composition de la matrice osseuse. Comparée aux méthodes d'imagerie 3D existantes, la SR-CT permet l'imagerie d’un volume de tissu beaucoup plus important, d'une manière plus simple et rapide. Cela rend possible l'étude de séries de spécimens afin d'obtenir des conclusions biomédicales. Nous proposons aussi l'utilisation de l’holotomographie divergente synchrotron, pour imager l'ultrastructure du tissu osseux (voxel~60nm). La reconstruction d'image fournit des cartes de phase, obtenues après application d'un algorithme d’inversion de phase adéquat. Cette technique a permis l'évaluation du réseau cellulaire avec une précision plus élevée et de visualiser, pour la première fois en 3D, l'organisation des fibres de collagène. Afin d'obtenir des résultats quantitatifs sur la géométrie du réseau cellulaire, celui doit être segmenté. À cause des limitations de la résolution spatiale, les canalicules apparaissent comme de structures tubulaires très fines (diamètre 1-3 voxels). Ceci, combiné avec le bruit, le faible contraste et la grande taille des images (8Go), rendent la segmentation difficile. Nous proposons une méthode de filtrage non-linéaire 3D, basée sur le rehaussement des structures linéaires, combiné avec un filtrage bilatéral. Cela permet une amélioration de la détection des canalicules, la réduction du bruit de fond et de la préservation des lacunes cellulaires. Pour la segmentation d'images, nous avons développé une méthode basée sur la croissance de région variationnelle. Nous proposons deux expressions de fonctionnelles d'énergie à minimiser, afin de détecter la structure souhaitée. Des résultats quantitatifs préliminaires sont obtenus à partir d’une analyse en composantes connexes sur des échantillons humaines et des observations relatives au réseau ostéocytaire sont présentés. / The osteocytes are the most abundant and longest living bone cells, embedded in the bone matrix. They are interconnected with each other through dendrites, located in slender canals called canaliculi. The osteocyte lacunae, cavities in which the cells are located, together with the canaliculi form a communication network throughout the bone matrix, permitting transport of nutrients, waste and signals. These cells were firstly considered passive, but lately it has become increasingly clear their role as mechanosensory cells and orchestrators of bone remodeling. Despite recent advances in imaging techniques, none of the available methods can provide an adequate 3D assessment of the lacuno-canalicular network (LCN). The aims of this thesis were to achieve 3D imaging of the LCN with synchrotron radiation X-ray computed tomography (SR-CT) and to develop tools for 3D detection and segmentation of this cell network, leading towards automatic quantification of this structure. We demonstrate the feasibility of parallel beam SR-CT to image in 3D the LCN (voxel~300 nm). This technique can provide data on both the morphology of the cell network and the composition of the bone matrix. Compared to the other 3D imaging methods, this enables imaging of tissue covering a number of cell lacunae three orders of magnitude greater, in a simpler and faster way. This makes possible the study of sets of specimens in order to reach biomedical conclusions. Furthermore, we propose the use of divergent holotomography, to image the ultrastructure of bone tissue (voxel~60 nm). The image reconstruction provides phase maps, obtained after the application of a suitable phase retrieval algorithm. This technique permits assessment of the cell network with higher accuracy and it enables the 3D organization of collagen fibres organization in the bone matrix, to be visualized for the first time. In order to obtain quantitative parameters on the geometry of the cell network, this has to be segmented. Due to the limitations in spatial resolution, canaliculi appear as 3D tube-like structures measuring only 1-3 voxels in diameter. This, combined with the noise, the low contrast and the large size of each image (8 GB), makes the segmentation a difficult task. We propose an image enhancement method, based on a 3D line filter combined with bilateral filtering. This enables improvement in canaliculi detection, reduction of the background noise and cell lacunae preservation. For the image segmentation we developed a method based on variational region growing. We propose two expressions for energy functionals to minimize in order to detect the desired structure, based on the 3D line filter map and the original image. Preliminary quantitative results on human femoral samples are obtained based on connected components analysis and a few observations related to the bone cell network and its relation with the bone matrix are presented.
|
2 |
Three-dimensional analysis of bone cellular tissue from SR CT Imaging / Analyse tridimensionnelle du tissu cellulaire osseux par tomographie SynchrotronDong, Pei 21 February 2014 (has links)
Le système ostéocytaire soulève un intérêt croissant depuis quelques années car il est joue un rôle important dans l'adaptation de l'os. Le système ostéocytaire est inclus dans un réseau poreux dénommé le réseau lacuno-canaliculaire (LCN). L’observation du système ostéocytaire est difficile car les ostéocytes sont profondément enfouies dans la matrice osseuse et difficilement accessible par les techniques optiques. Récemment l’équipe de Creatis a montré la faisabilité d’imager le LCN en 3D grâce à la micro tomographie par rayonnement synchrotron. Toutefois, il n’existe actuellement pas de méthodes d’analyse permettant de quantifier, de façon automatique, le réseau lacuno-canaliculaire en 3D. L’objectif de cette thèse était de développer des méthodes d’analyse d’images permettant d’extraire des paramètres quantitatifs sur le réseau lacuno-canaliculaire. La première partie, consacrée à l’état de l’art. Le chapitre 1 présente les objectifs de ce travail. Le chapitre 2 rappelle les éléments de base sur le tissu osseux et présente les caractéristiques du réseau lacuno-canaliculaire. Le chapitre 3 présente les différentes méthodes d’imagerie utilisées jusqu’à présent pour étudier le réseau lacuno-canaliculaire. Le chapitre 4 présente l’état de l’art sur les paramètres qui sont classiquement utilisés pour caractériser le réseau lacuno-canaliculaire. La seconde partie est consacrée aux contributions de ce travail. Le chapitre 5 présente les deux systèmes expérimentaux de l’ESRF sur lesquels des images d’échantillons osseux ont été acquises. Le chapitre 6 décrit la méthode développée pour la quantification des lacunes ostéocytaires à partir d’images à l’échelle micrométrique. Elle propose de calculer des paramètres issus des moments géométriques ainsi que des paramètres basés sur la notion de volumes intrinsèques. Les méthodes sont appliquées à une série de 13 échantillons acquis en collaboration avec le Laboratoire d’Imagerie Paramétrique, Paris. Les résultats obtenus sont comparés et discutés par rapport à ceux de la littérature. Le chapitre 7 décrit la quantification des canalicules reliant les ostéocytes à partir d’images à l’échelle sous-micrométrique. En particulier, nous nous sommes intéressées à estimer le nombre de canalicules issues d’une lacune ostéocytaire, paramètre encore jamais mesuré en 3D. L’évolution de ce paramètre en fonction de la distance au centre de la lacune a permis de mettre en évidence et de quantifier la ramification des canalicules. Le chapitre 8 propose l’application des méthodes développées à une série d’échantillons acquis en collaboration le groupe de Sharmila Majumdar à l’université de San Francisco. Dans ce chapitre, nous avons travaillé sur une nouvelle méthode de segmentation du réseau lacuno-canaliculaire basée sur une méthode de chemins géodésiques. Les premiers résultats acquis sur 8 échantillons humains d’âges différents sont présentés. Finalement, le chapitre 9 conclut ce travail et présente des perspectives. / The osteocyte system has raised increasing interest in the recent years, since it is hypothesized to play an important role in orchestrating bone adaptation through mechanosensation and bone mechanotransduction mechanism. The osteocytes are deeply buried within the bone matrix, where their bodies are encysted in cavities called lacunae and their stellular processes are enclosed in tunnels called canaliculi. Together, they formed the lacuno-canalicular network (LCN). The geometry of the LCN is of importance since it is supposed to potentially affect and reflect the viability of the osteocyte and is supposed to be related to biomechanical constraints at the cell level. However, studying the LCN is quite challenging, due to limitations in an ideal imaging modality and the lack of quantitative analysis tools. In this thesis, we propose computational efficient and automated methods to quantify the 3D morphological properties of the LCN from synchrotron radiation (SR) micro / nano-CT images. For image acquisition, we used the SR micro/nano-CT setups installed on beamlines ID19 and ID22 at ESRF. A series of human cortical samples were imaged with spatial resolutions ranging between 3.5 µm to 60 nm. For the 3D assessment of lacunae, we used an image moment-based approach to calculate the volume, length, width, height and anisotropy of each osteocyte lacuna. We employed a fast algorithm to further calculate the surface area, the Euler number and the SMI of each lacuna. Validation of segmentation and experimental results on 13 bone samples are presented. For the 3D assessment of canaliculi, we propose a method to quantify the canalicular ramification around each lacuna. After segmentation, our method first labels each lacuna from the LCN. Then, a signature of the numbers of canaliculi at different distances from the lacunar surface is estimated through the calculation of topological parameters. Validation of this method and statistical results a large 3D SR micro-CT image of a human femoral bone sample are reported. We also improved the segmentation of the canaliculi and illustrated the feasibility of the application on a series of bone samples. We investigated a segmentation approach based on minimum cost paths and geodesic voting. A parallel computation scheme was implemented to reduce the computation times. The LCN was characterized by using the previous methods. Besides, we introduced the parameters from the Voronoi tessellation. Statistical results are reported on 8 large 3D micro-CT images, including around a hundred lacunae and the canaliculi. Future works will concern the improvement of canaliculi segmentation of from images at 300 nm as well as its evaluation and further characterization of LCN from SR CT images at both 300 nm and 50 nm. This work opens many perspectives for a better knowledge of the physiopathology of bone at the cellular scale.
|
Page generated in 0.0696 seconds